Undescribed Amaryllidaceae Alkaloids from Zephyranthes citrina and Their Cytotoxicity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39229678
PubMed Central
PMC11443518
DOI
10.1021/acs.jnatprod.4c00825
Knihovny.cz E-zdroje
- MeSH
- alkaloidy amarylkovitých * farmakologie chemie izolace a purifikace MeSH
- Amaryllidaceae * chemie MeSH
- antitumorózní látky fytogenní farmakologie chemie izolace a purifikace MeSH
- fenantridiny farmakologie chemie MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- molekulární struktura MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy amarylkovitých * MeSH
- antitumorózní látky fytogenní MeSH
- fenantridiny MeSH
- hemanthamine MeSH Prohlížeč
- lycorine MeSH Prohlížeč
This phytochemical study presents the isolation of eight alkaloids from Zephyranthes citrina Baker. The structures of the new alkaloids, zephycitrine (1) and 6-oxonarcissidine (2), were established by analysis of spectroscopic and spectrometric data. Processing the EtOH extract under acid-base conditions yielded the unreported isolation artifacts 3 and 4. This work also provides analytical data for alkaloids not properly described in the literature (5 and 6). The hippeastidine/zephyranine scaffolds in derivatives 3, 4, and 8-10 are also thoroughly discussed. Furthermore, a cytotoxicity screening of 25 Amaryllidaceae alkaloids isolated from Z. citrina was performed. Only the known alkaloids haemanthamine (12), haemanthidine (13), and lycorine (27) showed significant cell growth inhibition.
Zobrazit více v PubMed
Syeed R.; Mujib A.; Malik M. Q.; Mamgain J.; Ejaz B.; Gulzar B.; Zafar N. Mass Propagation through Direct and Indirect Organogenesis in Three Species of Genus Zephyranthes and Ploidy Assessment of Regenerants through Flow Cytometry. Mol. Biol. Rep. 2021, 48, 513–526. 10.1007/s11033-020-06083-1. PubMed DOI
Herrera M. R.; Machocho A. K.; Brun R.; Viladomat F.; Codina C.; Bastida J. Crinane and Lycorane Type Alkaloids from Zephyranthes citrina. Planta Med. 2001, 67, 191–193. 10.1055/s-2001-11495. PubMed DOI
Šafratová M.; Vrabec R.; Blunden G.; Cahlíková L.; Křoustková J. Specialized Metabolites of the Genus Zephyranthes Herb.: a Critical Review on Taxonomy and Phytochemistry. Phytochem. Rev. 2024, 10.1007/s11101-024-09931-1. DOI
Boit H. G.; Dopke W.; Stender W. Alkaloide aus Crinum-, Zephyranthes-, Leucojum- und Clivia-Arten. Chem. Ber./Recl. 1957, 90, 2203–2206. 10.1002/cber.19570901013. DOI
Pellegrino S.; Meyer M.; Zorbas C.; Bouchta S. A.; Saraf K.; Pelly S. C.; Yusupova G.; Evidente A.; Mathieu V.; Kornienko A.; et al. The Amaryllidaceae Alkaloid Haemanthamine Binds the Eukaryotic Ribosome to Repress Cancer Cell Growth. Structure 2018, 26, 416–425.e4. 10.1016/j.str.2018.01.009. PubMed DOI
Doskočil I.; Hošt’álková A.; Šafratová M.; Benešová N.; Havlík J.; Havelek R.; Kuneš J.; Královec K.; Chlebek J.; Cahlíková L. Cytotoxic activities of Amaryllidaceae alkaloids against gastrointestinal cancer cells. Phytochem. Lett. 2015, 13, 394–398. 10.1016/j.phytol.2015.08.004. DOI
Havelek R.; Seifrtova M.; Kralovec K.; Bruckova L.; Cahlikova L.; Dalecka M.; Vavrova J.; Rezacova M.; Opletal L.; Bilkova Z. The Effect of Alkaloids Haemanthamine and Haemanthidine on Cell Cycle Progression and Apoptosis in p53-negative Human Leukemic Jurkat Cells. Phytomedicine 2014, 21, 479–490. 10.1016/j.phymed.2013.09.005. PubMed DOI
Plazas E.; Avila M M. M.; Munoz D. R.; Cuca S L. E. Natural Isoquinoline Alkaloids: Pharmacological Features and Multi-target Potential for Complex Diseases. Pharmacol. Res. 2022, 177, 10612610.1016/j.phrs.2022.106126. PubMed DOI
Uher M.; Hroch M.; Peřinová R.; Havelek R.; Křoustková J.; Řezáčová M.; Muthná D.; Koutová D.; Kuneš J.; Cahlíková L. Semisynthetic Derivatives of Haemanthamine and their In Vitro Antiproliferative Activity Evaluation against a Panel of Human Cell Lines. Arab. J. Chem. 2022, 15, 10374610.1016/j.arabjc.2022.103746. DOI
Tojo E. (+)-Narcidine, a New Alkaloid from Narcissus pseudonarcissus. J. Nat. Prod. 1991, 54, 1387–1388. 10.1021/np50077a023. DOI
Pigni N. B.; Ríos-Ruiz S.; Martínez-Francés V.; Nair J. J.; Viladomat F.; Codina C.; Bastida J. Alkaloids from Narcissus serotinus. J. Nat. Prod. 2012, 75, 1643–1647. 10.1021/np3003595. PubMed DOI
Cedrón J. C.; Oberti J. C.; Estévez-Braun A.; Ravelo A. G.; Del Arco-Aguilar M.; López M. Pancratium canariense as an Important Source of Amaryllidaceae Alkaloids. J. Nat. Prod. 2009, 72, 112–116. 10.1021/np800459d. PubMed DOI
Zhan G.; Gao B.; Zhou J.; Liu T.; Zheng G.; Jin Z.; Yao G. Structurally Diverse Alkaloids with Nine Frameworks from Zephyranthes candida and their Acetylcholinesterase Inhibitory and Anti-inflammatory Activities. Phytochemistry 2023, 207, 11356410.1016/j.phytochem.2022.113564. PubMed DOI
Shitara N.; Hirasawa Y.; Hasumi S.; Sasaki T.; Matsumoto M.; Wong C. P.; Kaneda T.; Asakawa Y.; Morita H. Four New Amaryllidaceae Alkaloids from Zephyranthes candida. J. Nat. Med. 2014, 68, 610–614. 10.1007/s11418-014-0819-y. PubMed DOI
World Flora Online Home Page. https://www.worldfloraonline.org/ (accessed 9 July 2024).
Via J.; Arriortua M. I.; Ochando L. E.; Reventós M. M.; Amigó J. M.; Bastida J. Structure of Eugenine, an Alkaloid from Narcissus eugeniae. Acta Crystallogr. C 1989, 45, 2020–2022. 10.1107/S0108270189007973. DOI
Meijer T. M.; Schmid H. Uber die Konstitution des Eugenins. Helv. Chim. Acta 1948, 31, 1603–1607. 10.1002/hlca.19480310620. PubMed DOI
Le N. T. H.; De Jonghe S.; Erven K.; Neyts J.; Pannecouque C.; Vermeyen T.; Herrebout W. A.; Pieters L.; Tuenter E. Comprehensive study of alkaloids from Scadoxus ultiflorus by HPLC-PDA-SPE-NMR and evaluation of their anti-SARS-CoV-2 activity. Phytochem. Lett. 2023, 57, 156–162. 10.1016/j.phytol.2023.08.015. DOI
Boit H. G.; Ehmke H. Amaryllidaceen Alkaloide. 10. Die Alkaloide Einiger Gartensorten von Narcissus pseudonarcissus und N-incomparabilis. Chem. Ber./Recl. 1956, 89, 163–167. 10.1002/cber.19560890128. DOI
Fales H. M.; Giuffrida L. D.; Wildman W. C. Alkaloids of the Amaryllidaceae. 8. The Structures of Narcissamine, Pseudolycorine and Methylpseudolycorine. J. Am. Chem. Soc. 1956, 78, 4145–4150. 10.1021/ja01597a078. DOI
Kametani T.; Yamaki K.; Terui T. Studies on Syntheses of Heterocyclic Compounds. 507. Synthesis of (±)-N-norgalanthamine. J. Heterocycl. Chem. 1973, 10, 35–37. 10.1002/jhet.5570100108. DOI
Kihara M.; Koike T.; Imakura Y.; Kida K.; Shingu T.; Kobayashi S. Alkaloidal Constituents of Hymenocallis rotata Herb. (Amaryllidaceae). Chem. Pharm. Bull. 1987, 35, 1070–1075. 10.1248/cpb.35.1070. DOI
Wang H.; Wang Y-H.; Zhao F-W.; Huang Q-Q.; Xu J-J.; Ma L-J.; Long C-L. Benzylphenethylamine Alkaloids from the Bulbs and Flowers of Lycoris radiata. Chin. Herb. Med. 2011, 3, 60–63. 10.3969/j.issn.1674-6384.2011.01.012. DOI
Li L.; Yang Q.; Wang Y.; Jia Y. Catalytic Asymmetric Total Synthesis of (−)-Galanthamine and (−)-Lycoramine. Angew. Chem., Int. Ed. 2015, 54, 6255–6259. 10.1002/anie.201411338. PubMed DOI
Philipova I.; Stavrakov G.; Dimitrov V.; Vassilev N. Galantamine Derivatives: Synthesis, NMR Study, DFT Calculations and Application in Asymmetric Catalysis. J. Mol. Struct. 2020, 1219, 12856810.1016/j.molstruc.2020.128568. DOI
Chaichompoo W.; Rojsitthisak P.; Pabuprapap W.; Siriwattanasathien Y.; Yotmanee P.; Suksamrarn A. Amaryllidaceae Alkaloids from the Bulbs of Crinum latifolium L. and Their Cholinesterase Inhibitory Activities. Phytochemistry 2024, 217, 11392910.1016/j.phytochem.2023.113929. PubMed DOI
Kohelová E.; Maříková J.; Korábečný J.; Hulcová D.; Kučera T.; Jun D.; Chlebek J.; Jenčo J.; Šafratová M.; Hrabinová M.; et al. Alkaloids of (Amaryllidaceae) and their Implication to Alzheimer’s Disease: Isolation, Structural Elucidation and Biological Activity. Bioorg. Chem. 2021, 107, 10456710.1016/j.bioorg.2020.104567. PubMed DOI
Prakash J.; Vedanayaki S. In-vitro Cytotoxicity Studies of Methanolic Bulb Extract of Zephyranthes citrina on Cervical Cancer (Hela), Breast Cancer (MCF-7) and Oral Cancer (SCC-9). J. Pharm. Sci. Res. 2019, 11, 2353–2356.
Havelek R.; Muthná D.; Tomšík P.; Královec K.; Seifrtová M.; Cahlíková L.; Hostalkova A.; Šafratová M.; Perwein M.; Čermaková E.; Řezáčová M. Anticancer Potential of Amaryllidaceae Alkaloids Evaluated by Screening with a Panel of Human Cells, Real-time Cellular Analysis and Ehrlich Tumor-bearing Mice. Chem. Biol. Interact. 2017, 275, 121–132. 10.1016/j.cbi.2017.07.018. PubMed DOI
Indrayanto G.; Putra G. S.; Suhud F. Validation of In-Vitro Bioassay Methods: Application in Herbal Drug Research. Profiles of Drug Subst. Excipients Rel. Methodol. 2021, 46, 273–307. 10.1016/bs.podrm.2020.07.005. PubMed DOI
Luo Z.; Wang F.; Zhang J.; Li X.; Zhang M.; Hao X.; Xue Y.; Li Y.; Horgen F. D.; Yao G.; Zhang Y. Cytotoxic Alkaloids from the Whole Plants of Zephyranthes candida. J. Nat. Prod. 2012, 75, 2113–2120. 10.1021/np3005425. PubMed DOI PMC
Breiterová K.; Koutová D.; Maříková J.; Havelek R.; Kuneš J.; Majorošová M.; Opletal L.; Hošt’álková A.; Jenčo J.; Řezáčová M.; Cahlíková L. Amaryllidaceae alkaloids of different structural types from Narcissus L. cv. Professor Einstein and their cytotoxic activity. Plants (Basel) 2020, 9, 137.10.3390/plants9020137. PubMed DOI PMC
Katoch D.; Kumar D.; Padwad Y. S.; Singh B.; Sharma U. Pseudolycorine N-oxide, a New N-oxide from Narcissus tazetta. Nat. Prod. Res. 2020, 34, 2051–2058. 10.1080/14786419.2019.1574785. PubMed DOI
Nair J. J.; van Staden J. Cytotoxic Agents in the Minor Alkaloid Groups of the Amaryllidaceae. Planta Med. 2021, 87, 916–936. 10.1055/a-1380-1888. PubMed DOI
Luchetti G.; Johnston R.; Mathieu V.; Lefranc F.; Hayden K.; Andolfi A.; Lamoral-Theys D.; Reisenauer M. R.; Champion C.; Pelly S. C.; et al. Bulbispermine: a Crinine-type Amaryllidaceae Alkaloid Exhibiting Cytostatic Activity Toward Apoptosis-resistant Glioma Cells. Chemmedchem 2012, 7, 815–822. 10.1002/cmdc.201100608. PubMed DOI PMC
Van Goietsenoven G.; Andolfi A.; Lallemand B.; Cimmino A.; Lamoral-Theys D.; Gras T.; Abou-Donia A.; Dubois J.; Lefranc F.; Mathieu V.; et al. Amaryllidaceae Alkaloids Belonging to Different Structural Subgroups Display Activity against Apoptosis-resistant Cancer Cells. J. Nat. Prod. 2010, 73, 1223–1227. 10.1021/np9008255. PubMed DOI
Evidente A.; Kireev A. S.; Jenkins A. R.; Romero A. E.; Steelant W. F. A.; Van Slambrouck S.; Kornienko A. Biological Evaluation of Structurally Diverse Amaryllidaceae Alkaloids and their Synthetic Derivatives: Discovery of Novel Leads for Anticancer Drug Design. Planta Med. 2009, 75, 501–507. 10.1055/s-0029-1185340. PubMed DOI PMC
Alarcon M.; Cea G.; Weigert G. Clastogenic effect of hippeastidine (HIPP) (1,2,3,4,4a,6 hexahydro-10,hydroxy-3,8,9,trimethoxy-5,10b, ethanophenanthridine). Bull. Environ. Contam. Toxicol. 1986, 37 (4), 508–512. 10.1007/BF01607796. PubMed DOI
McNulty J.; Nair J. J.; Codina C.; Bastida J.; Pandey S.; Gerasimoff J.; Griffin C. Selective Apoptosis-inducing Activity of Crinum-type Amaryllidaceae alkaloids. Phytochemistry 2007, 68, 1068–1074. 10.1016/j.phytochem.2007.01.006. PubMed DOI
Kim Y. H.; Park E. J.; Park M. H.; Badarch U.; Woldemichael G. M.; Beutler J. A. Crinamine from Crinum asiaticum var. japonicum Inhibits Hypoxia Inducible Factor-1 Activity But Not Activity of Hypoxia Inducible Factor-2. Biol. Pharm. Bull. 2006, 29, 2140–2142. 10.1248/bpb.29.2140. PubMed DOI
Sun Q.; Shen Y.-H.; Tian J.-M.; Tang J.; Su J.; Liu R.-H.; Li H.-L.; Xu X.-K.; Zhang W.-D. Chemical Constituents of Crinum asiaticum L. var. sinicum Baker and their Cytotoxic Activities. Chem. Biodivers. 2009, 6, 1751–1757. 10.1002/cbdv.200800273. PubMed DOI
Jitsuno M.; Yokosuka A.; Sakagami H.; Mimaki Y. Chemical Constituents of the Bulbs of Habranthus brachyandrus and their Cytotoxic Activities. Chem. Pharm. Bull. (Tokyo) 2009, 57, 1153–1157. 10.1248/cpb.57.1153. PubMed DOI
Hrabinova M.; Pejchal J.; Hepnarova V.; Muckova L.; Junova L.; Opravil J.; Zdarova Karasova J.; Rozsypal T.; Dlabkova A.; Rehulkova H.; et al. A-series Agent A-234: Initial in vitro and in vivo Characterization. Arch. Toxicol. 2024, 98, 1135–1149. 10.1007/s00204-024-03689-3. PubMed DOI PMC