• This record comes from PubMed

Which Compounds Contribute Most to Elevated Soil Pollution and the Corresponding Health Risks in Floodplains in the Headwater Areas of the Central European Watershed?

. 2018 Jun 01 ; 15 (6) : . [epub] 20180601

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The main topic of this study is a human health risk assessment of a defined exposure scenario in the floodplain soils of the headwater areas of the central European watershed, with the aim of exploring both multivariate and regional data structures. Flood-prone areas are recognized worldwide to be susceptible to contamination and its redistribution. Contributions of various classes of toxic compounds (organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs)) to human health risks were assessed in a screening risk assessment. However, due to the relative nature of our data and a high PAH dominancy over the data ensemble, reliance solely on the standard statistical processing of raw data might lead to incomplete insight into the structure of the multivariate data. Explanatory analysis of the data structure using the compositional approach was found to be beneficial to elucidating human health risk profiles and provided robust evidence that a contrast between agricultural and airborne industrial pollution controlled the whole human toxicological variation of persistent organic pollutants (POPs) in floodplain soils. These results were effectively quantified with the subcomposition of benzo(a)pyrene, DDT, and alpha-hexachlorocyclohexane (aHCH), allowing for an interpretation of structural differences in regional pollution patterns, which conferred different extents and compositions of human health risks in floodplain soils.

See more in PubMed

Holoubek I., Dušek L., Sáňka M., Hofman J., Čupr P., Jarkovský J., Zbíral J., Klánová J. Soil burdens of persistent organic pollutants—Their levels, fate and risk. Part I. Variation of concentration ranges according to different soil uses and locations. Environ. Pollut. 2009;157:3207–3217. doi: 10.1016/j.envpol.2009.05.031. PubMed DOI

Meijer S.N., Steinnes E., Ockenden W.A., Jones K.C. Influence of environmental variables on the spatial distribution of PCBs in Norwegian and UK soils: Implications for global cycling. Environ. Sci. Technol. 2002;36:2146–2153. doi: 10.1021/es010322i. PubMed DOI

Abrahams P.W., Steigmajer J. Soil ingestion by sheep grazing the metal enriched floodplain soils of mid-Wales. Environ. Geochem. Health. 2003;25:17–24. doi: 10.1023/A:1021217402950. PubMed DOI

Langhammer J. Water quality changes in the Elbe River basin, Czech Republic, in the context of the post-socialist economic transition. GeoJournal. 2010;75:185–198. doi: 10.1007/s10708-009-9292-7. DOI

Podlešáková E., Němeček J., Hálová G. The load of Fluvisols of the Labe river by risk substances. Rostl. Výroba. 1994;40:69–80.

Stachel B., Ehrhorn U., Heemken O.P., Lepom P., Reincke H., Sawal G. Xenoestrogens in the River Elbe and its tributaries. Environ. Pollut. 2003;124:497–507. doi: 10.1016/S0269-7491(02)00483-9. PubMed DOI

Götz R., Bauer O.H., Friesel P., Herrmann T., Jantzen E., Kutzke M., Lauer R., Paepke O., Roch K., Rohweder U., et al. Vertical profile of PCDD/Fs, dioxin-like PCBs, other PCBs, PAHs, chlorobenzenes, DDX, HCHs, organotin compounds and chlorinated ethers in dated sediment/soil cores from flood-plains of the river Elbe, Germany. Chemosphere. 2007;67:592–603. doi: 10.1016/j.chemosphere.2006.09.065. PubMed DOI

Hilscherová K., Dušek L., Kubík V., Čupr P., Hofman J., Klánová J., Holoubek I. Redistribution of organic pollutants in river sediments and alluvial soils related to major floods. J. Soils Sediments. 2007;7:167–177. doi: 10.1065/jss2007.04.222. DOI

Milly P.C.D., Wetherald R.T., Dunne K.A., Delworth T.L. Increasing risk of great floods in a changing climate. Nature. 2002;415:514–517. doi: 10.1038/415514a. PubMed DOI

Munro I.C., Delzell E., Doull M.D., Giesy J.P., Mackay D., Williams G. Interpretive review of the potential adverse effects of chlorinated organic chemicals on human health and the environment. Regul. Toxicol. Pharmacol. 1994;20:S1–S1056. doi: 10.1080/109158197227369. PubMed DOI

Nessel C.S., Amoruso M.A., Umbreit T.H., Meeker R.J., Gallo M.A. Pulmonary bioavailability and fine particle enrichment of 2,3,7,8-tetrachlorodibenzo-p-dioxin in respirable soil particles. Fundam. Appl. Toxicol. 1992;19:279–285. doi: 10.1016/0272-0590(92)90162-B. PubMed DOI

Skowronski G.A., Turkall R.M., Kadry A.M., Abdelrahman M.S. Effects of soil on the dermal bioavailability of M-xylene in male-rats. Environ. Res. 1990;51:182–193. doi: 10.1016/S0013-9351(05)80088-X. PubMed DOI

Bányiová K., Nečasová A., Kohoutek J., Justan I., Čupr P. New experimental data on the human dermal absorption of Simazine and Carbendazim help to refine the assessment of human exposure. Chemosphere. 2016;145:148–156. doi: 10.1016/j.chemosphere.2015.11.018. PubMed DOI

Choi J., Mørck T.A., Joas A., Knudsen L.E. Major national human biomonitoring programs in chemical exposure assessment. AIMS Environ. Sci. 2015;2:782–802. doi: 10.3934/environsci.2015.3.782. DOI

Čupr P., Bartoš T., Sáňka M., Klánová J., Mikeš O., Holoubek I. Soil burdens of persistent organic pollutants—Their levels, fate and risks. Part III. Quantification of the soil burdens and related health risks in the Czech Republic. Sci. Total Environ. 2010;408:486–494. doi: 10.1016/j.scitotenv.2009.09.049. PubMed DOI

United States Environmental Protection Agency Supplemental guidance for developing soil screening levels for superfund sites. Peer Rev. Draft OSWER. 2001;9355:4–24.

Aitchison J. The statistical analysis of compositional data (with discussion) J. R. Stat. Soc. Ser. B Stat. Methodol. 1982;44:139–177.

Aitchison J. The Statistical Analysis of Compositional Data (Monographs on Statistics and Applied Probability) 2nd ed. The Blackburn Press; Caldwell, NJ, USA: 2003. 416p.

Egozcue J.J., Pawlowsky-Glahn V., Mateu-Figueras G., Barcel’o-Vidal C. Isometric logratio transformations for compositional data analysis. Math. Geol. 2003;35:279–300. doi: 10.1023/A:1023818214614. DOI

Filzmoser P., Hron K., Reimann C. Principal component analysis for compositional data with outliers. Environmetrics. 2009;20:621–632. doi: 10.1002/env.966. DOI

Templ M., Filzmoser P., Reimann C. Cluster analysis applied to regional geochemical data: Problems and possibilities. Appl. Geochem. 2008;23:2198–2213. doi: 10.1016/j.apgeochem.2008.03.004. DOI

Dunn J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 1973;3:32–57. doi: 10.1080/01969727308546046. DOI

Palarea-Albaladejo J., Martín-Fernández J.A., Soto J.A. Dealing with distances and transformations for fuzzy C-means clustering of compositional data. J. Classif. 2012;29:144–169. doi: 10.1007/s00357-012-9105-4. DOI

Gabriel K.R. The biplot graphic display of matrices with application to principal component analysis. Biometrika. 1971;58:453–467. doi: 10.1093/biomet/58.3.453. DOI

Aitchison J., Greenacre M. Biplots for compositional data. J. R. Stat. Soc. Ser. B Stat. Methodol. 2002;51:375–392. doi: 10.1111/1467-9876.00275. DOI

Templ M., Hron K., Filzmoser P. robCompositions: An R-Package for Robust Statistical Analysis of Compositional Data. In: Pawlowsky-Glahn V., Buccianti A., editors. Compositional Data Analysis. Theory and Applications. 1st ed. John Wiley & Sons; Chichester, UK: 2001. pp. 341–355. DOI

Van den Boogaart K.G., Tolosana R., Bren M. Compositions: Compositional Data Analysis, R Package Version 1.40-1. [(accessed on 27 February 2018)];2014 Available online: https://CRAN.R-project.org/package=compositions.

Paradis E., Claude J., Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI

Maechler M., Rousseeuw P., Struyf A., Hubert M., Hornik K. Cluster: Cluster Analysis Basics and Extensions, R Package Version 2.0.6. [(accessed on 21 June 2017)];2017 Available online: https://CRAN.R-project.org/package=cluster.

Vácha R., Sáňka M., Skála J., Čechmánková J., Horváthová V. Soil contamination health risks in Czech proposal of soil protection legislation. In: Larramendy M., editor. Environmental Health Risk. 1st ed. InTechOpen; London, UK: 2016. pp. 57–75. DOI

Tolosana-Delgado R., McKinley J.M. Exploring the joint compositional variability of major components and trace elements in the Tellus soil geochemistry survey (Northern Ireland) Appl. Geochem. 2016;75:263–276. doi: 10.1016/j.apgeochem.2016.05.004. DOI

Gower J.C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1966;53:325–338. doi: 10.1093/biomet/53.3-4.325. DOI

Von Eynatten H., Pawlowsky-Glahn V., Egozcue J.J. Understanding perturbation on the simplex: A simple method to better visualise and interpret compositional data in ternary diagrams. Math. Geol. 2002;34:249–257. doi: 10.1023/A:1014826205533. DOI

Švecová V., Topinka J., Solansky I., Rossner P., Jr., Šrám R.J. Personal exposure to carcinogenic polycyclic aromatic hydrocarbons in the Czech Republic. J. Expo. Sci. Environ. Epidemiol. 2013;23:350–355. doi: 10.1038/jes.2012.110. PubMed DOI

Vácha R., Skála J., Čechmánková J., Horváthová V., Hladík J. Toxic elements and persistent organic pollutants derived from industrial emissions in agricultural soils of the Northern Czech Republic. J. Soils Sediments. 2015;15:1813–1824. doi: 10.1007/s11368-015-1120-8. DOI

Plachá D., Raclavská H., Matýsek D., Rümmeli M.H. The polycyclic aromatic hydrocarbon concentrations in soils in the Region of Valasske Mezirici, the Czech Republic. Geochem. Trans. 2009;10:12. doi: 10.1186/1467-4866-10-12. PubMed DOI PMC

Benfenati E., Valzacchi S., Mariani G., Airoldi L., Fanelli R. PCDD, PCDF, PCB, PAH, cadmium, and lead in roadside soil: Relationship between road distance and concentration. Chemosphere. 1992;24:1077–1083. doi: 10.1016/0045-6535(92)90198-Z. DOI

Tuháčkova J., Cajthaml T., Novák K., Novotný C., Merlelik J. Hydrocarbon deposition and soil microflora as affected by highway traffic. Environ. Pollut. 2001;113:255–262. doi: 10.1016/S0269-7491(00)00193-7. PubMed DOI

Dubowsky S.D., Wallace L.A., Buckley T.J. The contribution of traffic to indoor concentrations of polycyclic aromatic hydrocarbons. J. Expos. Anal. Environ. Epidemiol. 1999;9:312–321. doi: 10.1038/sj.jea.7500034. PubMed DOI

Šídlová T., Novák J., Janošek J., Anděl P., Giesy J.P., Hilscherová K. Dioxin-like and endocrine disruptive activity of traffic-contaminated soil samples. Arch. Environ. Contam. Toxical. 2009;57:639–650. doi: 10.1007/s00244-009-9345-4. PubMed DOI

Ollivon D., Blanchard M., Garban B. PAH fluctuations in rivers in the Paris region (France): Impact of floods and rainy events. Water Air Soil Pollut. 1999;115:429–444. doi: 10.1023/A:1005162128490. DOI

Grimalt J.O., Van Drogge B.L., Ribes A., Fernández P., Appleby P. Polycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes. Environ. Pollut. 2004;131:13–24. doi: 10.1016/j.envpol.2004.02.024. PubMed DOI

Kubošová K., Komprda J., Jarkovský J., Sáňka M., Hájek O., Dušek L., Holoubek I., Klánová J. Spatially resolved distribution models of POP concentrations in soil: A stochastic approach using regression trees. Environ. Sci. Technol. 2009;43:9230–9236. doi: 10.1021/es902076y. PubMed DOI

Stachel B., Gotz R., Herrmann T., Kruger F., Knoth W., Papke O., Rauhut U., Reincke H., Schwartz R., Steeg E., et al. The Elbe flood in August 2002—Occurrence of polychlorinateddibenzo-p-dioxins, polychlorinateddibenzofurans (PCDD/F) and dioxin-like PCB in suspended particulate matter (SPM), sediment and fish. Water Sci. Technol. 2004;50:309–316. doi: 10.2166/wst.2004.0342. PubMed DOI

Heinisch E., Kettrup A., Bergheim W., Wenzel S. Persistent chlorinated hydrocarbons (PCHCs), source-oriented monitoring in aquatic media. 6. Strikingly high contaminated sites. Fresen. Environ. Bull. 2007;6:1248–1273.

Randák T., Žlábek V., Pulkrabová J., Kolářová J., Kroupová H., Široká Z., Hajšlová J. Effects of pollution on chub in the River Elbe, Czech Republic. Ecotoxicol. Environ. Saf. 2009;72:737–746. doi: 10.1016/j.ecoenv.2008.09.020. PubMed DOI

Prokeš R., Vrana B., Klánová J. Levels and distribution of dissolved hydrophobic organic contaminants in the Morava river in Zlín district, Czech Republic as derived from their accumulation in silicone rubber passive samplers. Environ. Pollut. 2012;166:157–166. doi: 10.1016/j.envpol.2012.02.022. PubMed DOI

Franců E., Schwarzbauer J., Lána R., Nývlt D., Nehyba S. Historical Changes in Levels of Organic Pollutants in Sediment Cores from Brno Reservoir, Czech Republic. Water Air Soil Pollut. 2010;209:81–91. doi: 10.1007/s11270-009-0182-x. DOI

Beamer P.I., Canales R.A., Bradman A., Leckie J.O. Farmworker children’s residential non-dietary exposure estimates from micro-level activity time series. Environ. Int. 2009;35:1202–1209. doi: 10.1016/j.envint.2009.08.003. PubMed DOI PMC

Yahaya A., Okoh O.O., Okoh A.I., Adeniji A.O. Occurrences of Organochlorine Pesticides along the Course of the Buffalo River in the Eastern Cape of South Africa and Its Health Implications. Int. J. Environ. Res. Public Health. 2017;14:1372. doi: 10.3390/ijerph14111372. PubMed DOI PMC

Hvězdová M., Kosubová P., Košíková M., Scherr K.E., Šimek Z., Brodský L., Šudoma M., Škulcová L., Sáňka M., Svobodová M., et al. Currently and recently used pesticides in Central European arable soils. Sci. Total Environ. 2018;613–614:361–370. doi: 10.1016/j.scitotenv.2017.09.049. PubMed DOI

Hendriks A.J., Wever H., Olie K., van de Guchte K., Liem A.K., van Oosterom R.A.A., van Zorge J. Monitoring and estimating concentrations of polychlorinated biphenyls, dioxins, and furans in cattle milk and soils of Rhine-Delta floodplains. Arch. Environ. Contam. Toxicol. 1996;31:263–270. doi: 10.1007/BF00212376. PubMed DOI

Zeng G.M., Wu H.P., Liang J., Guo S., Huang L., Xu P., Liu Y., Yuan Y., Heab X., Heab Y. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. RSC Adv. 2015;5:34541–34548. doi: 10.1039/C5RA04834F. DOI

Heeb F., Singer H., Pernet-Coudrier B., Qi W., Liu H., Longrée P., Müller B., Berg M. Organic micropollutants in rivers downstream of the megacity Beijing: Sources and mass fluxes in a large-scale wastewater irrigation system. Environ. Sci. Technol. 2012;46:8680–8688. doi: 10.1021/es301912q. PubMed DOI

Wanda E.M.M., Nyoni H., Mamba B.B., Msagati T.A.M. Occurrence of Emerging Micropollutants in Water Systems in Gauteng, Mpumalanga, and North West Provinces, South Africa. Int. J. Environ. Res. Public Health. 2017;14:79. doi: 10.3390/ijerph14010079. PubMed DOI PMC

Lake I.R., Foxall C.D., Fernandes A., Lewis M., White O., Mortimer D., Dowding A., Rose M. The effects of river flooding on dioxin and PCBs in beef. Sci. Total Environ. 2014;491–492:184–191. doi: 10.1016/j.scitotenv.2014.01.080. PubMed DOI

Stachel B., Christoph E.H., Götz R., Herrmann T., Kruger F., Kuhn T., Lay J., Löffler J., Päpke O., Reincke H., et al. Contamination of the alluvial plain, feeding-stuffs and foodstuffs with polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs) and mercury from the river Elbe in the light of the flood event in August 2002. Sci. Total Environ. 2006;364:96–112. doi: 10.1016/j.scitotenv.2005.07.004. PubMed DOI

Trapp S. Dynamic root uptake model for neutral lipophilic organics. Environ. Toxicol. Chem. 2002;21:203–206. doi: 10.1002/etc.5620210128. PubMed DOI

Fismes J., Perrin-Ganier C., Empereur-Bissonnet P., Morel J.L. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J. Environ. Qual. 2002;31:1649–1656. doi: 10.2134/jeq2002.1649. PubMed DOI

Mikeš O., Čupr P., Trapp S., Klánová J. Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus) Environ. Pollut. 2009;157:488–496. doi: 10.1016/j.envpol.2008.09.007. PubMed DOI

Vácha R., Skála J., Čechmánková J. Polycyclic aromatic hydrocarbons in soil and selected plants. Plant Soil Environ. 2010;56:434–443. doi: 10.17221/7/2010-PSE. DOI

Ren X., Zeng G., Tang L., Wang J., Wan J., Liu Y., Yu J., Yi H., Ye S. Sorption, transport and biodegradation—An insight into bioavailability of persistent organic pollutants in soil. Sci. Total Environ. 2018;610–611:1154–1163. doi: 10.1016/j.scitotenv.2017.08.089. PubMed DOI

Wu H.P., Zeng G.M., Liang J., Zhang J., Cai Q., Hunag L., Li X., Zhu H., Hu C., Shen S. Changes of soil microbial biomass and bacterial community structure in Dongting Lake: Impacts of 50,000 dams of Yangtze River. Ecol. Eng. 2013;57:72–78. doi: 10.1016/j.ecoleng.2013.04.038. DOI

Cuia X.Y., Xiang P., He R.W., Juhasz A., Ma L.Q. Advances in in vitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices. Chemosphere. 2016;150:378–389. doi: 10.1016/j.chemosphere.2016.02.041. PubMed DOI

Sáňka M., Hofman J., Vácha R., Čupr P., Čechmánková J., Sáňka O., Mikeš O., Skála J., Horváthová V., Šindelářová L., et al. Methodical Guidelines for Prevention of Toxic Substances Inputs in Crop Production in Periodically Flooded Areas. 1st ed. Research Centre for Toxic Compounds in the Environment, Research Institute for Soil and Water Conservation; Prague, Czech Republic: 2015. (In Czech)

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...