Long-Read Structural and Epigenetic Profiling of a Kidney Tumor-Matched Sample with Nanopore Sequencing and Optical Genome Mapping
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R01 HG009190
NHGRI NIH HHS - United States
PubMed
38915648
PubMed Central
PMC11195078
DOI
10.1101/2024.03.31.587463
PII: 2024.03.31.587463
Knihovny.cz E-zdroje
- Klíčová slova
- Cytogenetics, Epigenetics, Long reads, Nanopore sequencing, Optical genome mapping, Structural variations, clear cell renal cell carcinoma, kidney cancer,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Carcinogenesis often involves significant alterations in the cancer genome architecture, marked by large structural and copy number variations (SVs and CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping and nanopore sequencing are attractive technologies that bridge this resolution gap and offer enhanced performance for cytogenetic applications. These methods profile native, individual DNA molecules, thus capturing epigenetic information. We applied both techniques to characterize a clear cell renal cell carcinoma (ccRCC) tumor's structural and copy number landscape, highlighting the relative strengths of each method in the context of variant size and average read length. Additionally, we assessed their utility for methylome and hydroxymethylome profiling, emphasizing differences in epigenetic analysis applicability.
Department of Biomedical Engineering Tel Aviv University 6997801 Tel Aviv Israel
Institute of Experimental Botany of the Czech Academy of Sciences Olomouc Czech Republic
The Genetics Institute and Genomics Center Tel Aviv Sourasky Medical Center Tel Aviv Israel
Zobrazit více v PubMed
Cosenza M.R., Rodriguez-Martin B., and Korbel J.O. (2022). Structural Variation in Cancer: Role, Prevalence, and Mechanisms. Annu. Rev. Genomics Hum. Genet. 23, 123–152. 10.1146/annurev-genom-120121-101149. PubMed DOI
Ozkan E., and Lacerda M. (2023). Genetics, Cytogenetic Testing And Conventional Karyotype. StatPearls. StatPearls Publ. Treasure Isl.. PubMed
Yang Lixing (2020). A practical guide for structural variation detection in human genome. Curr. Protoc. Hum. Genet. 107, e103. 10.1002/cphg.103.A. PubMed DOI PMC
Cui C., Shu W., and Li P. (2016). Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications. Front. Cell Dev. Biol. 4, 89. 10.3389/fcell.2016.00089. PubMed DOI PMC
Amarasinghe S.L., Su S., Dong X., Zappia L., Ritchie M.E., and Gouil Q. (2020). Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21. 10.1186/s13059-020-1935-5. PubMed DOI PMC
Marks P., Garcia S., Barrio A.M., Belhocine K., Bernate J., Bharadwaj R., Bjornson K., Catalanotti C., Delaney J., Fehr A., et al. (2019). Resolving the full spectrum of human genome variation using Linked-Reads. Genome Res. 29, 635–645. 10.1101/gr.234443.118. PubMed DOI PMC
Chen Z., Pham L., Wu T.C., Mo G., Xia Y., Chan P.L., Porter D., Phan T., Che H., Tran H., et al. (2020). Ultralow-input single-tube linked-read library method enables short-read second-generation sequencing systems to routinely generate highly accurate and economical long-range sequencing information. Genome Res. 30, 898–909. 10.1101/gr.260380.119. PubMed DOI PMC
Mathew M.T., Babcock M., Hou Y.C.C., Hunter J.M., Leung M.L., Mei H., Schieffer K., and Akkari Y. (2024). Clinical Cytogenetics: Current Practices and Beyond. J. Appl. Lab. Med. 9, 61–75. 10.1093/jalm/jfad086. PubMed DOI
Pang A.W.C., Kosco K., Sahajpal N.S., Sridhar A., Hauenstein J., Clifford B., Estabrook J., Chitsazan A.D., Sahoo T., Iqbal A., et al. (2023). Analytic Validation of Optical Genome Mapping in Hematological Malignancies. Biomedicines 11. 10.3390/biomedicines11123263. PubMed DOI PMC
Jeffet J., Margalit S., Michaeli Y., and Ebenstein Y. (2021). Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale Jonathan. Essays Biochem. 10.1042/EBC20200021. PubMed DOI PMC
Wang Y., Zhao Y., Bollas A., Wang Y., and Au K.F. (2021). Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365. 10.1038/s41587-021-01108-x. PubMed DOI PMC
Mantere T., Kersten S., and Hoischen A. (2019). Long-read sequencing emerging in medical genetics. Front. Genet. 10, 426. 10.3389/fgene.2019.00426. PubMed DOI PMC
Heck C., Michaeli Y., Bald I., and Ebenstein Y. (2019). Analytical epigenetics: single-molecule optical detection of DNA and histone modifications. Curr. Opin. Biotechnol. 55, 151–158. 10.1016/j.copbio.2018.09.006. PubMed DOI PMC
Sharim H., Grunwald A., Gabrieli T., Michaeli Y., Margalit S., Torchinsky D., Arielly R., Nifker G., Juhasz M., Gularek F., et al. (2019). Long-read single-molecule maps of the functional methylome. Genome Res. 29, 646–656. 10.1101/gr.240739.118. PubMed DOI PMC
Gabrieli T., Sharim H., Nifker G., Jeffet J., Shahal T., Arielly R., Levy-sakin M., Hoch L., Arbib N., Michaeli Y., et al. (2018). Epigenetic Optical Mapping of 5-Hydroxymethylcytosine in Nanochannel Arrays. ACS Nano 12, 7148–7158. 10.1021/acsnano.8b03023. PubMed DOI PMC
Margalit S., Abramson Y., Sharim H., Manber Z., Bhattacharya S., Chen Y.-W., Vilain E., Barseghyan H., Elkon R., Sharan R., et al. (2021). Long reads capture simultaneous enhancer–promoter methylation status for cell-type deconvolution. Bioinformatics, 37, i327–i333. PubMed PMC
White L.K., and Hesselberth J.R. (2022). Modification mapping by nanopore sequencing. Front. Genet. 13, 1–14. 10.3389/fgene.2022.1037134. PubMed DOI PMC
Li H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100. 10.1093/bioinformatics/bty191. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., and Durbin R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. 10.1093/bioinformatics/btp352. PubMed DOI PMC
Ewels P.A., Peltzer A., Fillinger S., Patel H., Alneberg J., Wilm A., Garcia M.U., and Di Tommaso Paolo & Nahnsen Sven (2020). The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278. 10.1038/s41587-020-0435-1. PubMed DOI
Margalit S., Tulpová Z., Michaeli Y., Zur T.D., Deek J., Louzoun-Zada S., Nifker G., Grunwald A., Scher Y., Schütz L., et al. (2022). Optical Genome and Epigenome Mapping of Clear Cell Renal Cell Carcinoma. bioRxiv. PubMed PMC
Grunwald A., Dahan M., Giesbertz A., Nilsson A., Nyberg L.K., Weinhold E., Ambjörnsson T., Westerlund F., and Ebenstein Y. (2015). Bacteriophage strain typing by rapid single molecule analysis. Nucleic Acids Res. 43, e117–e117. 10.1093/nar/gkv563. PubMed DOI PMC
Quinlan A.R., and Hall I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842. 10.1093/bioinformatics/btq033. PubMed DOI PMC
Cingolani P., Patel V.M., Coon M., Nguyen T., Land S.J., Ruden D.M., and Lu X. (2012). Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet. 3. 10.3389/fgene.2012.00035. PubMed DOI PMC
Landrum M.J., Lee J.M., Riley G.R., Jang W., Rubinstein W.S., Church D.M., and Maglott D.R. (2014). ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, 980–985. 10.1093/nar/gkt1113. PubMed DOI PMC
Heller D., and Vingron M. (2019). SVIM: Structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915. 10.1093/bioinformatics/btz041. PubMed DOI PMC
Jiang T., Liu Y., Jiang Y., Li J., Gao Y., Cui Z., Liu Y., Liu B., and Wang Y. (2020). Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 1–24. 10.1186/s13059-020-02107-y. PubMed DOI PMC
Neph S., Kuehn M.S., Reynolds A.P., Haugen E., Thurman R.E., Johnson A.K., Rynes E., Maurano M.T., Vierstra J., Thomas S., et al. (2012). BEDOPS: High-performance genomic feature operations. Bioinformatics 28, 1919–1920. 10.1093/bioinformatics/bts277. PubMed DOI PMC
Yao X., Tan J., Lim K.J., Koh J., Ooi W.F., Li Z., Huang D., Xing M., Chan Y.S., Qu J.Z., et al. (2017). VHL Deficiency Drives Enhancer Activation of Oncogenes in Clear Cell Renal Cell Carcinoma. Cancer Discov. 7, 1284–1305. PubMed
Trapnell C., Pachter L., and Salzberg S.L. (2009). TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111. 10.1093/bioinformatics/btp120. PubMed DOI PMC
Leinonen R., Sugawara H., and Shumway M. (2011). The sequence read archive. Nucleic Acids Res. 39, 2010–2012. 10.1093/nar/gkq1019. PubMed DOI PMC
Anders S., Pyl P.T., and Huber W. (2015). HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169. 10.1093/bioinformatics/btu638. PubMed DOI PMC
Frankish A., Diekhans M., Ferreira A.M., Johnson R., Jungreis I., Loveland J., Mudge J.M., Sisu C., Wright J., Armstrong J., et al. (2019). GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773. 10.1093/nar/gky955. PubMed DOI PMC
Ramírez F., Dündar F., Diehl S., Grüning B.A., and Manke T. (2014). DeepTools: A flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, 187–191. 10.1093/nar/gku365. PubMed DOI PMC
Moore L.E., Jaeger E., Nickerson M.L., Brennan P., De Vries S., Roy R., Toro J., Li H., Karami S., Lenz P., et al. (2012). Genomic copy number alterations in clear cell renal carcinoma: Associations with case characteristics and mechanisms of VHL gene inactivation. Oncogenesis 1, 1–9. 10.1038/oncsis.2012.14. PubMed DOI PMC
Quddus M., Pratt N., and Nabi G. (2019). Chromosomal aberrations in renal cell carcinoma: An overview with implications for clinical practice. Urol. Ann. 11, 6–14. 10.4103/UA.UA_32_18. PubMed DOI PMC
Bionano Genomics (2023). Bionano Genomics Website. Reveal More Genomic Var. That Matters With Opt. Genome Mapp. https://bionano.com/wp-content/uploads/BNG-23-064-Saphyr-Brochure-Update-2023_6.0_DIGITAL.pdf.
Bionano Genomics (2023). Bionano Genomics website. Prod. Sheet - Optim. Sample Prep. Opt. Genome Mapp. Simpl. Work. Opt. Genome Mapp. https://bionano.com/wp-content/uploads/2023/01/BNG-23-087-Sample-Prep-Product-Sheet-Update_3.0_DIGITAL.pdf.
Oxford Nanopore Technologies (2024). PromethION. Website, Oxford Nanopore Technol. https://nanoporetech.com/sites/default/files/s3/literature/BR_1204(EN)_V2_24Jan2024_FAW_DIGITAL-SPREADS.pdf.
Bionano Genomics (2023). Bionano Genomics Ordering Guide 2023. Bionano Genomics website.
Avraham S., Schütz L., Käver L., Dankers A., Margalit S., Michaeli Y., Zirkin S., Torchinsky D., Gilat N., Bahr O., et al. (2023). Chemo-Enzymatic Fluorescence Labeling Of Genomic DNA For Simultaneous Detection Of Global 5-Methylcytosine And 5-Hydroxymethylcytosine**. ChemBioChem 24. 10.1002/cbic.202300400. PubMed DOI
Gabrieli T., Michaeli Y., Avraham S., Torchinsky D., Margalit S., Schütz L., Juhasz M., Coruh C., Arbib N., Zhou Z.S., et al. (2022). Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping. Nucleic Acids Res. 10.1093/nar/gkac460 Chemoenzymatic. PubMed DOI PMC
Jonasch E., Walker C.L., and Rathmell W.K. (2021). Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat. Rev. Nephrol. 17, 245–261. 10.1038/s41581-020-00359-2. PubMed DOI PMC
Le V.H., and Hsieh J.J. (2018). Genomics and genetics of clear cell renal cell carcinoma: a mini-review. J. Transl. Genet. Genomics. 10.20517/jtgg.2018.28. DOI
Klatte T., Rao P.N., De Martino M., Larochelle J., Shuch B., Zomorodian N., Said J., Kabbinavar F.F., Belldegrun A.S., and Pantuck A.J. (2009). Cytogenetic profile predicts prognosis of patients with clear cell renal cell carcinoma. J. Clin. Oncol. 27, 746–753. 10.1200/JCO.2007.15.8345. PubMed DOI
Smolka M., Paulin L.F., Grochowski C.M., Horner D.W., Mahmoud M., Behera S., Kalef-Ezra E., Gandhi M., Hong K., Pehlivan D., et al. (2024). Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. 10.1038/s41587-023-02024-y. PubMed DOI PMC
Bolognini D., and Magi A. (2021). Evaluation of Germline Structural Variant Calling Methods for Nanopore Sequencing Data. Front. Genet. 12, 1–9. 10.3389/fgene.2021.761791. PubMed DOI PMC
Yuen Z.W.S., Srivastava A., Daniel R., McNevin D., Jack C., and Eyras E. (2021). Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing. Nat. Commun. 12, 1–12. 10.1038/s41467-021-23778-6. PubMed DOI PMC
Shi D.Q., Ali I., Tang J., and Yang W.-C. (2017). New insights into 5hmC DNA modification: Generation, distribution and function. Front. Genet. 8, 100. 10.3389/fgene.2017.00100. PubMed DOI PMC
Jin S.G., Jiang Y., Qiu R., Rauch T.A., Wang Y., Schackert G., Krex D., Lu Q., and Pfeifer G.P. (2011). 5-hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res. 71, 7360–7365. 10.1158/0008-5472.CAN-11-2023. PubMed DOI PMC
Nifker G., Levy-Sakin M., Berkov-Zrihen Y., Shahal T., Gabrieli T., Fridman M., and Ebenstein Y. (2015). One-pot chemoenzymatic cascade for labeling of the epigenetic marker 5-hydroxymethylcytosine. ChemBioChem 16, 1857–1860. 10.1002/cbic.201500329. PubMed DOI
Song C.-X., Szulwach K.E., Fu Y., Dai Q., Yi C., Li X., Li Y., Chen C., Zhang W., Jian X., et al. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. 29, 68–72. 10.1038/nbt.1732.Selective. PubMed DOI PMC
Michaeli Y., Shahal T., Torchinsky D., Grunwald A., Hoch R., and Ebenstein Y. (2013). Optical detection of epigenetic marks: sensitive quantification and direct imaging of individual hydroxymethylcytosine bases. Chem. Commun. (Camb). 49, 8599–8601. 10.1039/c3cc42543f. PubMed DOI
Shahal T., Gilat N., Michaeli Y., Redy-keisar O., Shabat D., and Ebenstein Y. (2014). Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA. Anal. Chem. 86, 8231–8237. PubMed
Margalit S., Avraham S., Shahal T., Michaeli Y., Gilat N., Magod P., Caspi M., Loewenstein S., Lahat G., Friedmann-Morvinski D., et al. (2020). 5-Hydroxymethylcytosine as a clinical biomarker: Fluorescence-based assay for high-throughput epigenetic quantification in human tissues. Int. J. Cancer 146, 115–122. 10.1002/ijc.32519. PubMed DOI
Chen S., Dou Y., Zhao Z., Li F., Su J., Fan C., and Song S. (2016). High-Sensitivity and High-Efficiency Detection of DNA Hydroxymethylation in Genomic DNA by Multiplexing Electrochemical Biosensing. Anal. Chem. 88, 3476–3480. 10.1021/acs.analchem.6b00230. PubMed DOI
Nifker G., Grunwald A., Margalit S., Tulpova Z., Michaeli Y., Har-Gil H., Maimon N., Roichman E., Schütz L., Weinhold E., et al. (2023). Dam Assisted Fluorescent Tagging of Chromatin Accessibility (DAFCA) for Optical Genome Mapping in Nanochannel Arrays. ACS Nano 17, 9178–9187. 10.1021/acsnano.2c12755. PubMed DOI PMC
Amemiya H.M., Kundaje A., and Boyle A.P. (2019). The ENCODE Blacklist: Identification of Problematic Regions of the Genome. Sci. Rep. 9, 1–5. 10.1038/s41598-019-45839-z. PubMed DOI PMC
Bionano Genomics (2021). Bionano Solve Theory of Operation: Structural Variant Calling. Bionano Genomics website, 30110K. https://bionano.wpenginepowered.com/wp-content/uploads/2022/05/30110_Rev.L_Bionano-Solve-Theory-of-Operation-Structural-Variant-Calling.pdf.
Savara J., Novosád T., Gajdoš P., and Kriegová E. (2021). Comparison of structural variants detected by optical mapping with long-read next-generation sequencing. Bioinformatics 37, 3398–3404. 10.1093/bioinformatics/btab359. PubMed DOI
Liu Y.H., Luo C., Golding S.G., Ioffe J.B., and Zhou X.M. (2024). Tradeoffs in alignment and assembly-based methods for structural variant detection with long-read sequencing data. Nat. Commun. 15. 10.1038/s41467-024-46614-z. PubMed DOI PMC