Long-Read Structural and Epigenetic Profiling of a Kidney Tumor-Matched Sample with Nanopore Sequencing and Optical Genome Mapping

. 2024 Jun 13 ; () : . [epub] 20240613

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, preprinty

Perzistentní odkaz   https://www.medvik.cz/link/pmid38915648

Grantová podpora
R01 HG009190 NHGRI NIH HHS - United States

Carcinogenesis often involves significant alterations in the cancer genome architecture, marked by large structural and copy number variations (SVs and CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping and nanopore sequencing are attractive technologies that bridge this resolution gap and offer enhanced performance for cytogenetic applications. These methods profile native, individual DNA molecules, thus capturing epigenetic information. We applied both techniques to characterize a clear cell renal cell carcinoma (ccRCC) tumor's structural and copy number landscape, highlighting the relative strengths of each method in the context of variant size and average read length. Additionally, we assessed their utility for methylome and hydroxymethylome profiling, emphasizing differences in epigenetic analysis applicability.

Aktualizováno

PubMed

Zobrazit více v PubMed

Cosenza M.R., Rodriguez-Martin B., and Korbel J.O. (2022). Structural Variation in Cancer: Role, Prevalence, and Mechanisms. Annu. Rev. Genomics Hum. Genet. 23, 123–152. 10.1146/annurev-genom-120121-101149. PubMed DOI

Ozkan E., and Lacerda M. (2023). Genetics, Cytogenetic Testing And Conventional Karyotype. StatPearls. StatPearls Publ. Treasure Isl.. PubMed

Yang Lixing (2020). A practical guide for structural variation detection in human genome. Curr. Protoc. Hum. Genet. 107, e103. 10.1002/cphg.103.A. PubMed DOI PMC

Cui C., Shu W., and Li P. (2016). Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications. Front. Cell Dev. Biol. 4, 89. 10.3389/fcell.2016.00089. PubMed DOI PMC

Amarasinghe S.L., Su S., Dong X., Zappia L., Ritchie M.E., and Gouil Q. (2020). Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21. 10.1186/s13059-020-1935-5. PubMed DOI PMC

Marks P., Garcia S., Barrio A.M., Belhocine K., Bernate J., Bharadwaj R., Bjornson K., Catalanotti C., Delaney J., Fehr A., et al. (2019). Resolving the full spectrum of human genome variation using Linked-Reads. Genome Res. 29, 635–645. 10.1101/gr.234443.118. PubMed DOI PMC

Chen Z., Pham L., Wu T.C., Mo G., Xia Y., Chan P.L., Porter D., Phan T., Che H., Tran H., et al. (2020). Ultralow-input single-tube linked-read library method enables short-read second-generation sequencing systems to routinely generate highly accurate and economical long-range sequencing information. Genome Res. 30, 898–909. 10.1101/gr.260380.119. PubMed DOI PMC

Mathew M.T., Babcock M., Hou Y.C.C., Hunter J.M., Leung M.L., Mei H., Schieffer K., and Akkari Y. (2024). Clinical Cytogenetics: Current Practices and Beyond. J. Appl. Lab. Med. 9, 61–75. 10.1093/jalm/jfad086. PubMed DOI

Pang A.W.C., Kosco K., Sahajpal N.S., Sridhar A., Hauenstein J., Clifford B., Estabrook J., Chitsazan A.D., Sahoo T., Iqbal A., et al. (2023). Analytic Validation of Optical Genome Mapping in Hematological Malignancies. Biomedicines 11. 10.3390/biomedicines11123263. PubMed DOI PMC

Jeffet J., Margalit S., Michaeli Y., and Ebenstein Y. (2021). Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale Jonathan. Essays Biochem. 10.1042/EBC20200021. PubMed DOI PMC

Wang Y., Zhao Y., Bollas A., Wang Y., and Au K.F. (2021). Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365. 10.1038/s41587-021-01108-x. PubMed DOI PMC

Mantere T., Kersten S., and Hoischen A. (2019). Long-read sequencing emerging in medical genetics. Front. Genet. 10, 426. 10.3389/fgene.2019.00426. PubMed DOI PMC

Heck C., Michaeli Y., Bald I., and Ebenstein Y. (2019). Analytical epigenetics: single-molecule optical detection of DNA and histone modifications. Curr. Opin. Biotechnol. 55, 151–158. 10.1016/j.copbio.2018.09.006. PubMed DOI PMC

Sharim H., Grunwald A., Gabrieli T., Michaeli Y., Margalit S., Torchinsky D., Arielly R., Nifker G., Juhasz M., Gularek F., et al. (2019). Long-read single-molecule maps of the functional methylome. Genome Res. 29, 646–656. 10.1101/gr.240739.118. PubMed DOI PMC

Gabrieli T., Sharim H., Nifker G., Jeffet J., Shahal T., Arielly R., Levy-sakin M., Hoch L., Arbib N., Michaeli Y., et al. (2018). Epigenetic Optical Mapping of 5-Hydroxymethylcytosine in Nanochannel Arrays. ACS Nano 12, 7148–7158. 10.1021/acsnano.8b03023. PubMed DOI PMC

Margalit S., Abramson Y., Sharim H., Manber Z., Bhattacharya S., Chen Y.-W., Vilain E., Barseghyan H., Elkon R., Sharan R., et al. (2021). Long reads capture simultaneous enhancer–promoter methylation status for cell-type deconvolution. Bioinformatics, 37, i327–i333. PubMed PMC

White L.K., and Hesselberth J.R. (2022). Modification mapping by nanopore sequencing. Front. Genet. 13, 1–14. 10.3389/fgene.2022.1037134. PubMed DOI PMC

Li H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100. 10.1093/bioinformatics/bty191. PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., and Durbin R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. 10.1093/bioinformatics/btp352. PubMed DOI PMC

Ewels P.A., Peltzer A., Fillinger S., Patel H., Alneberg J., Wilm A., Garcia M.U., and Di Tommaso Paolo & Nahnsen Sven (2020). The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278. 10.1038/s41587-020-0435-1. PubMed DOI

Margalit S., Tulpová Z., Michaeli Y., Zur T.D., Deek J., Louzoun-Zada S., Nifker G., Grunwald A., Scher Y., Schütz L., et al. (2022). Optical Genome and Epigenome Mapping of Clear Cell Renal Cell Carcinoma. bioRxiv. PubMed PMC

Grunwald A., Dahan M., Giesbertz A., Nilsson A., Nyberg L.K., Weinhold E., Ambjörnsson T., Westerlund F., and Ebenstein Y. (2015). Bacteriophage strain typing by rapid single molecule analysis. Nucleic Acids Res. 43, e117–e117. 10.1093/nar/gkv563. PubMed DOI PMC

Quinlan A.R., and Hall I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842. 10.1093/bioinformatics/btq033. PubMed DOI PMC

Cingolani P., Patel V.M., Coon M., Nguyen T., Land S.J., Ruden D.M., and Lu X. (2012). Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet. 3. 10.3389/fgene.2012.00035. PubMed DOI PMC

Landrum M.J., Lee J.M., Riley G.R., Jang W., Rubinstein W.S., Church D.M., and Maglott D.R. (2014). ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, 980–985. 10.1093/nar/gkt1113. PubMed DOI PMC

Heller D., and Vingron M. (2019). SVIM: Structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915. 10.1093/bioinformatics/btz041. PubMed DOI PMC

Jiang T., Liu Y., Jiang Y., Li J., Gao Y., Cui Z., Liu Y., Liu B., and Wang Y. (2020). Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 1–24. 10.1186/s13059-020-02107-y. PubMed DOI PMC

Neph S., Kuehn M.S., Reynolds A.P., Haugen E., Thurman R.E., Johnson A.K., Rynes E., Maurano M.T., Vierstra J., Thomas S., et al. (2012). BEDOPS: High-performance genomic feature operations. Bioinformatics 28, 1919–1920. 10.1093/bioinformatics/bts277. PubMed DOI PMC

Yao X., Tan J., Lim K.J., Koh J., Ooi W.F., Li Z., Huang D., Xing M., Chan Y.S., Qu J.Z., et al. (2017). VHL Deficiency Drives Enhancer Activation of Oncogenes in Clear Cell Renal Cell Carcinoma. Cancer Discov. 7, 1284–1305. PubMed

Trapnell C., Pachter L., and Salzberg S.L. (2009). TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111. 10.1093/bioinformatics/btp120. PubMed DOI PMC

Leinonen R., Sugawara H., and Shumway M. (2011). The sequence read archive. Nucleic Acids Res. 39, 2010–2012. 10.1093/nar/gkq1019. PubMed DOI PMC

Anders S., Pyl P.T., and Huber W. (2015). HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169. 10.1093/bioinformatics/btu638. PubMed DOI PMC

Frankish A., Diekhans M., Ferreira A.M., Johnson R., Jungreis I., Loveland J., Mudge J.M., Sisu C., Wright J., Armstrong J., et al. (2019). GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773. 10.1093/nar/gky955. PubMed DOI PMC

Ramírez F., Dündar F., Diehl S., Grüning B.A., and Manke T. (2014). DeepTools: A flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, 187–191. 10.1093/nar/gku365. PubMed DOI PMC

Moore L.E., Jaeger E., Nickerson M.L., Brennan P., De Vries S., Roy R., Toro J., Li H., Karami S., Lenz P., et al. (2012). Genomic copy number alterations in clear cell renal carcinoma: Associations with case characteristics and mechanisms of VHL gene inactivation. Oncogenesis 1, 1–9. 10.1038/oncsis.2012.14. PubMed DOI PMC

Quddus M., Pratt N., and Nabi G. (2019). Chromosomal aberrations in renal cell carcinoma: An overview with implications for clinical practice. Urol. Ann. 11, 6–14. 10.4103/UA.UA_32_18. PubMed DOI PMC

Bionano Genomics (2023). Bionano Genomics Website. Reveal More Genomic Var. That Matters With Opt. Genome Mapp. https://bionano.com/wp-content/uploads/BNG-23-064-Saphyr-Brochure-Update-2023_6.0_DIGITAL.pdf.

Bionano Genomics (2023). Bionano Genomics website. Prod. Sheet - Optim. Sample Prep. Opt. Genome Mapp. Simpl. Work. Opt. Genome Mapp. https://bionano.com/wp-content/uploads/2023/01/BNG-23-087-Sample-Prep-Product-Sheet-Update_3.0_DIGITAL.pdf.

Oxford Nanopore Technologies (2024). PromethION. Website, Oxford Nanopore Technol. https://nanoporetech.com/sites/default/files/s3/literature/BR_1204(EN)_V2_24Jan2024_FAW_DIGITAL-SPREADS.pdf.

Bionano Genomics (2023). Bionano Genomics Ordering Guide 2023. Bionano Genomics website.

Avraham S., Schütz L., Käver L., Dankers A., Margalit S., Michaeli Y., Zirkin S., Torchinsky D., Gilat N., Bahr O., et al. (2023). Chemo-Enzymatic Fluorescence Labeling Of Genomic DNA For Simultaneous Detection Of Global 5-Methylcytosine And 5-Hydroxymethylcytosine**. ChemBioChem 24. 10.1002/cbic.202300400. PubMed DOI

Gabrieli T., Michaeli Y., Avraham S., Torchinsky D., Margalit S., Schütz L., Juhasz M., Coruh C., Arbib N., Zhou Z.S., et al. (2022). Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping. Nucleic Acids Res. 10.1093/nar/gkac460 Chemoenzymatic. PubMed DOI PMC

Jonasch E., Walker C.L., and Rathmell W.K. (2021). Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat. Rev. Nephrol. 17, 245–261. 10.1038/s41581-020-00359-2. PubMed DOI PMC

Le V.H., and Hsieh J.J. (2018). Genomics and genetics of clear cell renal cell carcinoma: a mini-review. J. Transl. Genet. Genomics. 10.20517/jtgg.2018.28. DOI

Klatte T., Rao P.N., De Martino M., Larochelle J., Shuch B., Zomorodian N., Said J., Kabbinavar F.F., Belldegrun A.S., and Pantuck A.J. (2009). Cytogenetic profile predicts prognosis of patients with clear cell renal cell carcinoma. J. Clin. Oncol. 27, 746–753. 10.1200/JCO.2007.15.8345. PubMed DOI

Smolka M., Paulin L.F., Grochowski C.M., Horner D.W., Mahmoud M., Behera S., Kalef-Ezra E., Gandhi M., Hong K., Pehlivan D., et al. (2024). Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. 10.1038/s41587-023-02024-y. PubMed DOI PMC

Bolognini D., and Magi A. (2021). Evaluation of Germline Structural Variant Calling Methods for Nanopore Sequencing Data. Front. Genet. 12, 1–9. 10.3389/fgene.2021.761791. PubMed DOI PMC

Yuen Z.W.S., Srivastava A., Daniel R., McNevin D., Jack C., and Eyras E. (2021). Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing. Nat. Commun. 12, 1–12. 10.1038/s41467-021-23778-6. PubMed DOI PMC

Shi D.Q., Ali I., Tang J., and Yang W.-C. (2017). New insights into 5hmC DNA modification: Generation, distribution and function. Front. Genet. 8, 100. 10.3389/fgene.2017.00100. PubMed DOI PMC

Jin S.G., Jiang Y., Qiu R., Rauch T.A., Wang Y., Schackert G., Krex D., Lu Q., and Pfeifer G.P. (2011). 5-hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res. 71, 7360–7365. 10.1158/0008-5472.CAN-11-2023. PubMed DOI PMC

Nifker G., Levy-Sakin M., Berkov-Zrihen Y., Shahal T., Gabrieli T., Fridman M., and Ebenstein Y. (2015). One-pot chemoenzymatic cascade for labeling of the epigenetic marker 5-hydroxymethylcytosine. ChemBioChem 16, 1857–1860. 10.1002/cbic.201500329. PubMed DOI

Song C.-X., Szulwach K.E., Fu Y., Dai Q., Yi C., Li X., Li Y., Chen C., Zhang W., Jian X., et al. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. 29, 68–72. 10.1038/nbt.1732.Selective. PubMed DOI PMC

Michaeli Y., Shahal T., Torchinsky D., Grunwald A., Hoch R., and Ebenstein Y. (2013). Optical detection of epigenetic marks: sensitive quantification and direct imaging of individual hydroxymethylcytosine bases. Chem. Commun. (Camb). 49, 8599–8601. 10.1039/c3cc42543f. PubMed DOI

Shahal T., Gilat N., Michaeli Y., Redy-keisar O., Shabat D., and Ebenstein Y. (2014). Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA. Anal. Chem. 86, 8231–8237. PubMed

Margalit S., Avraham S., Shahal T., Michaeli Y., Gilat N., Magod P., Caspi M., Loewenstein S., Lahat G., Friedmann-Morvinski D., et al. (2020). 5-Hydroxymethylcytosine as a clinical biomarker: Fluorescence-based assay for high-throughput epigenetic quantification in human tissues. Int. J. Cancer 146, 115–122. 10.1002/ijc.32519. PubMed DOI

Chen S., Dou Y., Zhao Z., Li F., Su J., Fan C., and Song S. (2016). High-Sensitivity and High-Efficiency Detection of DNA Hydroxymethylation in Genomic DNA by Multiplexing Electrochemical Biosensing. Anal. Chem. 88, 3476–3480. 10.1021/acs.analchem.6b00230. PubMed DOI

Nifker G., Grunwald A., Margalit S., Tulpova Z., Michaeli Y., Har-Gil H., Maimon N., Roichman E., Schütz L., Weinhold E., et al. (2023). Dam Assisted Fluorescent Tagging of Chromatin Accessibility (DAFCA) for Optical Genome Mapping in Nanochannel Arrays. ACS Nano 17, 9178–9187. 10.1021/acsnano.2c12755. PubMed DOI PMC

Amemiya H.M., Kundaje A., and Boyle A.P. (2019). The ENCODE Blacklist: Identification of Problematic Regions of the Genome. Sci. Rep. 9, 1–5. 10.1038/s41598-019-45839-z. PubMed DOI PMC

Bionano Genomics (2021). Bionano Solve Theory of Operation: Structural Variant Calling. Bionano Genomics website, 30110K. https://bionano.wpenginepowered.com/wp-content/uploads/2022/05/30110_Rev.L_Bionano-Solve-Theory-of-Operation-Structural-Variant-Calling.pdf.

Savara J., Novosád T., Gajdoš P., and Kriegová E. (2021). Comparison of structural variants detected by optical mapping with long-read next-generation sequencing. Bioinformatics 37, 3398–3404. 10.1093/bioinformatics/btab359. PubMed DOI

Liu Y.H., Luo C., Golding S.G., Ioffe J.B., and Zhou X.M. (2024). Tradeoffs in alignment and assembly-based methods for structural variant detection with long-read sequencing data. Nat. Commun. 15. 10.1038/s41467-024-46614-z. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...