Long-read structural and epigenetic profiling of a kidney tumor-matched sample with nanopore sequencing and optical genome mapping
Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 HG009190
NHGRI NIH HHS - United States
PubMed
39781516
PubMed Central
PMC11704781
DOI
10.1093/nargab/lqae190
PII: lqae190
Knihovny.cz E-resources
- MeSH
- Epigenesis, Genetic * genetics MeSH
- Epigenomics methods MeSH
- Carcinoma, Renal Cell * genetics pathology MeSH
- Humans MeSH
- Chromosome Mapping methods MeSH
- DNA Methylation genetics MeSH
- Kidney Neoplasms * genetics MeSH
- Nanopore Sequencing * methods MeSH
- DNA Copy Number Variations * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Carcinogenesis often involves significant alterations in the cancer genome, marked by large structural variants (SVs) and copy number variations (CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping (OGM) and nanopore sequencing [Oxford Nanopore Technologies (ONT)] bridge this resolution gap and offer enhanced performance for cytogenetic applications. Additionally, both methods can capture epigenetic information as they profile native, individual DNA molecules. We compared the effectiveness of the two methods in characterizing the structural, copy number and epigenetic landscape of a clear cell renal cell carcinoma tumor. Both methods provided comparable results for basic karyotyping and CNVs, but differed in their ability to detect SVs of different sizes and types. ONT outperformed OGM in detecting small SVs, while OGM excelled in detecting larger SVs, including translocations. Differences were also observed among various ONT SV callers. Additionally, both methods provided insights into the tumor's methylome and hydroxymethylome. While ONT was superior in methylation calling, hydroxymethylation reports can be further optimized. Our findings underscore the importance of carefully selecting the most appropriate platform based on specific research questions.
Department of Biomedical Engineering Tel Aviv University 6997801 Tel Aviv Israel
Institute of Experimental Botany of the Czech Academy of Sciences Olomouc Czech Republic
The Genetics Institute and Genomics Center Tel Aviv Sourasky Medical Center Tel Aviv Israel
See more in PubMed
Cosenza M.R., Rodriguez-Martin B., Korbel J.O. Structural variation in cancer: role, prevalence, and mechanisms. Annu. Rev. Genomics Hum. Genet. 2022; 23:123–152. PubMed
Ozkan E., Lacerda M. Genetics, cytogenetic testing and conventional karyotype. StatPearls [Internet]. 2023; Treasure Island (FL)StatPearls Publishing. PubMed
Yang L. A practical guide for structural variation detection in human genome. Curr. Protoc. Hum. Genet. 2020; 107:e103. PubMed PMC
Cui C., Shu W., Li P. Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front. Cell Dev. Biol. 2016; 4:89. PubMed PMC
Amarasinghe S.L., Su S., Dong X., Zappia L., Ritchie M.E., Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020; 21:30. PubMed PMC
Marks P., Garcia S., Barrio A.M., Belhocine K., Bernate J., Bharadwaj R., Bjornson K., Catalanotti C., Delaney J., Fehr A. et al. . Resolving the full spectrum of human genome variation using Linked-Reads. Genome Res. 2019; 29:635–645. PubMed PMC
Chen Z., Pham L., Wu T.C., Mo G., Xia Y., Chan P.L., Porter D., Phan T., Che H., Tran H. et al. . Ultralow-input single-tube linked-read library method enables short-read second-generation sequencing systems to routinely generate highly accurate and economical long-range sequencing information. Genome Res. 2020; 30:898–909. PubMed PMC
Mathew M.T., Babcock M., Hou Y.C.C., Hunter J.M., Leung M.L., Mei H., Schieffer K., Akkari Y. Clinical cytogenetics: current practices and beyond. J. Appl. Lab. Med. 2024; 9:61–75. PubMed
Pang A.W.C., Kosco K., Sahajpal N.S., Sridhar A., Hauenstein J., Clifford B., Estabrook J., Chitsazan A.D., Sahoo T., Iqbal A. et al. . Analytic validation of optical genome mapping in hematological malignancies. Biomedicines. 2023; 11:3263. PubMed PMC
Jeffet J., Margalit S., Michaeli Y., Ebenstein Y. Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale Jonathan. Essays Biochem. 2021; 65:51–66. PubMed PMC
Wang Y., Zhao Y., Bollas A., Wang Y., Au K.F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 2021; 39:1348–1365. PubMed PMC
Mantere T., Kersten S., Hoischen A. Long-read sequencing emerging in medical genetics. Front. Genet. 2019; 10:426. PubMed PMC
Ni Y., Liu X., Simeneh Z.M., Yang M., Li R. Benchmarking of Nanopore R10.4 and R9.4.1 flow cells in single-cell whole-genome amplification and whole-genome shotgun sequencing. Comput. Struct. Biotechnol. J. 2023; 21:2352–2364. PubMed PMC
Heck C., Michaeli Y., Bald I., Ebenstein Y. Analytical epigenetics: single-molecule optical detection of DNA and histone modifications. Curr. Opin. Biotechnol. 2019; 55:151–158. PubMed PMC
Sharim H., Grunwald A., Gabrieli T., Michaeli Y., Margalit S., Torchinsky D., Arielly R., Nifker G., Juhasz M., Gularek F. et al. . Long-read single-molecule maps of the functional methylome. Genome Res. 2019; 29:646–656. PubMed PMC
Gabrieli T., Sharim H., Nifker G., Jeffet J., Shahal T., Arielly R., Levy-sakin M., Hoch L., Arbib N., Michaeli Y. et al. . Epigenetic optical mapping of 5- hydroxymethylcytosine in nanochannel arrays. ACS Nano. 2018; 12:7148–7158. PubMed PMC
Margalit S., Abramson Y., Sharim H., Manber Z., Bhattacharya S., Chen Y.-W., Vilain E., Barseghyan H., Elkon R., Sharan R. et al. . Long reads capture simultaneous enhancer–promoter methylation status for cell-type deconvolution. Bioinformatics. 2021; 37:i327–i333. PubMed PMC
White L.K., Hesselberth J.R. Modification mapping by nanopore sequencing. Front. Genet. 2022; 13:1037134. PubMed PMC
Gabrieli T., Michaeli Y., Avraham S., Torchinsky D., Margalit S., Sch¨utz L., Juhasz M., Coruh C., Arbib N., Zhou Z.S. et al. . Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping. Nucleic. Acids. Res. 2022; 50:e92. PubMed PMC
Avraham S., Schütz L., Käver L., Dankers A., Margalit S., Michaeli Y., Zirkin S., Torchinsky D., Gilat N., Bahr O. et al. . Chemo-enzymatic fluorescence labeling of genomic DNA for simultaneous detection of global 5-methylcytosine and 5-hydroxymethylcytosine. ChemBioChem. 2023; 24:e202300400. PubMed
Margalit S., Tulpová Z., Michaeli Y., Zur T.D., Deek J., Louzoun-Zada S., Nifker G., Grunwald A., Scher Y., Schütz L. et al. . Optical genome and epigenome mapping of clear cell renal cell carcinoma. 2022; 12 October 2022, preprint: not peer reviewed10.1101/2022.10.11.511152. DOI
Shi D.Q., Ali I., Tang J., Yang W.-C. New insights into 5hmC DNA modification: generation, distribution and function. Front. Genet. 2017; 8:100. PubMed PMC
Jin S.G., Jiang Y., Qiu R., Rauch T.A., Wang Y., Schackert G., Krex D., Lu Q., Pfeifer G.P. 5-hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res. 2011; 71:7360–7365. PubMed PMC
Moore L.E., Jaeger E., Nickerson M.L., Brennan P., De Vries S., Roy R., Toro J., Li H., Karami S., Lenz P. et al. . Genomic copy number alterations in clear cell renal carcinoma: associations with case characteristics and mechanisms of VHL gene inactivation. Oncogenesis. 2012; 1:e14. PubMed PMC
Jonasch E., Walker C.L., Rathmell W.K. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat. Rev. Nephrol. 2021; 17:245–261. PubMed PMC
Le V.H., Hsieh J.J. Genomics and genetics of clear cell renal cell carcinoma: a mini-review. J. Transl. Genet. Genomics. 2018; 2:17.
Quddus M., Pratt N., Nabi G. Chromosomal aberrations in renal cell carcinoma: an overview with implications for clinical practice. Urol. Ann. 2019; 11:6–14. PubMed PMC
Klatte T., Rao P.N., De Martino M., Larochelle J., Shuch B., Zomorodian N., Said J., Kabbinavar F.F., Belldegrun A.S., Pantuck A.J. Cytogenetic profile predicts prognosis of patients with clear cell renal cell carcinoma. J. Clin. Oncol. 2009; 27:746–753. PubMed
Shenoy N., Vallumsetla N., Zou Y., Galeas J.N., Shrivastava M., Hu C., Susztak K., Verma A. Role of DNA methylation in renal cell carcinoma. J. Hematol. Oncol. 2015; 8:88. PubMed PMC
Hu C.Y., Mohtat D., Yu Y., Ko Y.A., Shenoy N., Bhattacharya S., Izquierdo M.C., Park A.S.D., Giricz O., Vallumsetla N. et al. . Kidney cancer is characterized by aberrant methylation of tissue-specific enhancers that are prognostic for overall survival. Clin. Cancer Res. 2014; 20:4349–4360. PubMed PMC
Chen K., Zhang J., Guo Z., Ma Q., Xu Z., Zhou Y., Xu Z., Li Z., Liu Y., Ye X. et al. . Loss of 5-hydroxymethylcytosine is linked to gene body hypermethylation in kidney cancer. Cell Res. 2016; 26:103–118. PubMed PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34:3094–3100. PubMed PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25:2078–2079. PubMed PMC
Ewels P.A., Peltzer A., Fillinger S., Patel H., Alneberg J., Wilm A., Garcia M.U., Di Tommaso P., Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 2020; 38:276–278. PubMed
Grunwald A., Dahan M., Giesbertz A., Nilsson A., Nyberg L.K., Weinhold E., Ambjörnsson T., Westerlund F., Ebenstein Y. Bacteriophage strain typing by rapid single molecule analysis. Nucleic. Acids. Res. 2015; 43:e117. PubMed PMC
Quinlan A.R., Hall I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–842. PubMed PMC
Geoffroy V., Herenger Y., Kress A., Stoetzel C., Piton A., Dollfus H., Muller J. AnnotSV: an integrated tool for structural variations annotation. Bioinformatics. 2018; 34:3572–3574. PubMed
Geoffroy V., Guignard T., Kress A., Gaillard J.B., Solli-Nowlan T., Schalk A., Gatinois V., Dollfus H., Scheidecker S., Muller J. AnnotSV and knotAnnotSV: a web server for human structural variations annotations, ranking and analysis. Nucleic. Acids. Res. 2021; 49:W21–W28. PubMed PMC
Heller D., Vingron M. SVIM: structural variant identification using mapped long reads. Bioinformatics. 2019; 35:2907–2915. PubMed PMC
Jiang T., Liu Y., Jiang Y., Li J., Gao Y., Cui Z., Liu Y., Liu B., Wang Y. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 2020; 21:189. PubMed PMC
Tham C.Y., Tirado-Magallanes R., Goh Y., Fullwood M.J., Koh B.T.H., Wang W., Ng C.H., Chng W.J., Thiery A., Tenen D.G. et al. . NanoVar: accurate characterization of patients’ genomic structural variants using low-depth nanopore sequencing. Genome Biol. 2020; 21:56. PubMed PMC
Neph S., Kuehn M.S., Reynolds A.P., Haugen E., Thurman R.E., Johnson A.K., Rynes E., Maurano M.T., Vierstra J., Thomas S. et al. . BEDOPS: high-performance genomic feature operations. Bioinformatics. 2012; 28:1919–1920. PubMed PMC
Creighton C.J., Morgan M., Gunaratne P.H., Wheeler D.A., Gibbs R.A., Robertson G., Chu A., Beroukhim R., Cibulskis K., Signoretti S. et al. . Comprehensivemolecular characterization of clear cell renal cell carcinoma. Nature. 2013; 499:43–49. PubMed PMC
Durinck S., Spellman P.T., Birney E., Huber W. Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat. Protoc. 2009; 4:1184–1191. PubMed PMC
Ramírez F., Dündar F., Diehl S., Grüning B.A., Manke T. DeepTools: a flexible platform for exploring deep-sequencing data. Nucleic. Acids. Res. 2014; 42:187–191. PubMed PMC
Bionano Genomics Bionano Genomics website. 2023; Reveal More Genomic Var. That Matters With Opt. Genome Mapp.
Bionano Genomics Bionano Genomics website. 2023; Prod. Sheet - Optim. Sample Prep. Opt. Genome Mapp. Simpl. Work. Opt. Genome Mapp.
Oxford Nanopore Technologies 2024; PromethION. Website, Oxford Nanopore Technol.
Cahyani I., Tyson J., Holmes N., Quick J., Moore C., Loman N.J., Loose M.W. FindingNemo: a toolkit for DNA extraction, library preparation and purification for ultra long nanopore sequencing. 2024; 18 August 2024, preprint: not peer reviewed10.1101/2024.08.16.608306. DOI
Bionano Genomics Bionano genomics ordering Guide 2023. Bionano Genomics Website. 2023;
Smolka M., Paulin L.F., Grochowski C.M., Horner D.W., Mahmoud M., Behera S., Kalef-Ezra E., Gandhi M., Hong K., Pehlivan D. et al. . Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. 2024; 42:1571–1580. PubMed PMC
Bolognini D., Magi A. Evaluation of germline structural variant calling methods for nanopore sequencing data. Front. Genet. 2021; 12:761791. PubMed PMC
Liu Y.H., Luo C., Golding S.G., Ioffe J.B., Zhou X.M. Tradeoffs in alignment and assembly-based methods for structural variant detection with long-read sequencing data. Nat. Commun. 2024; 15:2447. PubMed PMC
Diesh C., Stevens G.J., Xie P., De Jesus Martinez T., Hershberg E.A., Leung A., Guo E., Dider S., Zhang J., Bridge C. et al. . JBrowse 2: a modular genome browser with views of synteny and structural variation. Genome Biol. 2023; 24:74. PubMed PMC
Yao X., Tan J., Lim K.J., Koh J., Ooi W.F., Li Z., Huang D., Xing M., Chan Y.S., Qu J.Z. et al. . VHL deficiency drives enhancer activation of oncogenes in clear cell renal cell carcinoma. Cancer Discov. 2017; 7:1284–1305. PubMed
Nifker G., Levy-Sakin M., Berkov-Zrihen Y., Shahal T., Gabrieli T., Fridman M., Ebenstein Y. One-pot chemoenzymatic cascade for labeling of the epigenetic marker 5-hydroxymethylcytosine. ChemBioChem. 2015; 16:1857–1860. PubMed
Song C.-X., Szulwach K.E., Fu Y., Dai Q., Yi C., Li X., Li Y., Chen C., Zhang W., Jian X. et al. . Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 2011; 29:68–72. PubMed PMC
Michaeli Y., Shahal T., Torchinsky D., Grunwald A., Hoch R., Ebenstein Y. Optical detection of epigenetic marks: sensitive quantification and direct imaging of individual hydroxymethylcytosine bases. Chem. Commun. (Camb). 2013; 49:8599–8601. PubMed
Shahal T., Gilat N., Michaeli Y., Redy-keisar O., Shabat D., Ebenstein Y. Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA. Anal. Chem. 2014; 86:8231–8237. PubMed
Margalit S., Avraham S., Shahal T., Michaeli Y., Gilat N., Magod P., Caspi M., Loewenstein S., Lahat G., Friedmann-Morvinski D. et al. . 5-Hydroxymethylcytosine as a clinical biomarker: fluorescence-based assay for high-throughput epigenetic quantification in human tissues. Int. J. Cancer. 2020; 146:115–122. PubMed
Chen S., Dou Y., Zhao Z., Li F., Su J., Fan C., Song S. High-sensitivity and High-efficiency detection of DNA hydroxymethylation in genomic DNA by multiplexing electrochemical biosensing. Anal. Chem. 2016; 88:3476–3480. PubMed
Nifker G., Grunwald A., Margalit S., Tulpova Z., Michaeli Y., Har-Gil H., Maimon N., Roichman E., Schütz L., Weinhold E. et al. . Dam assisted fluorescent tagging of chromatin accessibility (DAFCA) for optical genome mapping in nanochannel arrays. ACS Nano. 2023; 17:9178–9187. PubMed PMC
Amemiya H.M., Kundaje A., Boyle A.P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 2019; 9:9354. PubMed PMC
Savara J., Novosád T., Gajdoš P., Kriegová E. Comparison of structural variants detected by optical mapping with long-read next-generation sequencing. Bioinformatics. 2021; 37:3398–3404. PubMed
Pei Y., Tanguy M., Giess A., Dixit A., Wilson L.C., Gibbons R.J., Twigg S.R.F., Elgar G., Wilkie A.O.M. A comparison of structural variant calling from short-read and nanopore-based whole-genome sequencing using optical genome mapping as a benchmark. Genes (Basel). 2024; 15:925. PubMed PMC
Bionano Genomics Bionano Solve theory of operation: structural variant calling. Bionano Genomics Website. 2021;