• This record comes from PubMed

Long-read structural and epigenetic profiling of a kidney tumor-matched sample with nanopore sequencing and optical genome mapping

. 2025 Mar ; 7 (1) : lqae190. [epub] 20250107

Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
R01 HG009190 NHGRI NIH HHS - United States

Carcinogenesis often involves significant alterations in the cancer genome, marked by large structural variants (SVs) and copy number variations (CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping (OGM) and nanopore sequencing [Oxford Nanopore Technologies (ONT)] bridge this resolution gap and offer enhanced performance for cytogenetic applications. Additionally, both methods can capture epigenetic information as they profile native, individual DNA molecules. We compared the effectiveness of the two methods in characterizing the structural, copy number and epigenetic landscape of a clear cell renal cell carcinoma tumor. Both methods provided comparable results for basic karyotyping and CNVs, but differed in their ability to detect SVs of different sizes and types. ONT outperformed OGM in detecting small SVs, while OGM excelled in detecting larger SVs, including translocations. Differences were also observed among various ONT SV callers. Additionally, both methods provided insights into the tumor's methylome and hydroxymethylome. While ONT was superior in methylation calling, hydroxymethylation reports can be further optimized. Our findings underscore the importance of carefully selecting the most appropriate platform based on specific research questions.

Update Of

PubMed

See more in PubMed

Cosenza  M.R., Rodriguez-Martin  B., Korbel  J.O.  Structural variation in cancer: role, prevalence, and mechanisms. Annu. Rev. Genomics Hum. Genet.  2022; 23:123–152. PubMed

Ozkan  E., Lacerda  M.  Genetics, cytogenetic testing and conventional karyotype. StatPearls [Internet]. 2023; Treasure Island (FL)StatPearls Publishing. PubMed

Yang  L.  A practical guide for structural variation detection in human genome. Curr. Protoc. Hum. Genet.  2020; 107:e103. PubMed PMC

Cui  C., Shu  W., Li  P.  Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front. Cell Dev. Biol.  2016; 4:89. PubMed PMC

Amarasinghe  S.L., Su  S., Dong  X., Zappia  L., Ritchie  M.E., Gouil  Q.  Opportunities and challenges in long-read sequencing data analysis. Genome Biol.  2020; 21:30. PubMed PMC

Marks  P., Garcia  S., Barrio  A.M., Belhocine  K., Bernate  J., Bharadwaj  R., Bjornson  K., Catalanotti  C., Delaney  J., Fehr  A.  et al. .  Resolving the full spectrum of human genome variation using Linked-Reads. Genome Res.  2019; 29:635–645. PubMed PMC

Chen  Z., Pham  L., Wu  T.C., Mo  G., Xia  Y., Chan  P.L., Porter  D., Phan  T., Che  H., Tran  H.  et al. .  Ultralow-input single-tube linked-read library method enables short-read second-generation sequencing systems to routinely generate highly accurate and economical long-range sequencing information. Genome Res.  2020; 30:898–909. PubMed PMC

Mathew  M.T., Babcock  M., Hou  Y.C.C., Hunter  J.M., Leung  M.L., Mei  H., Schieffer  K., Akkari  Y.  Clinical cytogenetics: current practices and beyond. J. Appl. Lab. Med.  2024; 9:61–75. PubMed

Pang  A.W.C., Kosco  K., Sahajpal  N.S., Sridhar  A., Hauenstein  J., Clifford  B., Estabrook  J., Chitsazan  A.D., Sahoo  T., Iqbal  A.  et al. .  Analytic validation of optical genome mapping in hematological malignancies. Biomedicines. 2023; 11:3263. PubMed PMC

Jeffet  J., Margalit  S., Michaeli  Y., Ebenstein  Y.  Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale Jonathan. Essays Biochem.  2021; 65:51–66. PubMed PMC

Wang  Y., Zhao  Y., Bollas  A., Wang  Y., Au  K.F.  Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol.  2021; 39:1348–1365. PubMed PMC

Mantere  T., Kersten  S., Hoischen  A.  Long-read sequencing emerging in medical genetics. Front. Genet.  2019; 10:426. PubMed PMC

Ni  Y., Liu  X., Simeneh  Z.M., Yang  M., Li  R.  Benchmarking of Nanopore R10.4 and R9.4.1 flow cells in single-cell whole-genome amplification and whole-genome shotgun sequencing. Comput. Struct. Biotechnol. J.  2023; 21:2352–2364. PubMed PMC

Heck  C., Michaeli  Y., Bald  I., Ebenstein  Y.  Analytical epigenetics: single-molecule optical detection of DNA and histone modifications. Curr. Opin. Biotechnol.  2019; 55:151–158. PubMed PMC

Sharim  H., Grunwald  A., Gabrieli  T., Michaeli  Y., Margalit  S., Torchinsky  D., Arielly  R., Nifker  G., Juhasz  M., Gularek  F.  et al. .  Long-read single-molecule maps of the functional methylome. Genome Res.  2019; 29:646–656. PubMed PMC

Gabrieli  T., Sharim  H., Nifker  G., Jeffet  J., Shahal  T., Arielly  R., Levy-sakin  M., Hoch  L., Arbib  N., Michaeli  Y.  et al. .  Epigenetic optical mapping of 5- hydroxymethylcytosine in nanochannel arrays. ACS Nano. 2018; 12:7148–7158. PubMed PMC

Margalit  S., Abramson  Y., Sharim  H., Manber  Z., Bhattacharya  S., Chen  Y.-W., Vilain  E., Barseghyan  H., Elkon  R., Sharan  R.  et al. .  Long reads capture simultaneous enhancer–promoter methylation status for cell-type deconvolution. Bioinformatics. 2021; 37:i327–i333. PubMed PMC

White  L.K., Hesselberth  J.R.  Modification mapping by nanopore sequencing. Front. Genet.  2022; 13:1037134. PubMed PMC

Gabrieli  T., Michaeli  Y., Avraham  S., Torchinsky  D., Margalit  S., Sch¨utz  L., Juhasz  M., Coruh  C., Arbib  N., Zhou  Z.S.  et al. .  Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping. Nucleic. Acids. Res.  2022; 50:e92. PubMed PMC

Avraham  S., Schütz  L., Käver  L., Dankers  A., Margalit  S., Michaeli  Y., Zirkin  S., Torchinsky  D., Gilat  N., Bahr  O.  et al. .  Chemo-enzymatic fluorescence labeling of genomic DNA for simultaneous detection of global 5-methylcytosine and 5-hydroxymethylcytosine. ChemBioChem. 2023; 24:e202300400. PubMed

Margalit  S., Tulpová  Z., Michaeli  Y., Zur  T.D., Deek  J., Louzoun-Zada  S., Nifker  G., Grunwald  A., Scher  Y., Schütz  L.  et al. .  Optical genome and epigenome mapping of clear cell renal cell carcinoma. 2022; 12 October 2022, preprint: not peer reviewed10.1101/2022.10.11.511152. DOI

Shi  D.Q., Ali  I., Tang  J., Yang  W.-C.  New insights into 5hmC DNA modification: generation, distribution and function. Front. Genet.  2017; 8:100. PubMed PMC

Jin  S.G., Jiang  Y., Qiu  R., Rauch  T.A., Wang  Y., Schackert  G., Krex  D., Lu  Q., Pfeifer  G.P.  5-hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res.  2011; 71:7360–7365. PubMed PMC

Moore  L.E., Jaeger  E., Nickerson  M.L., Brennan  P., De Vries  S., Roy  R., Toro  J., Li  H., Karami  S., Lenz  P.  et al. .  Genomic copy number alterations in clear cell renal carcinoma: associations with case characteristics and mechanisms of VHL gene inactivation. Oncogenesis. 2012; 1:e14. PubMed PMC

Jonasch  E., Walker  C.L., Rathmell  W.K.  Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat. Rev. Nephrol.  2021; 17:245–261. PubMed PMC

Le  V.H., Hsieh  J.J.  Genomics and genetics of clear cell renal cell carcinoma: a mini-review. J. Transl. Genet. Genomics. 2018; 2:17.

Quddus  M., Pratt  N., Nabi  G.  Chromosomal aberrations in renal cell carcinoma: an overview with implications for clinical practice. Urol. Ann.  2019; 11:6–14. PubMed PMC

Klatte  T., Rao  P.N., De Martino  M., Larochelle  J., Shuch  B., Zomorodian  N., Said  J., Kabbinavar  F.F., Belldegrun  A.S., Pantuck  A.J.  Cytogenetic profile predicts prognosis of patients with clear cell renal cell carcinoma. J. Clin. Oncol.  2009; 27:746–753. PubMed

Shenoy  N., Vallumsetla  N., Zou  Y., Galeas  J.N., Shrivastava  M., Hu  C., Susztak  K., Verma  A.  Role of DNA methylation in renal cell carcinoma. J. Hematol. Oncol.  2015; 8:88. PubMed PMC

Hu  C.Y., Mohtat  D., Yu  Y., Ko  Y.A., Shenoy  N., Bhattacharya  S., Izquierdo  M.C., Park  A.S.D., Giricz  O., Vallumsetla  N.  et al. .  Kidney cancer is characterized by aberrant methylation of tissue-specific enhancers that are prognostic for overall survival. Clin. Cancer Res.  2014; 20:4349–4360. PubMed PMC

Chen  K., Zhang  J., Guo  Z., Ma  Q., Xu  Z., Zhou  Y., Xu  Z., Li  Z., Liu  Y., Ye  X.  et al. .  Loss of 5-hydroxymethylcytosine is linked to gene body hypermethylation in kidney cancer. Cell Res.  2016; 26:103–118. PubMed PMC

Li  H.  Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34:3094–3100. PubMed PMC

Li  H., Handsaker  B., Wysoker  A., Fennell  T., Ruan  J., Homer  N., Marth  G., Abecasis  G., Durbin  R.  The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25:2078–2079. PubMed PMC

Ewels  P.A., Peltzer  A., Fillinger  S., Patel  H., Alneberg  J., Wilm  A., Garcia  M.U., Di Tommaso  P., Nahnsen  S.  The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol.  2020; 38:276–278. PubMed

Grunwald  A., Dahan  M., Giesbertz  A., Nilsson  A., Nyberg  L.K., Weinhold  E., Ambjörnsson  T., Westerlund  F., Ebenstein  Y.  Bacteriophage strain typing by rapid single molecule analysis. Nucleic. Acids. Res.  2015; 43:e117. PubMed PMC

Quinlan  A.R., Hall  I.M.  BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–842. PubMed PMC

Geoffroy  V., Herenger  Y., Kress  A., Stoetzel  C., Piton  A., Dollfus  H., Muller  J.  AnnotSV: an integrated tool for structural variations annotation. Bioinformatics. 2018; 34:3572–3574. PubMed

Geoffroy  V., Guignard  T., Kress  A., Gaillard  J.B., Solli-Nowlan  T., Schalk  A., Gatinois  V., Dollfus  H., Scheidecker  S., Muller  J.  AnnotSV and knotAnnotSV: a web server for human structural variations annotations, ranking and analysis. Nucleic. Acids. Res.  2021; 49:W21–W28. PubMed PMC

Heller  D., Vingron  M.  SVIM: structural variant identification using mapped long reads. Bioinformatics. 2019; 35:2907–2915. PubMed PMC

Jiang  T., Liu  Y., Jiang  Y., Li  J., Gao  Y., Cui  Z., Liu  Y., Liu  B., Wang  Y.  Long-read-based human genomic structural variation detection with cuteSV. Genome Biol.  2020; 21:189. PubMed PMC

Tham  C.Y., Tirado-Magallanes  R., Goh  Y., Fullwood  M.J., Koh  B.T.H., Wang  W., Ng  C.H., Chng  W.J., Thiery  A., Tenen  D.G.  et al. .  NanoVar: accurate characterization of patients’ genomic structural variants using low-depth nanopore sequencing. Genome Biol.  2020; 21:56. PubMed PMC

Neph  S., Kuehn  M.S., Reynolds  A.P., Haugen  E., Thurman  R.E., Johnson  A.K., Rynes  E., Maurano  M.T., Vierstra  J., Thomas  S.  et al. .  BEDOPS: high-performance genomic feature operations. Bioinformatics. 2012; 28:1919–1920. PubMed PMC

Creighton  C.J., Morgan  M., Gunaratne  P.H., Wheeler  D.A., Gibbs  R.A., Robertson  G., Chu  A., Beroukhim  R., Cibulskis  K., Signoretti  S.  et al. .  Comprehensivemolecular characterization of clear cell renal cell carcinoma. Nature. 2013; 499:43–49. PubMed PMC

Durinck  S., Spellman  P.T., Birney  E., Huber  W.  Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat. Protoc.  2009; 4:1184–1191. PubMed PMC

Ramírez  F., Dündar  F., Diehl  S., Grüning  B.A., Manke  T.  DeepTools: a flexible platform for exploring deep-sequencing data. Nucleic. Acids. Res.  2014; 42:187–191. PubMed PMC

Bionano Genomics  Bionano Genomics website. 2023; Reveal More Genomic Var. That Matters With Opt. Genome Mapp.

Bionano Genomics  Bionano Genomics website. 2023; Prod. Sheet - Optim. Sample Prep. Opt. Genome Mapp. Simpl. Work. Opt. Genome Mapp.

Oxford Nanopore Technologies 2024; PromethION. Website, Oxford Nanopore Technol.

Cahyani  I., Tyson  J., Holmes  N., Quick  J., Moore  C., Loman  N.J., Loose  M.W.  FindingNemo: a toolkit for DNA extraction, library preparation and purification for ultra long nanopore sequencing. 2024; 18 August 2024, preprint: not peer reviewed10.1101/2024.08.16.608306. DOI

Bionano Genomics  Bionano genomics ordering Guide 2023. Bionano Genomics Website. 2023;

Smolka  M., Paulin  L.F., Grochowski  C.M., Horner  D.W., Mahmoud  M., Behera  S., Kalef-Ezra  E., Gandhi  M., Hong  K., Pehlivan  D.  et al. .  Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol.  2024; 42:1571–1580. PubMed PMC

Bolognini  D., Magi  A.  Evaluation of germline structural variant calling methods for nanopore sequencing data. Front. Genet.  2021; 12:761791. PubMed PMC

Liu  Y.H., Luo  C., Golding  S.G., Ioffe  J.B., Zhou  X.M.  Tradeoffs in alignment and assembly-based methods for structural variant detection with long-read sequencing data. Nat. Commun.  2024; 15:2447. PubMed PMC

Diesh  C., Stevens  G.J., Xie  P., De Jesus Martinez  T., Hershberg  E.A., Leung  A., Guo  E., Dider  S., Zhang  J., Bridge  C.  et al. .  JBrowse 2: a modular genome browser with views of synteny and structural variation. Genome Biol.  2023; 24:74. PubMed PMC

Yao  X., Tan  J., Lim  K.J., Koh  J., Ooi  W.F., Li  Z., Huang  D., Xing  M., Chan  Y.S., Qu  J.Z.  et al. .  VHL deficiency drives enhancer activation of oncogenes in clear cell renal cell carcinoma. Cancer Discov.  2017; 7:1284–1305. PubMed

Nifker  G., Levy-Sakin  M., Berkov-Zrihen  Y., Shahal  T., Gabrieli  T., Fridman  M., Ebenstein  Y.  One-pot chemoenzymatic cascade for labeling of the epigenetic marker 5-hydroxymethylcytosine. ChemBioChem. 2015; 16:1857–1860. PubMed

Song  C.-X., Szulwach  K.E., Fu  Y., Dai  Q., Yi  C., Li  X., Li  Y., Chen  C., Zhang  W., Jian  X.  et al. .  Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol.  2011; 29:68–72. PubMed PMC

Michaeli  Y., Shahal  T., Torchinsky  D., Grunwald  A., Hoch  R., Ebenstein  Y.  Optical detection of epigenetic marks: sensitive quantification and direct imaging of individual hydroxymethylcytosine bases. Chem. Commun. (Camb).  2013; 49:8599–8601. PubMed

Shahal  T., Gilat  N., Michaeli  Y., Redy-keisar  O., Shabat  D., Ebenstein  Y.  Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA. Anal. Chem.  2014; 86:8231–8237. PubMed

Margalit  S., Avraham  S., Shahal  T., Michaeli  Y., Gilat  N., Magod  P., Caspi  M., Loewenstein  S., Lahat  G., Friedmann-Morvinski  D.  et al. .  5-Hydroxymethylcytosine as a clinical biomarker: fluorescence-based assay for high-throughput epigenetic quantification in human tissues. Int. J. Cancer. 2020; 146:115–122. PubMed

Chen  S., Dou  Y., Zhao  Z., Li  F., Su  J., Fan  C., Song  S.  High-sensitivity and High-efficiency detection of DNA hydroxymethylation in genomic DNA by multiplexing electrochemical biosensing. Anal. Chem.  2016; 88:3476–3480. PubMed

Nifker  G., Grunwald  A., Margalit  S., Tulpova  Z., Michaeli  Y., Har-Gil  H., Maimon  N., Roichman  E., Schütz  L., Weinhold  E.  et al. .  Dam assisted fluorescent tagging of chromatin accessibility (DAFCA) for optical genome mapping in nanochannel arrays. ACS Nano. 2023; 17:9178–9187. PubMed PMC

Amemiya  H.M., Kundaje  A., Boyle  A.P.  The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep.  2019; 9:9354. PubMed PMC

Savara  J., Novosád  T., Gajdoš  P., Kriegová  E.  Comparison of structural variants detected by optical mapping with long-read next-generation sequencing. Bioinformatics. 2021; 37:3398–3404. PubMed

Pei  Y., Tanguy  M., Giess  A., Dixit  A., Wilson  L.C., Gibbons  R.J., Twigg  S.R.F., Elgar  G., Wilkie  A.O.M.  A comparison of structural variant calling from short-read and nanopore-based whole-genome sequencing using optical genome mapping as a benchmark. Genes (Basel).  2024; 15:925. PubMed PMC

Bionano Genomics  Bionano Solve theory of operation: structural variant calling. Bionano Genomics Website. 2021;

Newest 20 citations...

See more in
Medvik | PubMed

Optical genome and epigenome mapping of clear cell renal cell carcinoma

. 2025 Mar ; 7 (1) : zcaf008. [epub] 20250307

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...