Optical genome and epigenome mapping of clear cell renal cell carcinoma
Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R01 HG009190
NHGRI NIH HHS - United States
PubMed
40061565
PubMed Central
PMC11886815
DOI
10.1093/narcan/zcaf008
PII: zcaf008
Knihovny.cz E-zdroje
- MeSH
- DNA vazebné proteiny MeSH
- epigeneze genetická * genetika MeSH
- epigenom * genetika MeSH
- karcinom z renálních buněk * genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mapování chromozomů metody MeSH
- metylace DNA * genetika MeSH
- nádorový supresorový protein VHL genetika MeSH
- nádory ledvin * genetika patologie MeSH
- regulace genové exprese u nádorů MeSH
- transkripční faktory MeSH
- variabilita počtu kopií segmentů DNA * genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- nádorový supresorový protein VHL MeSH
- PBRM1 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
- VHL protein, human MeSH Prohlížeč
Cancer cells display complex genomic aberrations that include large-scale genetic rearrangements and epigenetic modulation that are not easily captured by short-read sequencing. This study presents a novel approach for simultaneous profiling of long-range genetic and epigenetic changes in matched cancer samples, focusing on clear cell renal cell carcinoma (ccRCC). ccRCC is a common kidney cancer subtype frequently characterized by a 3p deletion and the inactivation of the von Hippel-Lindau (VHL) gene. We performed integrated genetic, cytogenetic, and epigenetic analyses on paired tumor and adjacent nontumorous tissue samples. Optical genome mapping identified genomic aberrations as structural and copy number variations, complementing exome-sequencing findings. Single-molecule methylome and hydroxymethylome mapping revealed a significant global reduction in 5hmC level in both sample pairs, and a correlation between both epigenetic signals and gene expression was observed. The single-molecule epigenetic analysis identified numerous differentially modified regions, some implicated in ccRCC pathogenesis, including the genes VHL, PRCC, and PBRM1. Notably, pathways related to metabolism and cancer development were significantly enriched among these differential regions. This study demonstrates the feasibility of integrating optical genome and epigenome mapping for comprehensive characterization of matched tumor and adjacent tissue, uncovering both established and novel somatic aberrations.
Department of Biomedical Engineering Tel Aviv University 6997801 Tel Aviv Israel
Institute of Experimental Botany of the Czech Academy of Sciences 77900 Olomouc Czech Republic
Institute of Organic Chemistry RWTH Aachen University D 52056 Aachen Germany
Zobrazit více v PubMed
López JI Renal tumors with clear cells. A review. Pathology. 2013; 209:137–46.10.1016/j.prp.2013.01.007. PubMed DOI
Bacigalupa ZA, Rathmell WK Beyond glycolysis: hypoxia signaling as a master regulator of alternative metabolic pathways and the implications in clear cell renal cell carcinoma. Cancer Lett. 2020; 489:19–28.10.1016/j.canlet.2020.05.034. PubMed DOI PMC
Gossage L, Eisen T, Maher ER VHL, the story of a tumour suppressor gene. Nat Rev Cancer. 2015; 15:55–64.10.1038/nrc3844. PubMed DOI
Duns G, Hofstra RMW, Sietzema JG et al. . Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC development. Hum Mutat. 2012; 33:1059–62.10.1002/humu.22090. PubMed DOI
Le VH, Hsieh JJ Genomics and genetics of clear cell renal cell carcinoma: a mini-review. JTGG. 2018; 2:17.10.20517/jtgg.2018.28. DOI
Moore LE, Jaeger E, Nickerson ML et al. . Genomic copy number alterations in clear cell renal carcinoma: associations with case characteristics and mechanisms of VHL gene inactivation. Oncogenesis. 2012; 1:e14.10.1038/oncsis.2012.14. PubMed DOI PMC
Quddus M, Pratt N, Nabi G Chromosomal aberrations in renal cell carcinoma: an overview with implications for clinical practice. Urol Ann. 2019; 11:6–14. PubMed PMC
Klatte T, Rao PN, De Martino M et al. . Cytogenetic profile predicts prognosis of patients with clear cell renal cell carcinoma. JCO. 2009; 27:746–53.10.1200/JCO.2007.15.8345. PubMed DOI
Shenoy N, Vallumsetla N, Zou Y et al. . Role of DNA methylation in renal cell carcinoma. J Hematol Oncol. 2015; 8:88.10.1186/s13045-015-0180-y. PubMed DOI PMC
Hu CY, Mohtat D, Yu Y et al. . Kidney cancer is characterized by aberrant methylation of tissue-specific enhancers that are prognostic for overall survival. Clin Cancer Res. 2014; 20:4349–60.10.1158/1078-0432.CCR-14-0494. PubMed DOI PMC
Arai E, Chiku S, Mori T et al. . Single-CpG-resolution methylome analysis identifies clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas. Carcinogenesis. 2012; 33:1487–93.10.1093/carcin/bgs177. PubMed DOI PMC
Lasseigne BN, Brooks JD The role of DNA methylation in renal cell carcinoma. Mol Diagn Ther. 2018; 22:431–42.10.1007/s40291-018-0337-9. PubMed DOI PMC
Joosten SC, Odeh SNO, Koch A et al. . Development of a prognostic risk model for clear cell renal cell carcinoma by systematic evaluation of DNA methylation markers. Clin Epigenet. 2021; 13:103.10.1186/s13148-021-01084-8. PubMed DOI PMC
Wang J, Zhang Q, Zhu Q et al. . Identification of methylation-driven genes related to prognosis in clear-cell renal cell carcinoma. J Cell Physiol. 2020; 235:1296–308.10.1002/jcp.29046. PubMed DOI PMC
Shi DQ, Ali I, Tang J et al. . New insights into 5hmC DNA modification: generation, distribution and function. Front Genet. 2017; 8:100.10.3389/fgene.2017.00100. PubMed DOI PMC
Jin SG, Jiang Y, Qiu R et al. . 5-hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res. 2011; 71:7360–5.10.1158/0008-5472.CAN-11-2023. PubMed DOI PMC
Margalit S, Avraham S, Shahal T et al. . 5-Hydroxymethylcytosine as a clinical biomarker: fluorescence-based assay for high-throughput epigenetic quantification in human tissues. Intl J Cancer. 2020; 146:115–22.10.1002/ijc.32519. PubMed DOI
Chen K, Zhang J, Guo Z et al. . Loss of 5-hydroxymethylcytosine is linked to gene body hypermethylation in kidney cancer. Cell Res. 2016; 26:103–18.10.1038/cr.2015.150. PubMed DOI PMC
Chen S, Zhou Q, Liu T et al. . Prognostic value of downregulated 5-hydroxymethyl-cytosine expression in renal cell carcinoma: a 10 year follow-up retrospective study. J Cancer. 2020; 11:1212–22.10.7150/jca.38283. PubMed DOI PMC
Yu M, Han D, Hon GC et al. . Tet-assisted bisulfite sequencing (TAB-seq). Methods Mol Biol. 2018; 1708:645–63.10.1007/978-1-4939-7481-8_33. PubMed DOI PMC
Booth MJ, Ost TWB, Beraldi D et al. . Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc. 2013; 8:1841–51.10.1038/nprot.2013.115. PubMed DOI PMC
Gabrieli T, Sharim H, Nifker G et al. . Epigenetic optical mapping of 5-hydroxymethylcytosine in nanochannel arrays. ACS Nano. 2018; 12:7148–58.10.1021/acsnano.8b03023. PubMed DOI PMC
Michaeli Y, Shahal T, Torchinsky D et al. . Optical detection of epigenetic marks: sensitive quantification and direct imaging of individual hydroxymethylcytosine bases. Chem Commun. 2013; 49:8599–601.10.1039/c3cc42543f. PubMed DOI
Nifker G, Levy-Sakin M, Berkov-Zrihen Y et al. . One-pot chemoenzymatic cascade for labeling of the epigenetic marker 5-hydroxymethylcytosine. ChemBioChem. 2015; 16:1857–60.10.1002/cbic.201500329. PubMed DOI
Shahal T, Gilat N, Michaeli Y et al. . Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA. Anal Chem. 2014; 86:8231–7.10.1021/ac501609d. PubMed DOI
Jeffet J, Margalit S, Michaeli Y et al. . Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale Jonathan. Essays Biochem. 2021; 65:51–66.10.1042/EBC20200021. PubMed DOI PMC
Sharim H, Grunwald A, Gabrieli T et al. . Long-read single-molecule maps of the functional methylome. Genome Res. 2019; 29:646–56.10.1101/gr.240739.118. PubMed DOI PMC
Mak ACY, Lai YYY, Lam ET et al. . Genome-wide structural variation detection by genome mapping on nanochannel arrays. Genetics. 2016; 202:351–62.10.1534/genetics.115.183483. PubMed DOI PMC
Detinis ZurT, Margalit S, Jeffet J et al. . Single-molecule toxicogenomics: optical genome mapping of DNA-damage in nanochannel arrays. DNA Repair. 2025; 146:103808.10.1016/j.dnarep.2025.103808. PubMed DOI
Margalit S, Abramson Y, Sharim H et al. . Long reads capture simultaneous enhancer–promoter methylation status for cell-type deconvolution. Bioinformatics. 2021; 37:i327–33.10.1093/bioinformatics/btab306. PubMed DOI PMC
Gabrieli T, Michaeli Y, Avraham S et al. . Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping. Nucleic Acids Res. 2022; 50:e92.10.1093/nar/gkac460. PubMed DOI PMC
Uppuluri L, Jadhav T, Wang Y et al. . Multicolor whole-genome mapping in nanochannels for genetic analysis. Anal Chem. 2021; 93:9808–16.10.1021/acs.analchem.1c01373. PubMed DOI PMC
Langmead B, Salzberg SL Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357–9.10.1038/nmeth.1923. PubMed DOI PMC
Van der Auwera GA, O'connor BD Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. 2020; 1st EditionO’Reilly Media.
Danecek P, Bonfield JK, Liddle J et al.. Twelve years of SAMtools and BCFtools. Gigascience. 2021; 10:giab008.10.1093/gigascience/giab008. PubMed DOI PMC
Cingolani P, Platts A, Wang LL et al. . A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 2012; 6:80–92.10.4161/fly.19695. PubMed DOI PMC
Sherry ST, Ward MH, Kholodov M et al. . DbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001; 29:308–11.10.1093/nar/29.1.308. PubMed DOI PMC
Grunwald A, Dahan M, Giesbertz A et al. . Bacteriophage strain typing by rapid single molecule analysis. Nucleic Acids Res. 2015; 43:e117.10.1093/nar/gkv563. PubMed DOI PMC
Frankish A, Diekhans M, Ferreira AM et al. . GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019; 47:D766–73.10.1093/nar/gky955. PubMed DOI PMC
Cao Q, Anyansi C, Hu X et al. . Reconstruction of enhancer-target networks in 935 samples of human primary cells, tissues and cell lines. Nat Genet. 2017; 49:1428–36.10.1038/ng.3950. PubMed DOI
Haeussler M, Zweig AS, Tyner C et al. . The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2019; 47:D853–8.10.1093/nar/gky1095. PubMed DOI PMC
Amemiya HM, Kundaje A, Boyle AP The ENCODE Blacklist: identification of problematic regions of the genome. Sci Rep. 2019; 9:9354.10.1038/s41598-019-45839-z. PubMed DOI PMC
Yao X, Tan J, Lim KJ et al. . VHL deficiency drives enhancer activation of oncogenes in clear cell renal cell carcinoma. Cancer Discov. 2017; 7:1284–305.10.1158/2159-8290.CD-17-0375. PubMed DOI
Quinlan AR, Hall IM BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–2.10.1093/bioinformatics/btq033. PubMed DOI PMC
Neph S, Kuehn MS, Reynolds AP et al. . BEDOPS: high-performance genomic feature operations. Bioinformatics. 2012; 28:1919–20.10.1093/bioinformatics/bts277. PubMed DOI PMC
Hao Z, Lv D, Ge Y et al. . RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci. 2020; 6:e251.10.7717/peerj-cs.251. PubMed DOI PMC
Trapnell C, Pachter L, Salzberg SL TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009; 25:1105–11.10.1093/bioinformatics/btp120. PubMed DOI PMC
Leinonen R, Sugawara H, Shumway M The sequence read archive. Nucleic Acids Res. 2011; 39:D19–21.10.1093/nar/gkq1019. PubMed DOI PMC
Anders S, Pyl PT, Huber W HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015; 31:166–9.10.1093/bioinformatics/btu638. PubMed DOI PMC
Ramírez F, Dündar F, Diehl S et al. . DeepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014; 42:W187–91.10.1093/nar/gku365. PubMed DOI PMC
Benjamini Y, Hochberg Y Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995; 57:289–300.10.1111/j.2517-6161.1995.tb02031.x. DOI
Yu G, Wang LG, Han Y et al. . ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012; 16:284–7.10.1089/omi.2011.0118. PubMed DOI PMC
Jonasch E, Walker CL, Rathmell WK Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021; 17:245–61.10.1038/s41581-020-00359-2. PubMed DOI PMC
Gandawijaya J, Bamford RA, Burbach JPH et al. . Cell adhesion molecules involved in neurodevelopmental pathways implicated in 3p-deletion syndrome and autism spectrum disorder. Front Cell Neurosci. 2021; 14:611379.10.3389/fncel.2020.611379. PubMed DOI PMC
Di Nunno V, Mollica V, Brunelli M et al. . A meta-analysis evaluating clinical outcomes of patients with renal cell carcinoma harboring chromosome 9P loss. Mol Diagn Ther. 2019; 23:569–77.10.1007/s40291-019-00414-0. PubMed DOI
Monzon FA, Alvarez K, Peterson L et al. . Chromosome 14q loss defines a molecular subtype of clear-cell renal cell carcinoma associated with poor prognosis. Mod Pathol. 2011; 24:1470–9.10.1038/modpathol.2011.107. PubMed DOI PMC
Ueno K, Hirata H, Shahryari V et al. . Tumour suppressor microRNA-584 directly targets oncogene Rock-1 and decreases invasion ability in human clear cell renal cell carcinoma. Br J Cancer. 2011; 104:308–15.10.1038/sj.bjc.6606028. PubMed DOI PMC
Benayoun BA, Caburet S, Veitia RA Forkhead transcription factors: key players in health and disease. Trends Genet. 2011; 27:224–32.10.1016/j.tig.2011.03.003. PubMed DOI
Song C-X, Szulwach KE, Fu Y et al. . Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011; 29:68–72.10.1038/nbt.1732. PubMed DOI PMC
Avraham S, Schütz L, Käver L et al. . Chemo-enzymatic fluorescence labeling of genomic DNA for simultaneous detection of global 5-methylcytosine and 5-hydroxymethylcytosine. ChemBioChem. 2023; 24:e202300400.10.1002/cbic.202300400. PubMed DOI
Uroshlev LA, Abdullaev ET, Umarova IR et al. . A method for identification of the methylation level of CpG islands from NGS data. Sci Rep. 2020; 10:8635.10.1038/s41598-020-65406-1. PubMed DOI PMC
Margalit S, Tulpová Z, Zur TD et al. . Long-read structural and epigenetic profiling of a kidney tumor-matched sample with nanopore sequencing and optical genome mapping. NAR Genomics Bioinform. 2025; 7:lqae190.10.1093/nargab/lqae190. PubMed DOI PMC
Balog J, Miller D, Sanchez-Curtailles E et al. . Epigenetic regulation of the X-chromosomal macrosatellite repeat encoding for the cancer/testis gene CT47. Eur J Hum Genet. 2012; 20:185–91.10.1038/ejhg.2011.150. PubMed DOI PMC
Pook MA DNA methylation and trinucleotide repeat expansion diseases. DNA Methylation - From Genomics to Technology. 2012; InTech; 193–208.
Hansen KD, Timp W, Bravo HC et al. . Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011; 43:768–75.10.1038/ng.865. PubMed DOI PMC
Stults DM, Killen MW, Pierce HH et al. . Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 2008; 18:13–8.10.1101/gr.6858507. PubMed DOI PMC
Hakimi AA, Reznik E, Lee C-H et al. . An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell. 2016; 29:104–16.10.1016/j.ccell.2015.12.004. PubMed DOI PMC
Monjaras-Avila CU, Lorenzo-Leal AC, Luque-Badillo AC et al. . The tumor immune microenvironment in clear cell renal cell carcinoma. Int J Mol Sci. 2023; 24:7946.10.3390/ijms24097946. PubMed DOI PMC