Flow Cytometry Analysis of Blood Large Extracellular Vesicles in Patients with Multiple Sclerosis Experiencing Relapse of the Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15-32961A
Ministry of Health of the Czech Republic
360216
Charles University
PubMed
35628959
PubMed Central
PMC9145450
DOI
10.3390/jcm11102832
PII: jcm11102832
Knihovny.cz E-zdroje
- Klíčová slova
- cryo-electron microscopy, extracellular vesicles, flow cytometry, multiple sclerosis, plasma,
- Publikační typ
- časopisecké články MeSH
The number of people living with multiple sclerosis (MS) in developed countries is increasing. The management of patients is hindered by the absence of reliable laboratory tests accurately reflecting the disease activity. Extracellular vesicles (EVs) of different cell origin were reportedly elevated in MS patients. We assessed the diagnostic potential, with flow cytometry analysis, of fresh large EVs (lEVs), which scattered more light than the 590 nm silica beads and were isolated from the blood plasma of relapsing remitting MS patients. Venous blood was collected from 15 patients and 16 healthy controls (HC). The lEVs were isolated from fresh platelet-free plasma by centrifugation, labelled with antibodies and the presence of platelet (CD41+, CD36+), endothelial (CD105+), erythrocyte (CD235a+), leukocyte (CD45+, CD19+, CD3+) and phosphatidylserine (Annexin V+) positive lEVs was analyzed using standard flow cytometry. Cryo-electron microscopy was used to verify the presence of EVs in the analyzed plasma fractions. MS patients experiencing acute relapse had slightly reduced relative levels (% of positive lEVs) of CD105+, CD45+, CD3+, CD45+CD3+ or CD19+ labelled lEVs in comparison to healthy controls. An analysis of other markers or a comparison of absolute lEV counts (count of lEVs/µL) did not yield any significant differences. Our data do not support the hypothesis that the exacerbation of the disease in RRMS patients leads to an increased numbers of circulating plasma lEVs which can be monitored by standard flow cytometry.
Zobrazit více v PubMed
Thompson A.J., Baranzini S.E., Geurts J., Hemmer B., Ciccarelli O. Multiple sclerosis. Lancet. 2018;391:1622–1636. doi: 10.1016/S0140-6736(18)30481-1. PubMed DOI
Saposnik G., Sempere A.P., Raptis R., Prefasi D., Selchen D., Maurino J. Decision making under uncertainty, therapeutic inertia, and physicians’ risk preferences in the management of multiple sclerosis (DIScUTIR MS) BMC Neurol. 2016;16:9. doi: 10.1186/s12883-016-0577-4. PubMed DOI PMC
Trapp B.D., Nave K.A. Multiple sclerosis: An immune or neurodegenerative disorder? Annu. Rev. Neurosci. 2008;31:247–269. doi: 10.1146/annurev.neuro.30.051606.094313. PubMed DOI
Nylander A., Hafler D.A. Multiple sclerosis. J. Clin. Investig. 2012;122:1180–1188. doi: 10.1172/JCI58649. PubMed DOI PMC
Raposo G., Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013;200:373–383. doi: 10.1083/jcb.201211138. PubMed DOI PMC
Porro C., Trotta T., Panaro M.A. Microvesicles in the brain: Biomarker, messenger or mediator? J. Neuroimmunol. 2015;288:70–78. doi: 10.1016/j.jneuroim.2015.09.006. PubMed DOI
Carandini T., Colombo F., Finardi A., Casella G., Garzetti L., Verderio C., Furlan R. Microvesicles: What is the role in multiple sclerosis? Front. Neurol. 2015;6:7. doi: 10.3389/fneur.2015.00111. PubMed DOI PMC
Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neuro-Oncol. 2013;113:1–11. doi: 10.1007/s11060-013-1084-8. PubMed DOI PMC
Sáenz-Cuesta M., Osorio-Querejeta I., Otaegui D. Extracellular Vesicles in Multiple Sclerosis: What are They Telling Us? Front. Cell. Neurosci. 2014;8:100. doi: 10.3389/fncel.2014.00100. PubMed DOI PMC
Burnouf T., Chou M.-L., Goubran H., Cognasse F., Garraud O., Seghatchian J. An overview of the role of microparticles/microvesicles in blood components: Are they clinically beneficial or harmful? Transfus. Apher. Sci. 2015;53:137–145. doi: 10.1016/j.transci.2015.10.010. PubMed DOI
Ohno S., Ishikawa A., Kuroda M. Roles of exosomes and microvesicles in disease pathogenesis. Adv. Drug Deliv. Rev. 2013;65:398–401. doi: 10.1016/j.addr.2012.07.019. PubMed DOI
Julich H., Mims A., Lukacs-Kornek V., Kornek M. Extracellular vesicle profiling and their use as potential disease specific biomarker. Front. Immunol. 2014;5:6. doi: 10.3389/fimmu.2014.00413. PubMed DOI PMC
Słomka A., Urban S.K., Lukacs-Kornek V., Żekanowska E., Kornek M. Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front. Immunol. 2018;9:2723. doi: 10.3389/fimmu.2018.02723. PubMed DOI PMC
Croese T., Furlan R. Extracellular vesicles in neurodegenerative diseases. Mol. Asp. Med. 2018;60:52–61. doi: 10.1016/j.mam.2017.11.006. PubMed DOI
Blonda M., Amoruso A., Martino T., Avolio C. New Insights Into Immune Cell-Derived Extracellular Vesicles in Multiple Sclerosis. Front. Neurol. 2018;9:8. doi: 10.3389/fneur.2018.00604. PubMed DOI PMC
Pieragostino D., Lanuti P., Cicalini I., Cufaro M.C., Ciccocioppo F., Ronci M., Simeone P., Onofrj M., van der Pol E., Fontana A., et al. Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J. Proteom. 2019;204:10. doi: 10.1016/j.jprot.2019.103403. PubMed DOI
Minagar A., Jy W., Jimenez J.J., Sheremata W.A., Mauro L.M., Mao W.W., Horstman L.L., Ahn Y.S. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology. 2001;56:1319–1324. doi: 10.1212/WNL.56.10.1319. PubMed DOI
Sheremata W.A., Jy W., Delgado S., Minagar A., McLarty J., Ahn Y. Interferon-β1a reduces plasma CD31+ endothelial microparticles (CD31+EMP) in multiple sclerosis. J. Neuroinflamm. 2006;3:5. doi: 10.1186/1742-2094-3-23. PubMed DOI PMC
Lowery-Nordberg M., Eaton E., Gonzalez-Toledo E., Harris M.K., Chalamidas K., McGee-Brown J., Ganta C.V., Minagar A., Cousineau D., Alexander J.S. The effects of high dose interferon-beta 1a on plasma microparticles: Correlation with MRI parameters. J. Neuroinflamm. 2011;8:6. doi: 10.1186/1742-2094-8-43. PubMed DOI PMC
Marcos-Ramiro B., Nacarino P.O., Serrano-Pertierra E., Blanco-Gelaz M.A., Weksler B.B., Romero I.A., Couraud P.O., Tunon A., Lopez-Larrea C., Millan J., et al. Microparticles in multiple sclerosis and clinically isolated syndrome: Effect on endothelial barrier function. BMC Neurosci. 2014;15:13. doi: 10.1186/1471-2202-15-110. PubMed DOI PMC
Sheremata W.A., Jy W., Horstman L.L., Ahn Y.S., Alexander S., Minagar A. Evidence of platelet activation in multiple sclerosis. J. Neuroinflamm. 2008;5:6. doi: 10.1186/1742-2094-5-27. PubMed DOI PMC
Saenz-Cuesta M., Irizar H., Castillo-Trivino T., Munoz-Culla M., Osorio-Querejeta I., Prada A., Sepulveda L., Lopez-Mato M.P., de Munain A.L., Comabella M., et al. Circulating microparticles reflect treatment effects and clinical status in multiple sclerosis. Biomark. Med. 2014;8:653–661. doi: 10.2217/bmm.14.9. PubMed DOI
Alexander J.S., Chervenak R., Weinstock-Guainan B., Tsunoda I., Ramanathan M., Martinez N., Omura S., Sato F., Chaitanya G.V., Minagar A., et al. Blood circulating microparticle species in relapsing-remitting and secondary progressive multiple sclerosis. A case-control, cross sectional study with conventional MRI and advanced iron content imaging outcomes. J. Neurol. Sci. 2015;355:84–89. doi: 10.1016/j.jns.2015.05.027. PubMed DOI PMC
Momen-Heravi F., Balaj L., Alian S., Trachtenberg A.J., Hochberg F.H., Skog J., Kuo W.P. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front. Physiol. 2012;3:6. doi: 10.3389/fphys.2012.00162. PubMed DOI PMC
Welsh J.A., Horak P., Wilkinson J.S., Ford V.J., Jones J.C., Smith D., Holloway J.A., Englyst N.A. FCMPASS Software Aids Extracellular Vesicle Light Scatter Standardization. Cytom. Part A. 2020;97:569–581. doi: 10.1002/cyto.a.23782. PubMed DOI PMC
Dubochet J., Adrian M., Chang J.J., Homo J.C., Lepault J., McDowall A.W., Schultz P. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 1988;21:129–228. doi: 10.1017/S0033583500004297. PubMed DOI
van der Pol E., van Gemert M.J.C., Sturk A., Nieuwland R., Van Leeuwen T.G. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J. Thromb. Haemost. 2012;10:919–930. doi: 10.1111/j.1538-7836.2012.04683.x. PubMed DOI
Colombo E., Borgiani B., Verderio C., Furlan R. Microvesicles: Novel biomarkers for neurological disorders. Front. Physiol. 2012;3:6. doi: 10.3389/fphys.2012.00063. PubMed DOI PMC
Properzi F., Logozzi M., Fais S. Exosomes: The future of biomarkers in medicine. Biomark. Med. 2013;7:769–778. doi: 10.2217/bmm.13.63. PubMed DOI
Jy W., Minagar A., Jimenez J.J., Sheremata W.A., Mauro L.M., Horstman L.L., Bidot C., Ahn Y.S. Endothelial microparticles (EMP) bind and activate monocytes: Elevated empmonocyte conjugates in multiple sclerosis. Front. Biosci. Landmark. 2004;9:3137–3144. doi: 10.2741/1466. PubMed DOI
Simak J., Holada K., Risitano A.M., Zivny J.H., Young N.S., Vostal J.G. Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br. J. Haematol. 2004;125:804–813. doi: 10.1111/j.1365-2141.2004.04974.x. PubMed DOI
Ojeda-Fernandez L., Recio-Poveda L., Aristorena M., Lastres P., Blanco F.J., Sanz-Rodriguez F., Gallardo-Vara E., de las Casas-Engel M., Corbi A., Arthur H.M., et al. Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response. PLoS Genet. 2016;12:24. doi: 10.1371/journal.pgen.1005935. PubMed DOI PMC
Rossi E., Pericacho M., Bachelot-Loza C., Pidard D., Gaussem P., Poirault-Chassac S., Blanco F.J., Langa C., Gonzalez-Manchon C., Novoa J.M.L., et al. Human endoglin as a potential new partner involved in platelet-endothelium interactions. Cell. Mol. Life Sci. 2018;75:1269–1284. doi: 10.1007/s00018-017-2694-7. PubMed DOI PMC
Suades R., Padro T., Vilahur G., Martin-Yuste V., Sabate M., Sans-Rosello J., Sionis A., Badimon L. Growing thrombi release increased levels of CD235a(+) microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients. J. Thromb. Haemost. 2015;13:1776–1786. doi: 10.1111/jth.13065. PubMed DOI
Ingersoll M.A., Spanbroek R., Lottaz C., Gautier E.L., Frankenberger M., Hoffmann R., Lang R., Haniffa M., Collin M., Tacke F., et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood. 2010;115:E10–E19. doi: 10.1182/blood-2009-07-235028. PubMed DOI PMC
Swerlick R.A., Lee K.H., Wick T.M., Lawley T.J. Human Dermal Microvascular Endothelial but not Human Umbilical Vein Endothelial-Cells Express Cd36 in vivo and in vitro. J. Immunol. 1992;148:78–83. PubMed
Mitjavila-Garcia M.T., Cailleret M., Godin I., Nogueira M.M., Cohen-Solal K., Schiavon V., Lecluse Y., Le Pesteur F., Lagrue A.N., Vainchenker W. Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development. 2002;129:2003–2013. doi: 10.1242/dev.129.8.2003. PubMed DOI
Rheinlander A., Schraven B., Bommhardt U. CD45 in human physiology and clinical medicine. Immunol. Lett. 2018;196:22–32. doi: 10.1016/j.imlet.2018.01.009. PubMed DOI
Wang K.M., Wei G.Q., Liu D.L. CD19: A biomarker for B cell development, lymphoma diagnosis and therapy. Exp. Hematol. Oncol. 2012;1:7. doi: 10.1186/2162-3619-1-36. PubMed DOI PMC
Vermes I., Haanen C., Reutelingsperger C. Flow cytometry of apoptotic cell death. J. Immunol. Methods. 2000;243:167–190. doi: 10.1016/S0022-1759(00)00233-7. PubMed DOI
Skotland T., Hessvik N.P., Sandvig K., Llorente A. Thematic Review Series: Exosomes and Microvesicles: Lipids as Key Components of their Biogenesis and Functions Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J. Lipid Res. 2019;60:9–18. doi: 10.1194/jlr.R084343. PubMed DOI PMC
Sodar B.W., Kittel A., Paloczi K., Vukman K.V., Osteikoetxea X., Szabo-Taylor K., Nemeth A., Sperlagh B., Baranyai T., Giricz Z., et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci. Rep. 2016;6:12. doi: 10.1038/srep24316. PubMed DOI PMC
Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011;13:423–433. doi: 10.1038/ncb2210. PubMed DOI PMC
Lima E.S., Maranhao R.C. Rapid, simple laser-light-scattering method for HDL particle sizing in whole plasma. Clin. Chem. 2004;50:1086–1088. doi: 10.1373/clinchem.2004.032383. PubMed DOI
Jamaly S., Ramberg C., Olsen R., Latysheva N., Webster P., Sovershaev T., Braekkan S.K., Hansen J.B. Impact of preanalytical conditions on plasma concentration and size distribution of extracellular vesicles using Nanoparticle Tracking Analysis. Sci. Rep. 2018;8:11. doi: 10.1038/s41598-018-35401-8. PubMed DOI PMC
Jayachandran M., Miller V.M., Heit J.A., Owen W.G. Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J. Immunol. Methods. 2012;375:207–214. doi: 10.1016/j.jim.2011.10.012. PubMed DOI PMC
Kong F.C., Zhang L.M., Wang H.X., Yuan G.L., Guo A.Y., Li Q.B., Chen Z.C. Impact of collection, isolation and storage methodology of circulating microvesicles on flow cytometric analysis. Exp. Ther. Med. 2015;10:2093–2101. doi: 10.3892/etm.2015.2780. PubMed DOI PMC
Hujacova A., Brozova T., Mosko T., Kostelanska M., Stranak Z., Holada K. Platelet Extracellular Vesicles in Cord Blood of Term and Preterm Newborns Assayed by Flow Cytometry: The Effect of Delay in Sample Preparation and of Sample Freezing. Folia Biol. 2020;66:204–211. PubMed
De Rond L., Libregts S., Rikkert L.G., Hau C.M., van der Pol E., Nieuwland R., van Leeuwen T.G., Coumans F.A.W. Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry. J. Extracell. Vesicles. 2019;8:10. doi: 10.1080/20013078.2019.1643671. PubMed DOI PMC
Erdbrugger U., Rudy C.K., Etter M.E., Dryden K.A., Yeager M., Klibanov A.L., Lannigan J. Imaging Flow Cytometry Elucidates Limitations of Microparticle Analysis by Conventional Flow Cytometry. Cytom. Part A. 2014;85:756–770. doi: 10.1002/cyto.a.22494. PubMed DOI
Lucchetti D., Battaglia A., Ricciardi-Tenore C., Colella F., Perelli L., de Maria R., Scambia G., Sgambato A., Fattorossi A. Measuring Extracellular Vesicles by Conventional Flow Cytometry: Dream or Reality? Int. J. Mol. Sci. 2020;21:15. doi: 10.3390/ijms21176257. PubMed DOI PMC
Holcar M., Kanduser M., Lenassi M. Blood Nanoparticles—Influence on Extracellular Vesicle Isolation and Characterization. Front. Pharmacol. 2021;12:20. doi: 10.3389/fphar.2021.773844. PubMed DOI PMC
Chandler W.L. Measurement of Microvesicle Levels in Human Blood Using Flow Cytometry. Cytom. Part B Clin. Cytom. 2016;90:326–336. doi: 10.1002/cyto.b.21343. PubMed DOI
Yuana Y., Koning R.I., Kuil M.E., Rensen P.C.N., Koster A.J., Bertina R.M., Osanto S. Cryo-electron microscopy of extracellular vesicles in fresh plasma. J. Extracell. Vesicles. 2013;2:7. doi: 10.3402/jev.v2i0.21494. PubMed DOI PMC
Masvekar R., Mizrahi J., Park J., Williamson P.R., Bielekova B. Quantifications of CSF Apoptotic Bodies Do not Provide Clinical Value in Multiple Sclerosis. Front. Neurol. 2019;10:11. doi: 10.3389/fneur.2019.01241. PubMed DOI PMC
de Rond L., van der Pol E., Bloemen P.R., Van Den Broeck T., Monheim L., Nieuwland R., van Leeuwen T.G., Coumans F.A.W. A Systematic Approach to Improve Scatter Sensitivity of a Flow Cytometer for Detection of Extracellular Vesicles. Cytom. Part A. 2020;97:582–591. doi: 10.1002/cyto.a.23974. PubMed DOI PMC
Thery C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:43. doi: 10.1080/20013078.2018.1535750. PubMed DOI PMC