Assessment of the Hormetic Effect of Arsenic on Growth and Physiology of Two Cultivars of Maize (Zea mays L.)

. 2022 Dec 08 ; 11 (24) : . [epub] 20221208

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36559544

Grantová podpora
APVV18-0154 Slovak Research and Development Agency
VEGA 1/0073/20 Ministry of Education, Science, Research and Sport of the Slovak Republic
Ministry of Transport within the programme of long-term conceptual development of research institutions. Ministry of Transport

Although growth stimulation at low arsenic doses was observed in several plants, few studies have focused on this phenomenon in more detail. The effects of different concentrations of arsenic (0-50 mg kg-1 of soil: As0-As50) on the growth and selected physiological parameters of two maize cultivars (Zea mays L. cvs. Chapalu and MvNK 333) were tested. Cultivar MvNK 333 manifested a generally higher tolerance to As than cv. Chapalu, which may be related to the lower content of As in the tissues. The highest stimulatory effect of As was recorded at doses of As1 and As2 (cv. Chapalu), and at the As5 dose (MvNK 333), there was an increase in shoot elongation, biomass, and relative water content (RWC), as well as the content of photosynthetic pigments. The stimulatory effect of lower doses of As apparently represents an adaptation mechanism that is associated with water content regulation in the given conditions. The stomata of the studied cultivars were involved in this regulation in different ways. While cv. Chapalu exhibited increased numbers of stomata on both sides of leaves, cv. MvNK 333 instead responded to the given conditions with decreased stomata size. Although hormetic manifestations closely related to changes in stomatal number and size were observed, a typical stomatal hormetic response was not observed in the given range of As doses.

Zobrazit více v PubMed

EPA Environmental Protection Agency of U.S. [(accessed on 14 June 2012)];2012 Available online: http://www.epa.gov/iris/subst/0278.htm.

Meharg A.A., Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol. 2002;154:29–43. doi: 10.1046/j.1469-8137.2002.00363.x. DOI

Finnegan P.M., Chen W. Arsenic toxicity. The effects on plant metabolism. Front. Physiol. 2012;3:182. doi: 10.3389/fphys.2012.00182. PubMed DOI PMC

He M., Yang J. Characteristic of binding forms of arsenic in polluted rice seed and their stability. Chin. J. Appl. Ecol. 2002;13:1141–1144. (In Chinese) PubMed

Gulz P.A., Gupta S.K., Schulin R. Arsenic accumulation of common plants from contaminated soils. Plant Soil. 2005;272:337–347. doi: 10.1007/s11104-004-5960-z. DOI

Pickering I.J., Gumaelius L., Harris H.H., Prince R.C., Hirsch G., Banks J.A., Salt D.E., George G.N. Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ. Sci. Technol. 2006;40:5010–5014. doi: 10.1021/es052559a. PubMed DOI

Xu X.Y., McGrath S.P., Zhao F.J. Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol. 2007;176:590–599. doi: 10.1111/j.1469-8137.2007.02195.x. PubMed DOI

Marwa E.M.M., Meharg A.A., Rice C.M. Risk assessment of potentially toxic elements in agricultural soils and maize tissues from selected districts in Tanzania. Sci. Total Environ. 2012;416:180–186. doi: 10.1016/j.scitotenv.2011.11.089. PubMed DOI

Rosas-Castor J.M., Guzmán-Mar J.L., Hernández-Ramírez A., Garza-González M.T., Hinojosa-Reyes L. Arsenic accumulation in maize crop (Zea mays): A review. Sci. Total Environ. 2014;488–489:176–187. doi: 10.1016/j.scitotenv.2014.04.075. PubMed DOI

Sadee B.A., Foulkes M.E., Hill S.J. An evaluation of extraction techniques for arsenic in staple diets (fish and rice) utilising both classical and enzymatic extraction methods. Food Addit. Contam. A. 2016;33:433–441. doi: 10.1080/19440049.2015.1132479. PubMed DOI

Garg N., Singla P. Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environ. Chem. Lett. 2011;9:303–321. doi: 10.1007/s10311-011-0313-7. DOI

Päivöke A., Simola L.K. Arsenate toxicity to Pisum sativum: Mineral nutrients, chlorophyll content, and phytase activity. Ecotoxicol. Environ. Saf. 2001;49:111–121. doi: 10.1006/eesa.2001.2044. PubMed DOI

Zemanová V., Popov M., Pavlíková D., Kotrba P., Hnilička F., Česká J., Pavlík M. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. MC Plant Biol. 2020;20:130. doi: 10.1186/s12870-020-2325-6. PubMed DOI PMC

Vezza M.E., Llanes A., Travaglia C., Agostini E., Talano M.A. Arsenic stress effects on root water absorption in soybean plants: Physiological and morphological aspects. Plant Physiol. Biochem. 2018;123:8–17. doi: 10.1016/j.plaphy.2017.11.020. PubMed DOI

Abbas G., Murtaza B., Bibi I., Shahid M., Niazi N., Khan M., Amjad M., Hussain M., Tahir N. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. 2018;15:59. doi: 10.3390/ijerph15010059. PubMed DOI PMC

Carbonell-Barrachina A.A., Burló F., López E., Martínez-Sánchez F. Arsenic toxicity and, in radish as affected by arsenic chemical speciation. J. Environ. Sci. Health B. 1999;34:661–679. doi: 10.1080/03601239909373220. PubMed DOI

Calabrese E.J., Blain R.B. Hormesis and plant biology. Environ. Pollut. 2009;157:42–48. doi: 10.1016/j.envpol.2008.07.028. PubMed DOI

Calabrese E.J., Mattson M.P. Hormesis provides a generalized quantitative estimate of biological plasticity. J. Cell Commun. Signal. 2011;5:25–38. doi: 10.1007/s12079-011-0119-1. PubMed DOI PMC

Burló F., Guijarro I., Carbonell-Barrachina A.A., Valero D., Martínez-Sánchez F. Arsenic species: Effects on and accumulation by tomato plants. J. Agric. Food Chem. 1999;47:1247–1253. doi: 10.1021/jf9806560. PubMed DOI

Sushant K.S., Ghosh A.K. Effect of arsenic on photosynthesis, growth and its accumulation in the tissues of Allium cepa (Onion) Int. J. Environ. Eng. Manag. 2010;1:39–50. doi: 10.1007/s10653-010-9351-5. DOI

Ren J.H., Sun H.J., Wang S.F., Luo J., Ma L.Q. Interactive effects of mercury and arsenic on their uptake, speciation and toxicity in rice seedling. Chemosphere. 2014;117:737–744. doi: 10.1016/j.chemosphere.2014.10.035. PubMed DOI

Evans G., Evans J., Redman A., Johnson N. Unexpected beneficial effects of arsenic on corn roots grown in culture. Environ. Chem. 2005;2:167–170. doi: 10.1071/EN05046. DOI

Stoeva N., Berova M., Zlatev Z. Physiological response of maize to arsenic contamination. Biol. Plant. 2003;47:449–452. doi: 10.1023/B:BIOP.0000023893.12939.48. DOI

Allender W.J., Cresswell G.C., Kaldor J., Kennedy I.R. Effect of lithium and lanthium on herbicide induced hormesis in hydrophonically-grown cotton and corn. J. Plant Nutr. 1997;20:81–95. doi: 10.1080/01904169709365235. DOI

Pinto A.P., Mota A.M., Varennes A., de Pinto F.C. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci. Total Environ. 2004;326:239–247. doi: 10.1016/j.scitotenv.2004.01.004. PubMed DOI

Poschenrieder C., Cabot C., Martos S., Gallego B., Barceló J. Do toxic ions induce hormesis in plants? Plant Sci. 2013;212:15–25. doi: 10.1016/j.plantsci.2013.07.012. PubMed DOI

Shahid M., Niazi N.K., Rinklebe J., Bundschuh J., Dumt C., Pinelli E. Trace elements-induced phytohormesis: A critical review and mechanistic interpretation. Crit. Rev. Environ. Sci. Technol. 2020;50:1984–2015. doi: 10.1080/10643389.2019.1689061. DOI

Małkowski E., Sitko K., Szopiński M., Gieroń Ż., Pogrzeba M., Kalaji H.M., Zieleźnik-Rusinowska P. Hormesis in Plants: The role of oxidative stress, auxins and photosynthesis in corn treated with Cd or Pb. Int. J. Mol. Sci. 2020;21:2099. doi: 10.3390/ijms21062099. PubMed DOI PMC

Salinitro M., Mattarello G., Guardigli G., Odajiu M., Tassoni A. Induction of hormesis in plants by urban trace metal pollution. Sci. Rep. 2021;11:20329. doi: 10.1038/s41598-021-99657-3. PubMed DOI PMC

Carvalho M.E.A., Castro P.R.C., Azevedo R.A. Hormesis in plants under Cd exposure: From toxic to beneficial element? J. Hazard. Mater. 2020;84:121434. doi: 10.1016/j.jhazmat.2019.121434. PubMed DOI

Hayes D.P. Nutritional hormesis. Eur. J. Clin. Nutr. 2007;61:147–159. doi: 10.1038/sj.ejcn.1602507. PubMed DOI

Piršelová B., Galuščáková Ľ., Lengyelová L. Hormetická odpoveď rastlín na ióny kovov a polokovov. Chem. Listy. 2018;112:317–323.

Agathokleous E. The rise and fall of photosynthesis: Hormetic dose response in plants. J. For. Res. 2021;32:889–898. doi: 10.1007/s11676-020-01252-1. DOI

Erofeeva E.A. Method for assessing the frequency of hormetic trade-offs in plants. MethodsX. 2022;9:101610. doi: 10.1016/j.mex.2021.101610. PubMed DOI PMC

Agathokleous E., Zhong Z., Peñuelas F.J. Chlorophyll hormesis: Are chlorophylls major components of stress biology in higher plants? Sci. Total Environ. 2020;726:138637. doi: 10.1016/j.scitotenv.2020.138637. PubMed DOI

Agathokleous E., Calabrese E.J. Hormesis: The dose response for the 21st Century: The future has arrived. Toxicology. 2019;425:152249. doi: 10.1016/j.tox.2019.152249. PubMed DOI

Rizwan M., Ali S., Abbas F., Adrees M., Zia-Ur-Rehman M., Gill R.A., Ali B. Role of organic and inorganic amendments in alleviating heavy metal stress in oil seed crops. In: Ahmad P., editor. Oil Seed Crops: Yield and Adaptations under Environmental Stress. 1st ed. John Wiley & Sons Ltd.; Chichester, UK: 2017. pp. 224–235. DOI

Kaya C., Ashraf M., Alyemeni M.N., Corpas F.J., Ahmad P. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. J. Hazard. Mater. 2020;399:123020. doi: 10.1016/j.jhazmat.2020.123020. PubMed DOI

Mishra S., Stark H.J., Kupper H. A different sequence of events than previously reported leads to arsenic-induced damage in Ceratophyllum demersum L. Metallomics. 2014;3:444–454. doi: 10.1039/C3MT00317E. PubMed DOI

Patnaik A.R., Achary V.M.M., Panda B.B. Chromium (Cr)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L. Plant Growth Regul. 2013;71:57–170. doi: 10.1007/s10725-013-9816-5. DOI

Mittler R. ROS are good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002. PubMed DOI

Seabra A.B., Oliveira H.C. How nitric oxide donors can protect plants in a changing environment: What we know so far and perspectives. AIMS Mol. Sci. 2016;3:692–718. doi: 10.3934/molsci.2016.4.692. DOI

Jacobs L.W., Keeney D.R. Arsenic—Phosphorus interaction in corn. Commun. Soil Sci. Plant Anal. 1970;1:85–93. doi: 10.1080/00103627009366245. DOI

Lambkin D.C., Alloway B.J. Arsenate-induced phosphate release from soils and its effect on plant phosphorus. Water Air Soil Pollut. 2003;144:41–56. doi: 10.1023/A:1022949015848. DOI

Du L., Xia X., Lan M., Liu M., Zhao L., Zhang P., Wu Y. Influence of arsenic stress on physiological, biochemical, and morphological characteristics in seedlings of two cultivars of maize (Zea mays L.) Water Air Soil Pollut. 2017;228:55. doi: 10.1007/s11270-016-3231-2. DOI

Ci X.K., Liu H.L., Hao Y.B., Zhang J.W., Liu P., Dong S.T. Arsenic distribution, species, and its effect on maize growth treated with arsenate. J. Integr. Agric. 2012;11:416–423. doi: 10.1016/S2095-3119(12)60026-4. DOI

Li C.X., Feng S.L., Shao Y., Jiang L.N., Lu X.Y., Hou X. Effects of arsenic on seed germination and physiological activities of wheat seedlings. J. Environ. Sci. 2007;19:725–732. doi: 10.1016/S1001-0742(07)60121-1. PubMed DOI

Jia L., Liu Z., Chen W., Ye Y., Yu S., He X. Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica. Thunb. J. Plant Growth Regul. 2015;34:13–21. doi: 10.1007/s00344-014-9433-1. DOI

Gusman G.S., Oliveira J.A., Farnese F.S., Cambraia J. Arsenate and arsenite: The toxic effects on photosynthesis and growth of lettuce plants. Acta Physiol. Plant. 2013;35:1201–1209. doi: 10.1007/s11738-012-1159-8. DOI

Sade N., Gebremedhin A., Moshelion M. Risk-taking plants: Anisohydric behavior as a stress-resistance trait. Plant Signal Behav. 2012;7:767–770. doi: 10.4161/psb.20505. PubMed DOI PMC

Gostin I.N. Air pollution effects on the leaf structure of some fabaceae species. Not. Bot. Horti. Agrobot. Cluj-Napoca. 2009;37:57–63. doi: 10.15835/nbha3723078. DOI

Weryszko-Chmielewska E., Chwil M. Lead induced histological and ultrastructural changes in the leaves of soybean (Glycine max (L.) Merr.) Soil Sci. Plant Nutr. 2005;51:203. doi: 10.1111/j.1747-0765.2005.tb00024.x. DOI

Farber M., Attia Z., Weiss D. Cytokinin activity increases stomatal density and transpiration rate in tomato. J. Exp. Bot. 2016;67:6351. doi: 10.1093/jxb/erw398. PubMed DOI PMC

Gálusová T., Piršelová B., Rybanský Ľ., Krasylenko Y., Mészáros P., Blehová A., Bardáčová M., Moravčíková J., Matušíková I. Plasticity of soybean stomatal responses to arsenic and cadmium at the whole plant level. Pol. J. Environ. Stud. 2020;29:3569–3580. doi: 10.15244/pjoes/116444. PubMed DOI

Melo H.C., Castro E.M., Soares A.M., Melo L.A., Alves J.D. Anatomical and physiological alterations in Setaria anceps Stapf ex Massey and Paspalum paniculatum L. under water deficit conditions. Hoehnea. 2007;34:145. doi: 10.1590/S2236-89062007000200003. DOI

Bertolino L.T., Caine R.S., Gray J.E. Impact of stomatal density and morphology on water-use efficiency in a changing world. Front. Plant Sci. 2019;10:225. doi: 10.3389/fpls.2019.00225. PubMed DOI PMC

Shi G., Caia Q. Leaf plasticity in peanut (Arachis hypogaea L.) in response to heavy metal stress. Environ. Exp. Bot. 2009;67:112–117. doi: 10.1016/j.envexpbot.2009.02.009. DOI

Imran M.A., Sajid Z.A., Chaudhry M.N. Arsenic (As) Toxicity to germination and vegetative growth of sunflower (Helianthus annuus L.) Pol. J. Environ. Stud. 2015;24:1993–2002. doi: 10.15244/pjoes/39553. DOI

Vromman D., Flores-Bavestrello A., Šlejkovec Z., Lapaillea S., Teixeira-Cardoso C., Briceño M., Kumar M., Martínez J.P., Lutts S. Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil. Sci. Total Environ. 2011;412–413:286–295. doi: 10.1016/j.scitotenv.2011.09.085. PubMed DOI

Labancová E., Vivodová Z., Kučerová D., Lišková D., Kollárová K. The cadmium tolerance development of poplar callus is influenced by silicon. Ecotoxicology. 2020;29:987–1002. doi: 10.1007/s10646-020-02242-z. PubMed DOI

Cedergreen N., Olesen C.F. Can glyphosate stimulate photosynthesis? Pestic. Biochem. Physiol. 2010;96:140–148. doi: 10.1016/j.pestbp.2009.11.002. DOI

Wan X., Lei M., Chen T., Yang J., Liu H., Chen Y. Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L. Environ. Sci. Pollut. Res. 2015;22:16631–16639. doi: 10.1007/s11356-015-4746-6. PubMed DOI

Qi X., Torii K.U. Hormonal and environmental signals guiding stomatal development. BMC Biol. 2018;16:21. doi: 10.1186/s12915-018-0488-5. PubMed DOI PMC

Kasim W.A. Changes induced by copper and cadmium in the anatomy and grain yield of Sorghum bicolor (L.) Moench. Int. J. Agric. Biol. 2006;8:123–128.

Baryla A., Carrier P., Franck F., Coulomb C., Sahut C., Havaux M. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: Causes and consequences for photosynthesis and growth. Planta. 2015;212:696–709. doi: 10.1007/s004250000439. PubMed DOI

Aliu S., Rusinovci I., Doko A., Salihu S., Fetahu S., Elezi F., Gashi B. Stomatal characteristics and their relationship to heavy metals in maize (Zea mays L.) seedlings. J. Food Agric. Environ. 2015;13:168–171. doi: 10.1234/4.2015.3977. DOI

Buscaroli A. An overview of indexes to evaluate terrestrial plants for phytoremediation purposes. Ecol. Indic. 2017;82:367–380. doi: 10.1016/j.ecolind.2017.07.003. DOI

Zandstra B.H., de Kryger T.A. Arsenic and lead residues in carrots from foliar applications of monosodium methanearsonate (MSMA): A comparison between mineral and organic soils, or from soil residues. Food Addit. Contam. 2007;24:34–42. doi: 10.1080/02652030600930568. PubMed DOI

Ministry of Health of the People’s Republic of China (MHPRC); Beijing, China: Standardization Administration of China; Beijing, China: 2005. Hygienic Standard for Grains.

McLaughlin M.J., Hamon R.E., McLaren R.G., Speir T.W., Rogers S.L. Review: A bioavailability–based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust. J. Soil. Res. 2000;38:1037–1086. doi: 10.1071/SR99128. DOI

Norra S., Berner Z.A., Agarwala P., Wagner F., Chandrasekharam D., Stüben D. Impact of irrigation with arsenic rich groundwater on soil and crops: A geochemical case study in West Bengal delta plain, India. J. Appl. Geochem. 2005;20:1890–1906. doi: 10.1016/j.apgeochem.2005.04.019. DOI

Cao X., Bai L., Zeng X., Zhang J., Wang Y., Wu C., Su S. Is maize suitable for substitution planting in arsenic contaminated farmlands? Plant Soil Environ. 2019;65:425–434. doi: 10.17221/155/2019-PSE. DOI

Erofeeva E.A. Hormesis and paradoxical effects of wheat seedling (Triticum aestivum L.) parameters upon exposure to different pollutants in a wide range of doses. Dose Response. 2014;12:121–135. doi: 10.2203/dose-response.13-017.Erofeeva. PubMed DOI PMC

Sadiq M. Solubility relationships of arsenic in calcareous soils and its uptake by corn. Plant Soil. 1986;91:241–248. doi: 10.1007/BF02181791. DOI

Ritchie S.W., Hanway J.J., Benson G.O. How a Corn Plant Develops. Iowa State University; Ames, IA, USA: 1993. p. 21. (CES Special Report No. 48).

Wilkins D.A. The measurement of tolerance to edaphic factors by means of root length. New Phytol. 1978;80:623–633. doi: 10.1111/j.1469-8137.1978.tb01595.x. DOI

Lichtenthaler H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Meth. Enzymol. 1987;148:350–382. doi: 10.1016/0076-6879(87)48036-1. DOI

Dhopte A.M., Manuel L.M. Principles and Techniques for Plant Scientists. 1st ed. Updesh Purohit for Agrobios (India); Odhpur, India: 2002. p. 373.

Xu Z.Z., Zhou G.S. Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis. Physiol. Plant. 2005;123:272–280. doi: 10.1111/j.1399-3054.2005.00455.x. DOI

The Czech Office for Standards, Metrology and Testing (COSMT); Prague, Czech Republic: 2002. Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. Part 4: One stage batch test at a liquid to solid ratio of 10 L/kg for materials with particle size below 10 mm (without or with size reduction)

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...