Characterization of Mycoviruses in Armillaria ostoyae and A. cepistipes in the Czech Republic
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38675951
PubMed Central
PMC11053624
DOI
10.3390/v16040610
PII: v16040610
Knihovny.cz E-zdroje
- Klíčová slova
- ambivirus, biological control, circular genetic elements, root rot, tymovirus, viruses,
- MeSH
- Armillaria * genetika virologie MeSH
- fylogeneze * MeSH
- genom virový * MeSH
- mykoviry * klasifikace genetika izolace a purifikace MeSH
- nemoci rostlin virologie mikrobiologie MeSH
- RNA virová * genetika MeSH
- RNA-viry genetika klasifikace izolace a purifikace MeSH
- sekvenční analýza RNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- RNA virová * MeSH
Members of the genus Armillaria are widespread forest pathogens against which effective protection has not yet been developed. Due to their longevity and the creation of large-scale cloning of Armillaria individuals, the use of mycoviruses as biocontrol agents (BCAs) against these pathogens could be an effective alternative. This work describes the detection and characterization of viruses in Armillaria spp. collected in the Czech Republic through the application of stranded total RNA sequencing. A total of five single-stranded RNA viruses were detected in Armillaria ostoyae and A. cepistipes, including viruses of the family Tymoviridae and four viruses belonging to the recently described "ambivirus" group with a circular ambisense genome arrangement. Both hammerhead (HHRz) and hairpin (HpRz) ribozymes were detected in all the ambiviricot sequences. Armillaria viruses were compared through phylogenetic analysis and confirmed their specific host by direct RT-PCR. One virus appears to infect both Armillaria species, suggesting the occurrence of interspecies transmission in nature.
Zobrazit více v PubMed
Hansen E.M., Goheen E.M. Phellinus weirii and other native root pathogens as determinants of forest structure and process in Western North America. Annu. Rev. Phytopathol. 2000;38:515–539. doi: 10.1146/annurev.phyto.38.1.515. PubMed DOI
Gilbert G.S. Evolutionary ecology of plant diseases in natural ecosystems. Annu. Rev. Phytopathol. 2002;40:13–43. doi: 10.1146/annurev.phyto.40.021202.110417. PubMed DOI
Coetzee M., Wingfield B.D., Wingfield M.J. Armillaria root-rot pathogens: Species boundaries and global distribution. Pathogens. 2018;7:83. doi: 10.3390/pathogens7040083. PubMed DOI PMC
Williams R.E., Shaw C.G., Wargo P.M., Sites W.H. Forest Insect and Disease Leaflet 78. U.S. Department of Agriculture Forest Service; Radnor, PA, USA: 1986. Armillaria Root Disease.
Baumgartner K., Coetzee M., Hoffmeister D. Secrets of the subterranean pathosystem of Armillaria. Mol. Plant Pathol. 2011;12:515–534. doi: 10.1111/j.1364-3703.2010.00693.x. PubMed DOI PMC
Holuša J., Lubojacký J., Čurn V., Tonka T., Resnerová K., Horák J. Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. For. Ecol. Manag. 2018;427:434–445. doi: 10.1016/j.foreco.2018.01.031. DOI
Cienciala E., Tumajer J., Zatloukal V., Beranová J., Holá Š., Hůnová I., Russ R. Recent spruce decline with biotic pathogen infestation as a result of interacting climate, deposition and soil variables. Eur. J. Forest. Res. 2017;136:307–317. doi: 10.1007/s10342-017-1032-9. DOI
Turčáni M. Podiel podkorneho hmyzu na hynutí smrekových porastov postihnutých žltnutím. In: Zúbrik M., editor. Aktuálne Problémy v Ochrane Lesa. Lesnický Výskumný Ústav; Banská Štiavnica, Slovakia: 2001. pp. 56–60.
Jankovský L. Collection of Lectures of the Professional Seminar Budišov Nad Budišovkou. Research Institute of Forestry and Hunting; Budišov and Budišovkou, Czech Republic: 2014. Role houbových patogenů v chřadnutí smrku; pp. 20–30.
Garcia O. A simple and effective forest stand mortality model. Math. Comput. For. Nat.-Resour. Sci. 2009;1:1–9.
Van Mantgem P.J., Stephenson N.L., Byrne J.C., Daniels L.D., Franklin J.F., Fulé P.Z., Harmon M.E., Larson A.J., Smith J.M., Taylor A.H., et al. Widespread increase of tree mortality rates in the western United States. Science. 2009;323:521–524. doi: 10.1126/science.1165000. PubMed DOI
Cleary M.R., Arhipova N., Morrison D.J., Thomsen I.M., Sturrock R.N., Vasaitis R., Gaitnieks T., Stenlid J. Stump removal to control root disease in Canada and Scandinavia: A synthesis of results from long-term trial. For. Ecol. Manag. 2013;290:5–14. doi: 10.1016/j.foreco.2012.05.040. DOI
Linnakoski R., Sutela S., Coetzee M.P.A., Duong T.A., Pavlov I.N., Litovka Y.A. Armillaria root rot fungi host single-stranded RNA viruses. Sci. Rep. 2021;11:7336. doi: 10.1038/s41598-021-86343-7. PubMed DOI PMC
Prospero S., Botella L., Santini A., Robin C. Biological control of emerging forest diseases: How can we move from dreams to reality? For. Ecol. Manag. 2021;496:119377. doi: 10.1016/j.foreco.2021.119377. DOI
Nuss D.L. Hypovirulence: Mycoviruses at the fungal-plant interface. Nat. Rev. Microbiol. 2005;3:632–642. doi: 10.1038/nrmicro1206. PubMed DOI
García-Pedrajas M.D., Cañizares M.C., Sarmiento-Villamil J.L., Jacquat A.G., Dambolena J.S. Mycoviruses in Biological Control: From Basic Research to Field Implementation. Phytopathology. 2019;109:1828–1839. doi: 10.1094/PHYTO-05-19-0166-RVW. PubMed DOI
Tonka T., Walterova L., Curn V. Biological control of pathogenic fungi: Can mycoviruses play an important role? J. Cent. Eur. Agric. 2022;23:540–551. doi: 10.5513/JCEA01/23.3.3618. DOI
Muñoz-Adalia E.J., Fernández M.M., Diez J.J. The use of mycoviruses in the control of forest diseases. Biocontrol Sci. Technol. 2016;26:577–604. doi: 10.1080/09583157.2015.1135877. DOI
Vainio E.J., Jurvansuu J., Hyder R., Kashif M., Piri T., Tuomivirta T., Poimala A., Xu P., Mäkelä S., Nitisa D., et al. Heterobasidion partitivirus 13 mediates severe growth debilitation and major alterations in the gene expression of a fungal forest pathogen. J. Virol. 2018;92:1744. doi: 10.1128/JVI.01744-17. PubMed DOI PMC
Sutela S., Piri T., Vainio E.J. Discovery and community dynamics of novel ssRNA mycoviruses in the conifer pathogen Heterobasidion parviporum. Front. Microbiol. 2021;12:770787. doi: 10.3389/fmicb.2021.770787. PubMed DOI PMC
Blattny C., Kralik O., Veselsky J., Kasala B., Herzova H. Particles resembling virions accompanying the proliferation of Agaric mushrooms. Česká Mykol. 1973;27:1–5.
Reaves J.L., Allen T.C., Shaw C.G., Dashek W.V., Mayfield J.E. Occurrence of virus like particles in isolates of Armillaria. J. Ultrastruct. Mol. Struct. Res. 1988;98:217–221. doi: 10.1016/S0889-1605(88)80913-3. DOI
Tonka T., Walterová L., Hejna O., Čurn V. Molecular characterization of a ssRNA mycovirus isolated from the forest pathogenic fungus Armillaria ostoyae. Acta Virol. 2022;66:290–294. doi: 10.4149/av_2022_309. PubMed DOI
Shamsi W., Heinzelmann R., Ulrich S., Kondo H., Cornejo C. Decoding the RNA virome of the tree parasite Armillaria provides new insights into the viral community of soil-borne fungi. Environ. Microbiol. 2024;26:e16583. doi: 10.1111/1462-2920.16583. PubMed DOI
Morris T.J., Dodds J.A. Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology. 1979;69:854. doi: 10.1094/Phyto-69-854. DOI
Tonka T., Walterová L., Hejna O., Čurn V. Metodika Identifikace, Determinace a Přenosu Mykovirů u Hub Rodu Armillaria. University of South Bohemia in České Budějovice; České Budějovice, Czech Republic: 2021.
Botella L., Dvořák M., Capretti P., Luchi N. Effect of temperature on GaRV6 accumulation and its fungal host, the conifer pathogen Gremmeniella abietina. For. Pathol. 2017;47:12291. doi: 10.1111/efp.12291. DOI
Botella L., Jung T. Multiple viral infections detected in Phytophthora condilina by total and small RNA sequencing. Viruses. 2021;13:620. doi: 10.3390/v13040620. PubMed DOI PMC
Andrews S. Babraham Bioinformatics—FastQC. A Quality Control Tool for High Throughput Sequence Data. Soil. 2010. [(accessed on 26 May 2023)]. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Illumina Adapter Sequences. [(accessed on 26 May 2023)]. Available online: https://emea.support.illumina.com/downloads/illumina-adapter-sequences-document-1000000002694.html.
Martin M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. 2012. [(accessed on 26 May 2023)]. Available online: https://cutadapt.readthedocs.io/en/stable.
GitHub. [(accessed on 27 May 2023)]. Available online: https://github.com/marcelm/cutadapt.
Dobin A., Davies C.A., Schlesinger F., Drenkow J., Zaleski C., Sonali J., Philippe B., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Viral NCBI. [(accessed on 29 May 2023)]; Available online: https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
Burrows-Wheeler Alingner. [(accessed on 27 May 2023)]. Available online: https://bio-bwa.sourceforge.net/
IGV. [(accessed on 27 May 2023)]. Available online: https://software.broadinstitute.org/software/igv/
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Viral UniProtKB. [(accessed on 29 May 2023)]. Available online: https://www.uniprot.org/uniprotkb?query=10239.
RVDB. [(accessed on 29 May 2023)]. Available online: https://rvdb.dbi.udel.edu/
Virus-Host DB. [(accessed on 29 May 2023)]. Available online: https://www.genome.jp/virushostdb/
Lee B.D., Neri U., Roux S., Wolf Y.I., Camargo A.P., Krupovic M., Simmonds P., Kyrpides N., Gophna U., Dolja V.V., et al. Mining metatranscriptomes reveals a vast world of viroid-like circular RNAs. Cell. 2023;186:646–661. doi: 10.1016/j.cell.2022.12.039. PubMed DOI PMC
Qin Y., Xu T., Lin W., Jia Q., He Q., Liu K., Du J., Chen L., Yang X., Du F., et al. Reference-free and de novo Identification of Circular RNAs. bioRxiv. 2020 doi: 10.1101/2020.04.21.050617. DOI
Nawrocki E.P., Eddy S.R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–2935. doi: 10.1093/bioinformatics/btt509. PubMed DOI PMC
Macke T.J., Ecker D.J., Gutell R.R., Gautheret D., Case D.A., Sampath R. RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res. 2001;29:4724–4735. doi: 10.1093/nar/29.22.4724. PubMed DOI PMC
Tonka T., Walterová L., Čurn V. Development of RT-PCR for rapid detection of ssRNA ambi-like mycovirus in a root rot fungi (Armillaria spp.) Acta Virol. 2022;66:287–289. doi: 10.4149/av_2022_308. PubMed DOI
Čurn V., Tonka T., Křížová L., Jozová E. Metodika Izolace DNA Analýzy Molekulárních Markerů u Hub. University of South Bohemia in České Budějovice; České Budějovice, Czech Republic: 2019.
NCBI CD-Search Tool. [(accessed on 27 May 2023)]; Available online: https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi.
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Stamatakis A., Hoover P., Rougemont J., Diego S., Jolla L. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008;57:758–771. doi: 10.1080/10635150802429642. PubMed DOI
Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; Proceedings of the 2010 Gateway Computing Environments Workshop; New Orleans, LA, USA. 14 November 2010; DOI
Sutela S., Forgia M., Vainio E.J., Chiapello M., Daghino S., Vallino M., Martino E., Girlanda M., Perotto S., Turina M. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol. 2020;6:76. doi: 10.1093/ve/veaa076. PubMed DOI PMC
Forgia M., Isgandarli E., Aghayeva D.N., Huseynova I., Turina M. Virome characterization of Cryphonectria parasitica isolates from Azerbaijan unveiled a new mymonavirus and a putative new RNA virus unrelated to described viral sequences. Virology. 2021;553:51–61. doi: 10.1016/j.virol.2020.10.008. PubMed DOI
Turina M., Lee B.D., Sabanadzovic S., Vainio E.J., Navarro B., Simmonds P. Create One New Phylum, Ambiviricota, Including One New Class, One New Order, Four New Families, Four New Genera, and 20 New Species, in Kingdom Orthornavirae (Realm Riboviria). ICTV TaxoProp 2023.007F. 2023. [(accessed on 27 May 2023)]. Available online: https://ictv.global/files/proposals/pending?fid=11741#block-teamplus-page-title.
Forgia M., Navarro B., Daghino S., Cervera A., Gisel A., Perotto S., Aghayeva D.N., Akinyuwa M.F., Gobbi E., Zheludev I.N., et al. Hybrids of RNA viruses and viroid-like elements replicate in fungi. Nat. Commun. 2023;14:2591. doi: 10.1038/s41467-023-38301-2. PubMed DOI PMC
Dvořák J. Master’s Thesis. Charles University; Prague, Czech Republic: 2008. Výskyt RNA Elementů u Rodu Armillaria.
Drenkhan T., Sutela S., Veeväli V., Vainio E.J. Phlebiopsis gigantea strains from Estonia show potential as native biocontrol agents against Heterobasidion root rot and contain diverse dsRNA and ssRNA viruses. Biol. Control. 2022;167:104837. doi: 10.1016/j.biocontrol.2022.104837. DOI
Lu S., Wang J., Chitsaz F., Derbyshire M.K., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Marchler G.H., Song J.S., et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–D268. doi: 10.1093/nar/gkz991. PubMed DOI PMC
Adams M.J., Kreuze J.F., Martelli G.P. Virus Taxonomy: Classification and Nomenclature of Viruses. Elsevier; Waltham, MA, USA: 2011. Tymovirales; pp. 901–903.
King A.M.Q., Michael J., Carstens E.B., Lefkowitz E.J. Virus Taxonomy: Classification and Nomenclature of Viruses. American Press/Elsevier; Amsterdam, The Netherlands: 2012.
Howitt R.L., Beever R.E., Pearson M.N., Forster R.L. Genome characterization of botrytis virus F, aflexuous rod-shaped mycovirus resembling plant ‘potex-like’ viruses. J. Gen. Virol. 2001;82:67–78. doi: 10.1099/0022-1317-82-1-67. PubMed DOI
Adams M.J., Candresse T., Hammond J., Kreuze J.F., Martelli G.P., Mamba S., Pearson M.N., Ryu K.H., Vaira A.M. Virus Taxonomy: Classification and Nomenclature of Viruses. Elsevier; Waltham, MA, USA: 2011. Alphaflexiviridae; pp. 904–919. DOI
Howitt R.L., Beever R.E., Pearson M.N., Forster R.L. Genome characterization of a flexuous rod-shaped mycovirus, botrytis virus X, reveals high amino acid identity to genes from plant ‘potex-like’ viruses. Arch. Virol. 2006;151:563–579. doi: 10.1007/s00705-005-0621-y. PubMed DOI
Li K., Zheng D., Cheng J., Chen T., Fu Y., Jiang D., Xie J. Characterization of a novel Sclerotinia sclerotiorum RNA virus as the prototype of a new proposed family within the order Tymovirales. Virus Res. 2016;219:92–99. doi: 10.1016/j.virusres.2015.11.019. PubMed DOI
Li P., Lin Y., Zhang H., Wang S., Qiu D., Guo L. Molecular characterization of a novel mycovirus of the family Tymoviridae isolated from the plant pathogenic fungus Fusarium graminearum. Virology. 2016;489:86–94. doi: 10.1016/j.virol.2015.12.004. PubMed DOI
Bartholomaus A., Wibberg D., Winkler A., Puhler A., Schluter A., Varrelmann M. Identification of a novel mycovirus isolated from Rhizoctonia solani (AG 2-2 IV) provides further information about genome plasticity within the order Tymovirales. Arch. Virol. 2017;162:555–559. doi: 10.1007/s00705-016-3085-3. PubMed DOI
Mizutani Y., Abraham A., Uesaka K., Kondo H., Suga H., Suzuki N., Chiba S. Novel mitoviruses and a unique tymo-like virus in hypovirulent and virulent strains of the Fusarium head blight fungus, Fusarium boothii. Viruses. 2018;10:584. doi: 10.3390/v10110584. PubMed DOI PMC
Coenen A., Kevei F., Hoekstra R.F. Factors affecting the spread of double-stranded RNA viruses in Aspergillus nidulans. Genet. Res. 1997;69:1–10. doi: 10.1017/S001667239600256X. PubMed DOI
Melzer M.S., Ikeda S.S., Boland G.J. Interspecific transmission of double-stranded RNA and hypovirulence from Sclerotinia sclerotiorum to S. minor. Phytopathology. 2002;92:780–784. doi: 10.1094/PHYTO.2002.92.7.780. PubMed DOI
Liu Y., Linder-Basso D., Hillman B., Kaneko S., Milgroom M.G. Evidence for interspecies transmission of viruses in natural populations of filamentous fungi in the genus Cryphonectria. Mol. Ecol. 2003;12:1619–1628. doi: 10.1046/j.1365-294X.2003.01847.x. PubMed DOI
Ihrmark K., Johannesson H., Stenström E., Stenlid J. Transmission of double-stranded RNA in Heterobasidion annosum. Fungal Genet. Biol. 2002;36:147–154. doi: 10.1016/S1087-1845(02)00011-7. PubMed DOI
Vainio E.J., Korhonen K., Tuomivirta T.T., Hantula J. A novel putative partitivirus of the saprotrophic fungus Heterobasidion ecrustosum infects pathogenic species of the Heterobasidion annosum complex. Fungal Biol. 2010;114:955–965. doi: 10.1016/j.funbio.2010.09.006. PubMed DOI
Vainio E.J., Hakanpää J., Dai Y.C., Hansen E., Korhonen K., Hantula J. Species of Heterobasidion host a diverse pool of partitiviruses with global distribution and interspecies transmission. Fungal Biol. 2011;115:1234–1243. doi: 10.1016/j.funbio.2011.08.008. PubMed DOI
Ambiviricota, a novel ribovirian phylum for viruses with viroid-like properties