CO2/CH4 and H2/CH4 Gas Separation Performance of CTA-TNT@CNT Hybrid Mixed Matrix Membranes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34832091
PubMed Central
PMC8625587
DOI
10.3390/membranes11110862
PII: membranes11110862
Knihovny.cz E-zdroje
- Klíčová slova
- CO2 and CH4 separation, TNT@CNT hybrid fillers, cellulose triacetate polymer, mixed matrix membranes,
- Publikační typ
- časopisecké články MeSH
This study explored the underlying synergy between titanium dioxide nanotube (TNT) and carbon nanotube (CNT) hybrid fillers in cellulose triacetate (CTA)-based mixed matrix membranes (MMMs) for natural gas purification. The CNT@TNT hybrid nanofillers were blended with CTA polymer and cast as a thin film by a facile casting technique, after which they were used for single gas separation. The hybrid filler-based membrane depicted a higher CO2 uptake affinity than the single filler (CNT/TNT)-based membrane. The gas separation results indicate that the hybrid fillers (TNT@CNT) are strongly selective for CO2 over CH4 and H2 over CH4. The increment in the CO2/CH4 and H2/CH4 selectivities compared to the pristine CTA membrane was 42.98 from 25.08 and 48.43 from 36.58, respectively. Similarly, the CO2 and H2 permeability of the CTA-TNT@CNT membrane increased by six- and five-fold, respectively, compared to the pristine CTA membrane. Such significant improvements in CO2/CH4 and H2/CH4 separation performance and thermal and mechanical properties suggest a feasible and practical approach for potential biogas upgrading and natural gas purification.
Zobrazit více v PubMed
Lin H., Yavari M. Upper bound of polymeric membranes for mixed-gas CO2/CH4 separations. J. Membr. Sci. 2015;475:101–109. doi: 10.1016/j.memsci.2014.10.007. DOI
Baker R.W., Lokhandwala K. Natural Gas Processing with Membranes: An Overview. Ind. Eng. Chem. Res. 2008;47:2109–2121. doi: 10.1021/ie071083w. DOI
Ahmad M.Z., Peters T.A., Konnertz N.M., Visser T., Téllez C., Coronas J., Fila V., de Vos W.M., Benes N.E. High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes. Sep. Purif. Technol. 2020;230:115858. doi: 10.1016/j.seppur.2019.115858. DOI
Ko D., Siriwardane A.R., Biegler L.T. Optimization of Pressure Swing Adsorption and Fractionated Vacuum Pressure Swing Adsorption Processes for CO2 Capture. Ind. Eng. Chem. Res. 2005;44:8084–8094. doi: 10.1021/ie050012z. DOI
Xu G., Liang F., Yang Y., Hu Y., Zhang K., Liu W. An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory. Energies. 2014;7:3484–3502. doi: 10.3390/en7053484. DOI
Gleason K.L., Smith Z.P., Liu Q., Paul D.R., Freeman B.D. Pure- and mixed-gas permeation of CO2 and CH4 in thermally rearranged polymers based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) J. Membr. Sci. 2015;475:204–214. doi: 10.1016/j.memsci.2014.10.014. DOI
Khalilpour R., Abbas A., Lai Z., Pinnau I. Analysis of hollow fibre membrane systems for multicomponent gas separation. Chem. Eng. Res. Des. 2013;91:332–347. doi: 10.1016/j.cherd.2012.07.009. DOI
Wang D., Teo W., Li K. Preparation and characterization of high-flux polysulfone hollow fibre gas separation membranes. J. Membr. Sci. 2002;204:247–256. doi: 10.1016/S0376-7388(02)00047-9. DOI
Merkel T.C., Freeman B.D., Spontak R.J., He Z., Pinnau I., Meakin P., Hill A.J. Ultrapermeable, Reverse-Selective Nanocomposite Membranes. Science. 2002;296:519–522. doi: 10.1126/science.1069580. PubMed DOI
Sanders D.F., Smith Z.P., Guo R., Robeson L.M., McGrath J.E., Paul D.R., Freeman B.D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer. 2013;54:4729–4761. doi: 10.1016/j.polymer.2013.05.075. DOI
Chuah C.Y., Goh K., Yang Y., Gong H., Li W., Karahan H.E., Guiver M.D., Wang R., Bae T.-H. Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chem. Rev. 2018;118:8655–8769. doi: 10.1021/acs.chemrev.8b00091. PubMed DOI
Goh P., Ismail A., Sanip S., Ng B., Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011;81:243–264. doi: 10.1016/j.seppur.2011.07.042. DOI
Ozturk B., Ozen H.A. The importance of nanomaterials in gas separation. Mater. Today Proc. 2021;42:1547–1549. doi: 10.1016/j.matpr.2020.01.357. DOI
Wang D., Zheng Y., Yao D., Yang Z., Xin Y., Wang F., Wang Y., Ning H., Wu H., Wang H. Liquid-like CNT/SiO2 nanoparticle organic hybrid materials as fillers in mixed matrix composite membranes for enhanced CO2-selective separation. New J. Chem. 2019;43:11949–11958. doi: 10.1039/C9NJ02789K. DOI
Rezakazemi M., Amooghin A.E., Montazer-Rahmati M.M., Ismail A.F., Matsuura T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci. 2014;39:817–861. doi: 10.1016/j.progpolymsci.2014.01.003. DOI
Cheng Y., Ying Y., Zhai L., Liu G., Dong J., Wang Y., Christopher M.P., Long S., Wang Y., Zhao D. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J. Membr. Sci. 2019;573:97–106. doi: 10.1016/j.memsci.2018.11.060. DOI
Aroon M.A., Ismail A., Matsuura T., Montazer-Rahmati M. Performance studies of mixed matrix membranes for gas separation: A review. Sep. Purif. Technol. 2010;75:229–242. doi: 10.1016/j.seppur.2010.08.023. DOI
Bae T.-H., Liu J., Lee J.S., Koros W.J., Jones C.W., Nair S. Facile High-Yield Solvothermal Deposition of Inorganic Nanostructures on Zeolite Crystals for Mixed Matrix Membrane Fabrication. J. Am. Chem. Soc. 2009;131:14662–14663. doi: 10.1021/ja907435c. PubMed DOI
Li S., Liu Y., Wong D., Yang J. Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO2 Separation. Polymer. 2021;13:2539. doi: 10.3390/polym13152539. PubMed DOI PMC
Zhang J., Xin Q., Li X., Yun M., Xu R., Wang S., Li Y., Lin L., Ding X., Ye H., et al. Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation. J. Membr. Sci. 2019;570:343–354. doi: 10.1016/j.memsci.2018.10.075. DOI
Zornoza B., Seoane B., Zamaro J.M., Téllez C., Coronas J. Combination of MOFs and Zeolites for Mixed-Matrix Membranes. ChemPhysChem. 2011;12:2781–2785. doi: 10.1002/cphc.201100583. PubMed DOI
Süer M.G., Baç N., Yilmaz L. Gas permeation characteristics of polymer-zeolite mixed matrix membranes. J. Membr. Sci. 1994;91:77–86. doi: 10.1016/0376-7388(94)00018-2. DOI
Li Y., Chung T.S., Huang Z., Kulprathipanja S. Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation. J. Membr. Sci. 2006;277:28–37. doi: 10.1016/j.memsci.2005.10.008. DOI
Pechar T.W., Kim S., Vaughan B., Marand E., Tsapatsis M., Jeong H.K., Cornelius C.J. Fabrication and characterization of polyimide–zeolite L mixed matrix membranes for gas separations. J. Membr. Sci. 2006;277:195–202. doi: 10.1016/j.memsci.2005.10.029. DOI
Zagho M.M., Hassan M.K., Khraisheh M., Al-Maadeed M.A.A., Nazarenko S. A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs) Chem. Eng. J. Adv. 2021;6:100091. doi: 10.1016/j.ceja.2021.100091. DOI
Kim S., Chen L., Johnson J.K., Marand E. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment. J. Membr. Sci. 2007;294:147–158. doi: 10.1016/j.memsci.2007.02.028. DOI
Gomes D., Nunes S., Peinemann K.-V. Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)–silica nanocomposites. J. Membr. Sci. 2005;246:13–25. doi: 10.1016/j.memsci.2004.05.015. DOI
Setiawan W.K., Chiang K.-Y. Silica applied as mixed matrix membrane inorganic filler for gas separation: A review. Sustain. Environ. Res. 2019;29:1–21. doi: 10.1186/s42834-019-0028-1. DOI
Chung T.-S., Chan S.S., Wang R., Lu Z., He C. Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes. J. Membr. Sci. 2003;211:91–99. doi: 10.1016/S0376-7388(02)00385-X. DOI
Lin R., Hernandez B.V., Ge L., Zhu Z. Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces. J. Mater. Chem. A. 2018;6:293–312. doi: 10.1039/C7TA07294E. DOI
Ashtiani S., Khoshnamvand M., Regmi C., Friess K. Interfacial Design of Mixed Matrix Membranes via Grafting PVA on UiO-66-NH2 to Enhance the Gas Separation Performance. Membranes. 2021;11:419. doi: 10.3390/membranes11060419. PubMed DOI PMC
Ghalei B., Sakurai K., Kinoshita Y., Wakimoto K., Isfahani A.P., Song Q., Doitomi K., Furukawa S., Hirao H., Kusuda H., et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat. Energy. 2017;2:17086. doi: 10.1038/nenergy.2017.86. DOI
Boháčová M., Zetková K., Knotek P., Bouša D., Friess K., Číhal P., Lanč M., Hrdlička Z., Sofer Z. Mildly oxidized SWCNT as new potential support membrane material for effective H2/CO2 separation. Appl. Mater. Today. 2019;15:335–342. doi: 10.1016/j.apmt.2019.02.014. DOI
Zeng Y., Liu P., Du J., Zhao L., Ajayan P.M., Cheng H.-M. Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube–polymer interactions. Carbon. 2010;48:3551–3558. doi: 10.1016/j.carbon.2010.05.053. DOI
Skoulidas A.I., Ackerman D.M., Johnson J.K., Sholl D.S. Rapid Transport of Gases in Carbon Nanotubes. Phys. Rev. Lett. 2002;89:185901. doi: 10.1103/PhysRevLett.89.185901. PubMed DOI
Holt J.K. Carbon Nanotubes and Nanofluidic Transport. Adv. Mater. 2009;21:3542–3550. doi: 10.1002/adma.200900867. DOI
Mohd Nurazzi N., Muhammad Asyraf M.R., Khalina A., Abdullah N., Sabaruddin F.A., Kamarudin S.H., Ahmad S., Mahat A.M., Lee C.L., Aisyah H.A., et al. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymer. 2021;13:1047. doi: 10.3390/polym13071047. PubMed DOI PMC
Ismail A.F., Goh P.S., Tee J.C., Sanip S.M., Aziz M. A review of purification techniques for carbon nanotubes. Nano. 2008;3:127–143. doi: 10.1142/S1793292008000927. DOI
Nejad M.N., Asghari M., Afsari M. Investigation of Carbon Nanotubes in Mixed Matrix Membranes for Gas Separation: A Review. ChemBioEng Rev. 2016;3:276–298. doi: 10.1002/cben.201600012. DOI
Choi J.-H., Jegal J., Kim W.-N. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Membr. Sci. 2006;284:406–415. doi: 10.1016/j.memsci.2006.08.013. DOI
Murali R.S., Sridhar S., Sankarshana T., Ravikumar Y.V.L. Gas Permeation Behavior of Pebax-1657 Nanocomposite Membrane Incorporated with Multiwalled Carbon Nanotubes. Ind. Eng. Chem. Res. 2010;49:6530–6538. doi: 10.1021/ie9016495. DOI
Tseng H.-H., Kumar I.A., Weng T.-H., Lu C.-Y., Wey M.-Y. Preparation and characterization of carbon molecular sieve membranes for gas separation—the effect of incorporated multi-wall carbon nanotubes. Desalination. 2009;240:40–45. doi: 10.1016/j.desal.2008.01.048. DOI
Hu Q., Marand E., Dhingra S., Fritsch D., Wen J., Wilkes G. Poly(amide-imide)/TiO2 nano-composite gas separation membranes: Fabrication and characterization. J. Membr. Sci. 1997;135:65–79. doi: 10.1016/S0376-7388(97)00120-8. DOI
Chowdhury S., Parshetti G.K., Balasubramanian R. Post-combustion CO2 capture using mesoporous TiO2/graphene oxide nanocomposites. Chem. Eng. J. 2015;263:374–384. doi: 10.1016/j.cej.2014.11.037. DOI
Matteucci S., Kusuma V., Sanders D., Swinnea S., Freeman B.D. Gas transport in TiO2 nanoparticle-filled poly(1-trimethylsilyl-1-propyne) J. Membr. Sci. 2008;307:196–217. doi: 10.1016/j.memsci.2007.09.035. DOI
Moghadam F., Omidkhah M., Vasheghani-Farahani E., Pedram M.Z., Dorosti F. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Sep. Purif. Technol. 2011;77:128–136. doi: 10.1016/j.seppur.2010.11.032. DOI
Liang C.Y., Uchytil P., Petrychkovych R., Lai Y.C., Friess K., Sipek M., Suen S.Y. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Sep. Purif. Technol. 2012;92:57–63. doi: 10.1016/j.seppur.2012.03.016. DOI
Imai H., Takei Y., Shimizu K., Matsuda M., Hirashima H. Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 1999;9:2971–2972. doi: 10.1039/a906005g. DOI
Jun Y., Zarrin H., Fowler M., Chen Z. Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy. 2011;36:6073–6081. doi: 10.1016/j.ijhydene.2011.02.030. DOI
Wu C.-H., Kuo C.-Y., Chen S.-T. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation. Environ. Technol. 2013;34:2513–2519. doi: 10.1080/09593330.2013.774058. PubMed DOI
Scholes C.A., Chen G.Q., Tao W.X., Bacus J., Anderson C., Stevens G.W., Kentish S.E. The effects of minor components on the gas separation performance of membranes for carbon capture. Energy Procedia. 2011;4:681–687. doi: 10.1016/j.egypro.2011.01.105. DOI
Raza A., Farrukh S., Hussain A., Khan I.U., Noor T., Othman MH D., Yousaf M.F. Development of high performance amine functionalized zeolitic imidazolate framework (ZIF-8)/cellulose triacetate mixed matrix membranes for CO2/CH4 separation. Int. J. Energy Res. 2020;44:7989–7999. doi: 10.1002/er.5448. DOI
Puleo A., Paul D., Kelley S. The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate. J. Membr. Sci. 1989;47:301–332. doi: 10.1016/S0376-7388(00)83083-5. DOI
Lam B., Wei M., Zhu L., Luo S., Guo R., Morisato A., Alexandridis P., Lin H. Cellulose triacetate doped with ionic liquids for membrane gas separation. Polymer. 2016;89:1–11. doi: 10.1016/j.polymer.2016.02.033. DOI
Lin H., White L.S., Lokhandwala K., Baker R.W. Encyclopedia of Membrane Science and Technology. Wiley; Hoboken, NJ, USA: 2013. Natural Gas Purification; pp. 1–25.
Liu Y., Liu Z., Morisato A., Bhuwania N., Chinn D., Koros W.J. Natural gas sweetening using a cellulose triacetate hollow fiber membrane illustrating controlled plasticization benefits. J. Membr. Sci. 2020;601:117910. doi: 10.1016/j.memsci.2020.117910. DOI
Lu H.T., Kanehashi S., Scholes C., Kentish S. The potential for use of cellulose triacetate membranes in post combustion capture. Int. J. Greenh. Gas Control. 2016;55:97–104. doi: 10.1016/j.ijggc.2016.11.002. DOI
Galve A., Sieffert D., Staudt C., Ferrando M., Güell C., Téllez C., Coronas J. Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes. J. Membr. Sci. 2013;431:163–170. doi: 10.1016/j.memsci.2012.12.046. DOI
Valero M., Zornoza B., Téllez C., Coronas J. Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers. Microporous Mesoporous Mater. 2014;192:23–28. doi: 10.1016/j.micromeso.2013.09.018. DOI
Shaban M., Ashraf A.M., AbdAllah H., El-Salam H.A. Titanium dioxide nanoribbons/multi-walled carbon nanotube nanocomposite blended polyethersulfone membrane for brackish water desalination. Desalination. 2018;444:129–141. doi: 10.1016/j.desal.2018.07.006. DOI
Feng J., Xiong S., Wang Y. Atomic layer deposition of TiO2 on carbon-nanotube membranes for enhanced capacitive deionization. Sep. Purif. Technol. 2019;213:70–77. doi: 10.1016/j.seppur.2018.12.026. DOI
Veréb G., Kassai P., Santos E.N., Arthanareeswaran G., Hodúr C., László Z. Intensification of the ultrafiltration of real oil-contaminated (produced) water with pre-ozonation and/or with TiO2, TiO2/CNT nanomaterial-coated membrane surfaces. Environ. Sci. Pollut. Res. 2020;27:22195–22205. doi: 10.1007/s11356-020-08047-1. PubMed DOI PMC
Gyawali G., Son J., Hao N.H., Cho S.H., Lee S.W., Kim T.-H. Synthesis of TiO2 nanotubes using different alkaline media and their applications in photocatalysis and DSSCs. Res. Chem. Intermed. 2017;43:5055–5065. doi: 10.1007/s11164-017-3039-8. DOI
Ashtiani S., Sofer Z., Průša F., Friess K. Molecular-level fabrication of highly selective composite ZIF-8-CNT-PDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations. Sep. Purif. Technol. 2021;274:119003. doi: 10.1016/j.seppur.2021.119003. DOI
Ashtiani S., Khoshnamvand M., Shaliutina-Kolešová A., Bouša D., Sofer Z., Friess K. Co0.5Ni0.5FeCrO4 spinel nanoparticles decorated with UiO-66-based metal-organic frameworks grafted onto GO and O-SWCNT for gas adsorption and water purification. Chemosphere. 2020;255:126966. doi: 10.1016/j.chemosphere.2020.126966. PubMed DOI
Regmi C., Ashtiani S., Sofer Z., Friess K. Improved CO2/CH4 separation properties of cellulose triacetate mixed–matrix membranes with CeO2@GO hybrid fillers. Membranes. 2021;11:777. doi: 10.3390/membranes11100777. PubMed DOI PMC
Friess K., Hynek V., Šípek M., Kujawski W.M., Vopička O., Zgažar M., Kujawski M.W. Permeation and sorption properties of poly(ether-block-amide) membranes filled by two types of zeolites. Sep. Purif. Technol. 2011;80:418–427. doi: 10.1016/j.seppur.2011.04.012. DOI
Vopička O., Friess K., Hynek V., Sysel P., Zgažar M., Šípek M., Budd P.M. Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1. J. Membr. Sci. 2013;434:148–160. doi: 10.1016/j.memsci.2013.01.040. DOI
Jansen J.C., Friess K., Drioli E. Organic vapour transport in glassy perfluoropolymer membranes: A simple semi-quantitative approach to analyze clustering phenomena by time lag measurements. J. Membr. Sci. 2011;367:141–151. doi: 10.1016/j.memsci.2010.10.063. DOI
Friess K., Jansen J.C., Bazzarelli F., Izák P., Jarmarová V., Kačírková M., Bernardo P. High ionic liquid content polymeric gel membranes: Correlation of membrane structure with gas and vapour transport properties. J. Membr. Sci. 2012;415:801–809. doi: 10.1016/j.memsci.2012.05.072. DOI
Xia Y., Xiong W.-S., Jiang Y., Sun W., Sang H.-Q., He R.-X., Tai Q., Chen B., Liu Y., Zhao X.-Z. Multi-walled carbon nanotubes induced a controllable TiO2 morphology transformation for high-rate and long-life lithium-ion batteries. RSC Adv. 2017;7:21988–21996. doi: 10.1039/C7RA02190A. DOI
Abbas N., Shao G.N., Haider M.S., Imran S.M., Park S.S., Jeon S.J., Kim H.T. Inexpensive sol-gel synthesis of multiwalled carbon nanotube-TiO2 hybrids for high performance antibacterial materials. Mater. Sci. Eng. C. 2016;68:780–788. doi: 10.1016/j.msec.2016.07.036. PubMed DOI
Qin Q., Shi Q., Sun W., Wan J., Hu Z. Fabrication and interfacial electron transfer of ultrathin g-C3N4 nanosheet/TNT@CNTs ternary nanostructure heterojunction for high-efficiency visible-light-driven photocatalysis. J. Mater. Sci. Mater. Electron. 2018;29:8673–8687. doi: 10.1007/s10854-018-8883-9. DOI
Nabili A., Fattoum A., Brochier-Salon M.-C., Bras J., Elaloui E. Synthesis of cellulose triacetate-I from microfibrillated date seeds cellulose (Phoenix dactylifera L.) Iran. Polym. J. 2017;26:137–147. doi: 10.1007/s13726-017-0505-5. DOI
Zhuang G.-L., Tseng H.-H., Wey M.-Y. Preparation of PPO-silica mixed matrix membranes by in-situ sol–gel method for H2/CO2 separation. Int. J. Hydrogen Energy. 2014;39:17178–17190. doi: 10.1016/j.ijhydene.2014.08.050. DOI
Alsharaeh E.H., Bora T., Soliman A., Ahmed F., Bharath G., Ghoniem M.G., Abu-Salah K.M., Dutta J. Sol-Gel-Assisted Microwave-Derived Synthesis of Anatase Ag/TiO2/GO Nanohybrids toward Efficient Visible Light Phenol Degradation. Catalysts. 2017;7:133. doi: 10.3390/catal7050133. DOI
Szabo L., Čík G., Lesný J. Thermal stability increase of doped poly (3-hexadecylthiophene) by γ-radiation. Synth. Met. 1996;78:149–153. doi: 10.1016/0379-6779(96)80116-0. DOI
Venna S.R., Lartey M., Li T., Spore A., Kumar S., Nulwala H.B., Luebke D.R., Rosi N.L., Albenze E. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. J. Mater. Chem. A. 2015;3:5014–5022. doi: 10.1039/C4TA05225K. DOI
Regmi C., Ashtiani S., Sofer Z., Hrdlička Z., Průša F., Vopička O., Friess K. CeO2-blended cellulose triacetate mixed-matrix membranes for selective CO2 separation. Membranes. 2021;11:632. doi: 10.3390/membranes11080632. PubMed DOI PMC
Chae D.W., Nam Y.W., Wang S.S., Hong S.M. Structures and physical properties of multi-walled carbon nanotube-filled PVDF ihermoplastic composites. Solid State Phenom. 2007;464:195–777.
Shin J.E., Lee S.K., Cho Y.H., Park H.B. Effect of PEG-MEA and graphene oxide additives on the performance of Pebax®1657 mixed matrix membranes for CO2 separation. J. Membr. Sci. 2019;572:300–308. doi: 10.1016/j.memsci.2018.11.025. DOI
Yave W., Car A., Funari S.S., Nunes S., Peinemann K.-V. CO2-Philic Polymer Membrane with Extremely High Separation Performance. Macromolecules. 2010;43:326–333. doi: 10.1021/ma901950u. DOI
Alentiev A., Drioli E., Gokzhaev M., Golemme G., Ilinich O., Lapkin A., Volkov V., Yampolskii Y. Gas permeation properties of phenylene oxide polymers. J. Membr. Sci. 1998;138:99–107. doi: 10.1016/S0376-7388(97)00219-6. DOI
Sawada H., Takahashi Y., Miyata S., Kanehashi S., Sato S., Nagai K. Gas Transport Properties and Crystalline Structures of Poly(lactic acid) Membranes. Trans. Mater. Res. Soc. Jpn. 2010;35:241–246. doi: 10.14723/tmrsj.35.241. DOI
Van Goethem C., Mulunda M.M., Verbeke R., Koschine T., Wübbenhorst M., Zhang Z., Nies E., Dickmann M., Egger W., Vankelecom I.F.J., et al. Increasing Membrane Permeability by Increasing the Polymer Crystallinity: The Unique Case of Polythiophenes. Macromolecules. 2018;51:9943–9950. doi: 10.1021/acs.macromol.8b01635. DOI
Gracia-Fernández C.A., Gómez-Barreiro S., López-Beceiro J., Saavedra J.T., Naya S., Artiaga R. Comparative study of the dynamic glass transition temperature by DMA and TMDSC. Polym. Test. 2010;29:1002–1006. doi: 10.1016/j.polymertesting.2010.09.005. DOI
Keusch S., Haessler R. Influence of surface treatment of glass fibres on the dynamic mechanical properties of epoxy resin composites. Compos. Part A Appl. Sci. Manuf. 1999;30:997–1002. doi: 10.1016/S1359-835X(99)00007-X. DOI
Basu S., Cano-Odena A., Vankelecom I.F.J. MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep. Purif. Technol. 2011;81:31–40. doi: 10.1016/j.seppur.2011.06.037. DOI
Tol R.T., Groeninckx G., Vinckier I., Moldenaers P., Mewis J. Phase morphology and stability of co-continuous (PPE/PS)/PA6 and PS/PA6 blends: Effect of rheology and reactive compatibilization. Polymer. 2004;45:2587–2601. doi: 10.1016/j.polymer.2003.12.072. DOI
Fauzan N.A.B., Mukhtar H., Nasir R., Mohshim D.F.B., Arasu N., Man Z., Mannan H.A. Composite amine mixed matrix membranes for high-pressure CO2-CH4 separation: Synthesis, characterization and performance evaluation. R. Soc. Open Sci. 2020;7:200795. doi: 10.1098/rsos.200795. PubMed DOI PMC
Flyagina I.S., Mahdi E.M., Titov K., Tan J.-C. Thermo-mechanical properties of mixed-matrix membranes encompassing zeolitic imidazolate framework-90 and polyvinylidine difluoride: ZIF-90/PVDF nanocomposites. APL Mater. 2017;5:086104. doi: 10.1063/1.4986565. DOI
Aframehr W.M., Molki B., Bagheri R., Heidarian P., Davodi S.M. Characterization and enhancement of the gas separation properties of mixed matrix membranes: Polyimide with nickel oxide nanoparticles. Chem. Eng. Res. Des. 2020;153:789–805. doi: 10.1016/j.cherd.2019.11.006. DOI
Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI
Chen H., Sholl D.S. Predictions of selectivity and flux for CH4/H2 separations using single walled carbon nanotubes as membranes. J. Membr. Sci. 2006;269:152–160. doi: 10.1016/j.memsci.2005.06.030. DOI
Magueijo V., Anderson L., Fletcher A., Shilton S. Polysulfone mixed matrix gas separation hollow fibre membranes filled with polymer and carbon xerogels. Chem. Eng. Sci. 2013;92:13–20. doi: 10.1016/j.ces.2013.01.043. DOI
Chung T.-S., Jiang L.Y., Li Y., Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007;32:483–507. doi: 10.1016/j.progpolymsci.2007.01.008. DOI
Nikolaeva D., Azcune I., Tanczyk M., Warmuzinski K., Jaschik M., Sandru M., Vankelecom I.F. The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation. J. Membr. Sci. 2018;564:552–561. doi: 10.1016/j.memsci.2018.07.057. DOI
Číhal P., Vopička O., Lanč M., Kludský M., Velas J., Hrdlička Z., Michalcová A., Dendisová M., Friess K. Poly(butylene succinate)-cellulose triacetate blends: Permeation, pervaporation, sorption and physical structure. Polym. Test. 2018;65:468–479. doi: 10.1016/j.polymertesting.2017.12.026. DOI
Raza A., Japip S., Liang C.Z., Farrukh S., Hussain A., Chung T.-S. Novel Cellulose Triacetate (CTA)/Cellulose Diacetate (CDA) Blend Membranes Enhanced by Amine Functionalized ZIF-8 for CO2 Separation. Polymer. 2021;13:2946. doi: 10.3390/polym13172946. PubMed DOI PMC
Raza A., Farrukh S., Hussain A., Khan I., Othman M., Ahsan M. Performance Analysis of Blended Membranes of Cellulose Acetate with Variable Degree of Acetylation for CO2/CH4 Separation. Membrances. 2021;11:245. doi: 10.3390/membranes11040245. PubMed DOI PMC
Soleimany A., Karimi-Sabet J., Hosseini S.S. Experimental and modeling investigations towards tailoring cellulose triacetate membranes for high performance helium separation. Chem. Eng. Res. Des. 2018;137:194–212. doi: 10.1016/j.cherd.2018.07.011. DOI
Sanaeepur H., Kargari A., Nasernejad B. Aminosilane-functionalization of a nanoporous Y-type zeolite for application in a cellulose acetate based mixed matrix membrane for CO2 separation. RSC Adv. 2014;4:63966–63976. doi: 10.1039/C4RA08783F. DOI