Interfacial Design of Mixed Matrix Membranes via Grafting PVA on UiO-66-NH2 to Enhance the Gas Separation Performance

. 2021 May 31 ; 11 (6) : . [epub] 20210531

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34072897

Grantová podpora
21-SVV/2020 and 2021 Czech Ministry of Education, Youth, and sports, MŠMT
Grant No. 1914547S Czech Science Foundation

In this study, defect-free facilitated transport mixed matrix membrane (MMM) with high loading amount of UiO-66-NH2 nanoparticles as metal-organic frameworks (MOFs) was fabricated. The MOFs were covalently bonded with poly (vinyl alcohol) (PVA) to incorporate into a poly (vinyl amine) (PVAm) matrix solution. A uniform UiO-66-NH2 dispersion up to 55 wt.% was observed without precipitation and agglomeration after one month. This can be attributed to the high covalent interaction at interfaces of UiO-66-NH2 and PVAm, which was provided by PVA as a functionalized organic linker. The CO2 permeability and CO2/N2 and selectivity were significantly enhanced for the fabricated MMM by using optimal fabrication parameters. This improvement in gas performance is due to the strong impact of solubility and decreasing diffusion in obtained dense membrane to promote CO2 transport with a bicarbonate reversible reaction. Therefore, the highest amount of amine functional groups of PVAm among all polymers, plus the abundant amount of amines from UiO-66-NH2, facilitated the preferential CO2 permeation through the bicarbonate reversible reaction between CO2 and -NH2 in humidified conditions. XRD and FTIR were employed to study the MMM chemical structure and polymers-MOF particle interactions. Cross-sectional and surface morphology of the MMM was observed by SEM-EDX and 3D optical profilometer to detect the dispersion of MOFs into the polymer matrix and explore their interfacial morphology. This approach can be extended for a variety of polymer-filler interfacial designs for gas separation applications.

Zobrazit více v PubMed

Mason C.R., Maynard-Atem L., Heard K.W.J., Satilmis B., Budd P.M., Friess K., Lanč M., Bernardo P., Clarizia G., Jansen J.C. Enhancement of CO2Affinity in a Polymer of Intrinsic Microporosity by Amine Modification. Macromolecules. 2014;47:1021–1029. doi: 10.1021/ma401869p. PubMed DOI PMC

Wade C.R., Dincă M. Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal–organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru) Dalton Trans. 2012;41:7931–7938. doi: 10.1039/c2dt30372h. PubMed DOI

Agrawal R., Rowles H.C., Kinard G.E. Cryogenics. Wiley; Hoboken, NJ, USA: 2000.

Liu S., Shao L., Chua M.L., Lau C.H., Wang H., Quan S. Recent progress in the design of advanced PEO-containing membranes for CO2 removal. Prog. Polym. Sci. 2013;38:1089–1120. doi: 10.1016/j.progpolymsci.2013.02.002. DOI

Barelli L., Bidini G., Gallorini F., Servili S. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review. Energy. 2008;33:554–570. doi: 10.1016/j.energy.2007.10.018. DOI

Vinoba M., Bhagiyalakshmi M., Alqaheem Y., Alomair A.A., Pérez A., Rana M.S. Recent progress of fillers in mixed matrix membranes for CO 2 separation: A review. Sep. Purif. Technol. 2017;188:431–450. doi: 10.1016/j.seppur.2017.07.051. DOI

Bushell A.F., Attfield M.P., Mason C.R., Budd P.M., Yampolskii Y., Starannikova L., Rebrov A., Bazzarelli F., Bernardo P., Jansen J.C., et al. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci. 2013;427:48–62. doi: 10.1016/j.memsci.2012.09.035. DOI

Boháčová M., Zetková K., Knotek P., Bouša D., Friess K., Číhal P., Lanč M., Hrdlička Z., Sofer Z. Mildly oxidized SWCNT as new potential support membrane material for effective H2/CO2 separation. Appl. Mater. Today. 2019;15:335–342. doi: 10.1016/j.apmt.2019.02.014. DOI

Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI

Galizia M., Chi W.S., Smith Z.P., Merkel T.C., Baker R.W., Freeman B.D. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules. 2017;50:7809–7843. doi: 10.1021/acs.macromol.7b01718. DOI

Sysel P., Minko E., Hauf M., Friess K., Hynek V., Vopička O., Pilnáček K., Šípek M. Mixed matrix membranes based on hyperbranched polyimide and mesoporous silica for gas separation. Desalin. Water Treat. 2011;34:211–215. doi: 10.5004/dwt.2011.2859. DOI

Ashtiani S., Khoshnamvand M., Shaliutina-Kolešová A., Bouša D., Sofer Z., Friess K. Co0·5Ni0·5FeCrO4 spinel nanoparticles decorated with UiO-66-based metal-organic frameworks grafted onto GO and O-SWCNT for gas adsorption and water purification. Chemosphere. 2020;255:126966. doi: 10.1016/j.chemosphere.2020.126966. PubMed DOI

Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013;341:1230444. doi: 10.1126/science.1230444. PubMed DOI

Wu C., Zhang K., Wang H., Fan Y., Zhang S., He S., Wang F., Tao Y., Zhao X., Zhang Y.-B., et al. Enhancing the Gas Separation Selectivity of Mixed-Matrix Membranes Using a Dual-Interfacial Engineering Approach. J. Am. Chem. Soc. 2020;142:18503–18512. doi: 10.1021/jacs.0c07378. PubMed DOI

Hossain I., Husna A., Chaemchuen S., Verpoort F., Kim T.-H. Cross-Linked Mixed-Matrix Membranes Using Functionalized UiO-66-NH2 into PEG/PPG–PDMS-Based Rubbery Polymer for Efficient CO2 Separation. ACS Appl. Mater. Interfaces. 2020;12:57916–57931. doi: 10.1021/acsami.0c18415. PubMed DOI

Kwon H.T., Jeong H.-K. In Situ Synthesis of Thin Zeolitic–Imidazolate Framework ZIF-8 Membranes Exhibiting Exceptionally High Propylene/Propane Separation. J. Am. Chem. Soc. 2013;135:10763–10768. doi: 10.1021/ja403849c. PubMed DOI

McDonald K.A., Feldblyum J.I., Koh K., Wong-Foy A.G., Matzger A.J. Polymer@MOF@MOF: “grafting from” atom transfer radical polymerization for the synthesis of hybrid porous solids. Chem. Commun. 2015;51:11994–11996. doi: 10.1039/C5CC03027G. PubMed DOI

Ashtiani S., Khoshnamvand M., Bouša D., Šturala J., Sofer Z., Shaliutina-Kolešová A., Gardenö D., Friess K. Surface and interface engineering in CO2-philic based UiO-66-NH2-PEI mixed matrix membranes via covalently bridging PVP for effective hydrogen purification. Int. J. Hydrogen Energy. 2021;46:5449–5458. doi: 10.1016/j.ijhydene.2020.11.081. DOI

Wu H., Li X., Li Y., Wang S., Guo R., Jiang Z., Wu C., Xin Q., Lu X. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. J. Membr. Sci. 2014;465:78–90. doi: 10.1016/j.memsci.2014.04.023. DOI

Mansur H.S., Sadahira C.M., Souza A.N., Mansur A.A. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C. 2008;28:539–548. doi: 10.1016/j.msec.2007.10.088. DOI

Andrade G.I., Barbosa-Stancioli E.F., Mansur A.A.P., Vasconcelos W.L., Mansur H.S. Small-angle X-ray scattering and FTIR characterization of nanostructured poly (vinyl alcohol)/silicate hybrids for immunoassay applications. J. Mater. Sci. 2008;43:450–463. doi: 10.1007/s10853-007-1953-7. DOI

Deng L., Kim T.-J., Hägg M.-B. Facilitated transport of CO2 in novel PVAm/PVA blend membrane. J. Membr. Sci. 2009;340:154–163. doi: 10.1016/j.memsci.2009.05.019. DOI

Pinnau I., Koros W.J. A qualitative skin layer formation mechanism for membranes made by dry/wet phase inversion. J. Polym. Sci. Part B Polym. Phys. 1993;31:419–427. doi: 10.1002/polb.1993.090310406. DOI

Ashtiani S., Khoshnamvand M., Číhal P., Dendisová M., Randová A., Bouša D., Shaliutina-Kolešová A., Sofer Z., Friess K. Fabrication of a PVDF membrane with tailored morphology and properties via exploring and computing its ternary phase diagram for wastewater treatment and gas separation applications. RSC Adv. 2020;10:40373–40383. doi: 10.1039/D0RA07592B. PubMed DOI PMC

Qian Q., Wu A.X., Chi W.S., Asinger P.A., Lin S., Hypsher A., Smith Z.P. Mixed-Matrix Membranes Formed from Imide-Functionalized UiO-66-NH2 for Improved Interfacial Compatibility. ACS Appl. Mater. Interfaces. 2019;11:31257–31269. doi: 10.1021/acsami.9b07500. PubMed DOI PMC

Han Y., Ho W.W. Recent advances in polymeric membranes for CO2 capture. Chin. J. Chem. Eng. 2018;26:2238–2254. doi: 10.1016/j.cjche.2018.07.010. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...