Fabrication of a PVDF membrane with tailored morphology and properties via exploring and computing its ternary phase diagram for wastewater treatment and gas separation applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35520860
PubMed Central
PMC9057459
DOI
10.1039/d0ra07592b
PII: d0ra07592b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We report a simple approach for tailoring the morphology of poly(vinylidene fluoride) (PVDF) membranes fabricated using a nonsolvent induced phase separation (NIPS) method that sustains both the hydrophilic and hydrophobic properties. Various membrane structures, i.e. skin layers and whole membrane structures as well, were obtained via an experimental method based on the obtained and computed ternary phase diagram. The nonsolvent interactions with polymer solution resulted in the different forms and properties of a surface layer of fabricated membranes that affected the overall transport of solvent and nonsolvent molecules inside and outside the bulk of the fabricated membranes. The resulting morphology and properties were confirmed using the 3D optical profiler, SEM, FT-IR and XRD methods. The effect of binary interaction parameters on the morphology of the fabricated membranes and on their separation performance was tested using water/oil mixture and gas separation. Both hydrophobic and hydrophilic properties of PVDF showed the excellent durable separation performance of the prepared membranes with 92% of oil separation and the maximum flux of 395 L h-1 m-2 along with 120 min of long-term stability. CO2 separation from H2, N2, CH4 and SF6 gases was performed to further support the effect of tuned PVDF membranes with different micro/nanostructured morphologies. The gas performance demonstrated ultrahigh permeability and a several-fold greater than the Knudsen separation factor. The results demonstrate a facile and inexpensive approach can be successfully applied for the tailoring of the PVDF membranes to predict and design the resulting membrane structure.
Zobrazit více v PubMed
Liu F. Hashim N. A. Liu Y. Abed M. R. M. Li K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011;375(1):1–27. doi: 10.1016/j.memsci.2011.03.014. DOI
Kang G.-d. Cao Y.-m. Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review. J. Membr. Sci. 2014;463:145–165. doi: 10.1016/j.memsci.2014.03.055. DOI
Wang X. Wang X. Zhang L. An Q. Chen H. Morphology and Formation Mechanism of Poly(Vinylidene Fluoride) Membranes Prepared with Immerse Precipitation: Effect of Dissolving Temperature. J. Macromol. Sci., Part B: Phys. 2009;48(4):696–709. doi: 10.1080/00222340902958950. DOI
Yuan H. Ren J. Preparation of poly(vinylidene fluoride) (PVDF)/acetalyzed poly(vinyl alcohol) ultrafiltration membrane with the enhanced hydrophilicity and the anti-fouling property. Chem. Eng. Res. Des. 2017;121:348–359. doi: 10.1016/j.cherd.2017.03.023. DOI
Meringolo C. Mastropietro T. F. Poerio T. Fontananova E. De Filpo G. Curcio E. Di Profio G. Tailoring PVDF Membranes Surface Topography and Hydrophobicity by a Sustainable Two-Steps Phase Separation Process. ACS Sustainable Chem. Eng. 2018;6(8):10069–10077. doi: 10.1021/acssuschemeng.8b01407. DOI
Zhang P.-Y. Yang H. Xu Z.-L. Preparation of Polyvinylidene Fluoride (PVDF) Membranes via Nonsolvent Induced Phase Separation Process using a Tween 80 and H2O Mixture as an Additive. Ind. Eng. Chem. Res. 2012;51(11):4388–4396. doi: 10.1021/ie201806v. DOI
Guillen G. R. Pan Y. Li M. Hoek E. M. V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011;50(7):3798–3817. doi: 10.1021/ie101928r. DOI
Jung J. T. Kim J. F. Wang H. H. di Nicolo E. Drioli E. Lee Y. M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS) J. Membr. Sci. 2016;514:250–263. doi: 10.1016/j.memsci.2016.04.069. DOI
Yeow M. L. Liu Y. T. Li K. Morphological study of poly(vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature. J. Appl. Polym. Sci. 2004;92(3):1782–1789. doi: 10.1002/app.20141. DOI
Lloyd D. R. Kinzer K. E. Tseng H. S. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J. Membr. Sci. 1990;52(3):239–261. doi: 10.1016/S0376-7388(00)85130-3. DOI
Ray R. J. Krantz W. B. Sani R. L. Linear stability theory model for finger formation in asymmetric membranes. J. Membr. Sci. 1985;23(2):155–182. doi: 10.1016/S0376-7388(00)82216-4. DOI
Tree D. R. Dos Santos L. F. Wilson C. B. Scott T. R. Garcia J. U. Fredrickson G. H. Mass-transfer driven spinodal decomposition in a ternary polymer solution. Soft Matter. 2019;15(23):4614–4628. doi: 10.1039/C9SM00355J. PubMed DOI
Wang L.-Y. Yong W. F. Yu L. E. Chung T.-S. Design of high efficiency PVDF-PEG hollow fibers for air filtration of ultrafine particles. J. Membr. Sci. 2017;535:342–349. doi: 10.1016/j.memsci.2017.04.053. DOI
Lin D.-J. Beltsios K. Young T.-H. Jeng Y.-S. Cheng L.-P. Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes. J. Membr. Sci. 2006;274(1):64–72. doi: 10.1016/j.memsci.2005.07.043. DOI
Lin D.-J. Chang H.-H. Chen T.-C. Lee Y.-C. Cheng L.-P. Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system. Eur. Polym. J. 2006;42(7):1581–1594. doi: 10.1016/j.eurpolymj.2006.01.027. DOI
Liu F. Tao M.-m. Xue L.-x. PVDF membranes with inter-connected pores prepared via a Nat-ips process. Desalination. 2012;298:99–105. doi: 10.1016/j.desal.2012.05.016. DOI
Kuo C.-Y. Lin H.-N. Tsai H.-A. Wang D.-M. Lai J.-Y. Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination. 2008;233(1):40–47. doi: 10.1016/j.desal.2007.09.025. DOI
Pagliero M. Bottino A. Comite A. Costa C. Novel hydrophobic PVDF membranes prepared by nonsolvent induced phase separation for membrane distillation. J. Membr. Sci. 2020;596:117575. doi: 10.1016/j.memsci.2019.117575. DOI
Wu T. Zhou B. Zhu T. Shi J. Xu Z. Hu C. Wang J. Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv. 2015;5(11):7880–7889. doi: 10.1039/C4RA13476A. DOI
Keshavarz L. Khansary M. A. Shirazian S. Phase diagram of ternary polymeric solutions containing nonsolvent/solvent/polymer: theoretical calculation and experimental validation. Polymer. 2015;73:1–8. doi: 10.1016/j.polymer.2015.07.027. DOI
Idris A. Man Z. Maulud S. A. Khan M. S. Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes. Membranes. 2017;7:21. doi: 10.3390/membranes7020021. PubMed DOI PMC
Barzin J. Sadatnia B. Theoretical phase diagram calculation and membrane morphology evaluation for water/solvent/polyethersulfone systems. Polymer. 2007;48(6):1620–1631. doi: 10.1016/j.polymer.2007.01.049. DOI
Xu L. Qiu F. Simultaneous determination of three Flory–Huggins interaction parameters in polymer/solvent/nonsolvent systems by viscosity and cloud point measurements. Polymer. 2014;55(26):6795–6802. doi: 10.1016/j.polymer.2014.10.045. DOI
Tang Y.-h. Ledieu E. Cervellere M. R. Millett P. C. Ford D. M. Qian X. Formation of polyethersulfone membranes via nonsolvent induced phase separation process from dissipative particle dynamics simulations. J. Membr. Sci. 2020;599:117826. doi: 10.1016/j.memsci.2020.117826. DOI
Lai J.-Y. Lin S.-F. Lin F.-C. Wang D.-M. Construction of ternary phase diagrams in nonsolvent/solvent/PMMA systems. J. Polym. Sci., Part B: Polym. Phys. 1998;36(4):607–615. doi: 10.1002/(SICI)1099-0488(199803)36:4<607::AID-POLB7>3.0.CO;2-L. DOI
Barzin J. Sadatnia B. Correlation between macrovoid formation and the ternary phase diagram for polyethersulfone membranes prepared from two nearly similar solvents. J. Membr. Sci. 2008;325(1):92–97. doi: 10.1016/j.memsci.2008.07.003. DOI
Tompa H., Polymer solutions, 1956
Altena F. W. Smolders C. A. Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent. Macromolecules. 1982;15(6):1491–1497. doi: 10.1021/ma00234a008. DOI
Yilmaz L. McHugh A. J. Analysis of nonsolvent–solvent–polymer phase diagrams and their relevance to membrane formation modeling. J. Appl. Polym. Sci. 1986;31(4):997–1018. doi: 10.1002/app.1986.070310404. DOI
Wei Y.-M. Xu Z.-L. Yang X.-T. Liu H.-L. Mathematical calculation of binodal curves of a polymer/solvent/nonsolvent system in the phase inversion process. Desalination. 2006;192(1):91–104. doi: 10.1016/j.desal.2005.07.035. DOI
Fashandi H. Yegane A. Abolhasani M. M. Interplay of liquid-liquid and solid-liquid phase separation mechanisms in porosity and polymorphism evolution within poly(vinylidene fluoride) nanofibers. Fibers Polym. 2015;16(2):326–344. doi: 10.1007/s12221-015-0326-0. DOI
Tree D. R. Delaney K. T. Ceniceros H. D. Iwama T. Fredrickson G. H. A multi-fluid model for microstructure formation in polymer membranes. Soft Matter. 2017;13(16):3013–3030. doi: 10.1039/C6SM02839J. PubMed DOI
Jeong H.-S. Noh J. H. Hwang C.-G. Kim S. H. Lee S.-Y. Effect of Solvent–Nonsolvent Miscibility on Morphology and Electrochemical Performance of SiO2/PVdF-HFP-Based Composite Separator Membranes for Safer Lithium-Ion Batteries. Macromol. Chem. Phys. 2010;211(4):420–425. doi: 10.1002/macp.200900490. DOI
Figoli A. Marino T. Simone S. Di Nicolò E. Li X. M. He T. Tornaghi S. Drioli E. Towards non-toxic solvents for membrane preparation: a review. Green Chem. 2014;16(9):4034–4059. doi: 10.1039/C4GC00613E. DOI
Rezabeigi E. Wood-Adams P. M. Drew R. A. L. Crystallization of polylactic acid under in situ deformation during nonsolvent-induced phase separation. J. Polym. Sci., Part B: Polym. Phys. 2017;55(14):1055–1062. doi: 10.1002/polb.24350. DOI
Pinnau I. Koros W. J. A qualitative skin layer formation mechanism for membranes made by dry/wet phase inversion. J. Polym. Sci., Part B: Polym. Phys. 1993;31(4):419–427. doi: 10.1002/polb.1993.090310406. DOI
Li H. Shi W. Zhang Y. Zhou R. Zhang H. Preparation of hydrophilic PVDF/PPTA blend membranes by in situ polycondensation and its application in the treatment of landfill leachate. Appl. Surf. Sci. 2015;346:134–146. doi: 10.1016/j.apsusc.2015.04.027. DOI
Strathmann H. Kock K. The formation mechanism of phase inversion membranes. Desalination. 1977;21(3):241–255. doi: 10.1016/S0011-9164(00)88244-2. DOI
Huang T. Song J. Xing L. Li X. He T. Impact of the ethylene content on poly(ethylene-co-vinyl alcohol) membrane morphology and performance via immersion precipitation for lithium extraction. J. Membr. Sci. 2019;579:172–179. doi: 10.1016/j.memsci.2019.03.001. DOI
Young T.-H. Chen L.-W. Pore formation mechanism of membranes from phase inversion process. Desalination. 1995;103(3):233–247. doi: 10.1016/0011-9164(95)00076-3. DOI
Cai X. Lei T. Sun D. Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7(25):15382–15389. doi: 10.1039/C7RA01267E. DOI
Salimi A. Yousefi A. A. Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 2003;22(6):699–704. doi: 10.1016/S0142-9418(03)00003-5. DOI
Mohamed M. A., Jaafar J., Ismail A. F., Othman M. H. D. and Rahman M. A., Chapter 1 - Fourier Transform Infrared (FTIR) Spectroscopy, in Membrane Characterization, ed. N. Hilal, A. F. Ismail, T. Matsuura and D. Oatley-Radcliffe, Elsevier, 2017, pp. 3–29
Cao X. Ma J. Shi X. Ren Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci. 2006;253(4):2003–2010. doi: 10.1016/j.apsusc.2006.03.090. DOI
Feng L. Zhang Z. Mai Z. Ma Y. Liu B. Jiang L. Zhu D. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water. Angew. Chem., Int. Ed. 2004;43(15):2012–2014. doi: 10.1002/anie.200353381. PubMed DOI
Zhang W. Shi Z. Zhang F. Liu X. Jin J. Jiang L. Superhydrophobic and Superoleophilic PVDF Membranes for Effective Separation of Water-in-Oil Emulsions with High Flux. Adv. Mater. 2013;25(14):2071–2076. doi: 10.1002/adma.201204520. PubMed DOI
Shi H. He Y. Pan Y. Di H. Zeng G. Zhang L. Zhang C. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J. Membr. Sci. 2016;506:60–70. doi: 10.1016/j.memsci.2016.01.053. DOI
Tao M. Xue L. Liu F. Jiang L. An Intelligent Superwetting PVDF Membrane Showing Switchable Transport Performance for Oil/Water Separation. Adv. Mater. 2014;26(18):2943–2948. doi: 10.1002/adma.201305112. PubMed DOI
Ejaz Ahmed F. Lalia B. S. Hilal N. Hashaikeh R. Underwater superoleophobic cellulose/electrospun PVDF–HFP membranes for efficient oil/water separation. Desalination. 2014;344:48–54. doi: 10.1016/j.desal.2014.03.010. DOI
Bakeri G. Ismail A. F. Shariaty-Niassar M. Matsuura T. Effect of polymer concentration on the structure and performance of polyetherimide hollow fiber membranes. J. Membr. Sci. 2010;363(1):103–111. doi: 10.1016/j.memsci.2010.07.018. DOI
Aroon M. A. Ismail A. F. Montazer-Rahmati M. M. Matsuura T. Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent. Sep. Purif. Technol. 2010;72(2):194–202. doi: 10.1016/j.seppur.2010.02.009. DOI
Yan L. Li Y. S. Xiang C. B. Xianda S. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J. Membr. Sci. 2006;276(1):162–167. doi: 10.1016/j.memsci.2005.09.044. DOI
Lanč M. Sysel P. Šoltys M. Štěpánek F. Fónod K. Klepić M. Vopička O. Lhotka M. Ulbrich P. Friess K. Synthesis, preparation and characterization of novel hyperbranched 6FDA-TTM based polyimide membranes for effective CO2 separation: effect of embedded mesoporous silica particles and siloxane linkages. Polymer. 2018;144:33–42. doi: 10.1016/j.polymer.2018.04.033. DOI
Bushell A. F. Attfield M. P. Mason C. R. Budd P. M. Yampolskii Y. Starannikova L. Rebrov A. Bazzarelli F. Bernardo P. Carolus Jansen J. Lanč M. Friess K. Shantarovich V. Gustov V. Isaeva V. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci. 2013;427:48–62. doi: 10.1016/j.memsci.2012.09.035. DOI
Ashtiani S. Khoshnamvand M. Shaliutina-Kolešová A. Bouša D. Sofer Z. Friess K. Co0.5Ni0.5FeCrO4 spinel nanoparticles decorated with UiO-66-based metal-organic frameworks grafted onto GO and O-SWCNT for gas adsorption and water purification. Chemosphere. 2020;255:126966. doi: 10.1016/j.chemosphere.2020.126966. PubMed DOI