The Development of a Coaxial Electrospinning Formula Using Fish Gelatin/PBS as the Core for Structurally Intact Liposome Loading and Release
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
EP/T517793/1
Engineering and Physical Sciences Research Council
564021
NIHR UCLH BRC- UCL Therapeutic Acceleration Support (TAS) Fund
824007
European Commission via H2020 iP-OSTEO programme
PubMed
40219333
PubMed Central
PMC11991009
DOI
10.3390/polym17070944
PII: polym17070944
Knihovny.cz E-zdroje
- Klíčová slova
- PCL, coaxial electrospinning, fish gelatin, liposomes,
- Publikační typ
- časopisecké články MeSH
In electrospun scaffolds, coaxial electrospinning is gaining increased attention due to its potential for biocomponent encapsulation and controlled delivery. However, the encapsulation of biocomponents, such as liposomes, remains challenging because of their low stability in commonly used electrospinning solvents. This study, therefore, aims to develop a novel coaxial electrospinning formulation for crafting a liposome-encapsulated, rapid-release coaxial fiber. Liposomes demonstrated desirable stability in fish gelatin/phosphate-buffered saline (PBS) solutions, which remain liquid at room temperature and exhibit exceptional spinnability at concentrations exceeding 80 w/v% due to the reduction in surface tension. Fluorescent labelling examinations confirmed the successful encapsulation of liposomes within coaxial fibers electrospun from a 160 w/v% gelatin/PBS core and a 20 w/v% PCL/chloroform/N,N-dimethylformamide (DMF) shell. The gelatin/PBS core solution formed solid ends at the tips of the core-shell fiber post-spinning, while maintaining a liquid state within the shell, thereby enabling the encapsulation of liposomes within the PCL coaxial fiber. Upon exposure to medium, the solid ends dissolve, enabling the rapid release of liposomes. The successful development of this liposome-loaded electrospun coaxial fiber, using fish gelatin, highlights its potential for creating advanced liposome delivery systems.
College of Textiles and Clothing Qingdao University Qingdao 266071 China
UCL School of Pharmacy University College London 29 39 Brunswick Square London WC1N 1AX UK
Zobrazit více v PubMed
Li Y., Zhu J., Cheng H., Li G., Cho H., Jiang M., Gao Q., Zhang X. Developments of advanced electrospinning techniques: A critical review. Adv. Mater. Technol. 2021;6:2100410.
Heydarkhan-Hagvall S., Schenke-Layland K., Dhanasopon A.P., Rofail F., Smith H., Wu B.M., Shemin R., Beygui R.E., MacLellan W.R. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials. 2008;29:2907–2914. doi: 10.1016/j.biomaterials.2008.03.034. PubMed DOI PMC
Politi S., Carotenuto F., Rinaldi A., Di Nardo P., Manzari V., Albertini M.C., Araneo R., Ramakrishna S., Teodori L. Smart ECM-based electrospun biomaterials for skeletal muscle regeneration. Nanomaterials. 2020;10:1781. doi: 10.3390/nano10091781. PubMed DOI PMC
Schoeller J., Itel F., Wuertz-Kozak K., Fortunato G., Rossi R.M. pH-responsive electrospun nanofibers and their applications. Polym. Rev. 2022;62:351–399.
Yang Z., Song Z., Nie X., Guo K., Gu Y. A smart scaffold composed of three-dimensional printing and electrospinning techniques and its application in rat abdominal wall defects. Stem Cell Res. Ther. 2020;11:1–11. PubMed PMC
Zhang Y., Xue Y., Ren Y., Li X., Liu Y. Biodegradable polymer electrospinning for tendon repairment. Polymers. 2023;15:1566. doi: 10.3390/polym15061566. PubMed DOI PMC
Hosseini F.S., Laurencin C.T. Advanced Electrospun Nanofibrous Stem Cell Niche for Bone Regenerative Engineering. Regen. Eng. Transl. Med. 2023;9:165–180.
Chachlioutaki K., Karavasili C., Adamoudi E., Bouropoulos N., Tzetzis D., Bakopoulou A., Fatouros D.G. Silk sericin/PLGA electrospun scaffolds with anti-inflammatory drug-eluting properties for periodontal tissue engineering. Biomater. Adv. 2022;133:112723. doi: 10.1016/j.msec.2022.112723. PubMed DOI
Chen L., Zhang L., Zhang H., Sun X., Liu D., Zhang J., Zhang Y., Cheng L., Santos H.A., Cui W. Programmable immune activating electrospun fibers for skin regeneration. Bioact. Mater. 2021;6:3218–3230. PubMed PMC
Schulte-Werning L.V., Singh B., Johannessen M., Engstad R.E., Holsæter A.M. Antimicrobial liposomes-in-nanofiber wound dressings prepared by a green and sustainable wire-electrospinning set-up. Int. J. Pharm. 2024;657:124136. PubMed
Casula L., Zidar A., Kristl J., Jeras M., Kralj S., Fadda A.M., Zupančič Š. Development of nanofibers with embedded liposomes containing an immunomodulatory drug using green electrospinning. Pharmaceutics. 2023;15:1245. doi: 10.3390/pharmaceutics15041245. PubMed DOI PMC
Nsairat H., Khater D., Sayed U., Odeh F., Al Bawab A., Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon. 2022;8:e09394. PubMed PMC
Hu K., Xiang L., Chen J., Qu H., Wan Y., Xiang D. PLGA-liposome electrospun fiber delivery of miR-145 and PDGF-BB synergistically promoted wound healing. Chem. Eng. J. 2021;422:129951.
Pires F., Santos J.F., Bitoque D., Silva G.A., Marletta A., Nunes V.A., Ribeiro P.A., Silva J.C., Raposo M. Polycaprolactone/gelatin nanofiber membranes containing EGCG-loaded liposomes and their potential use for skin regeneration. ACS Appl. Bio Mater. 2019;2:4790–4800. PubMed
Monteiro N., Martins A., Pires R., Faria S., Fonseca N.A., Moreira J.N., Reis R.L., Neves N.M. Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomater. Sci. 2014;2:1195–1209. doi: 10.1039/C4BM00069B. PubMed DOI
Monteiro N., Martins M., Martins A., Fonseca N.A., Moreira J.N., Reis R.L., Neves N.M. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater. 2015;18:196–205. PubMed
Mickova A., Buzgo M., Benada O., Rampichova M., Fisar Z., Filova E., Tesarova M., Lukas D., Amler E. Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules. 2012;13:952–962. PubMed
Karakas C.Y., Ustundag C.B., Sahin A., Karadag A. Co-axial electrospinning of liposomal propolis loaded gelatin-zein fibers as a potential wound healing material. J. Appl. Polym. Sci. 2023;140:e54683.
Li Z., Kang H., Che N., Liu Z., Li P., Li W., Zhang C., Cao C., Liu R., Huang Y. 27 Controlled release of liposome-encapsulated Naproxen from core-sheath electrospun nanofibers. Carbohydr Polym. 2014;111:18–24. doi: 10.1016/j.carbpol.2014.04.017. PubMed DOI
Li Z., Kang H., Li Q., Che N., Liu Z., Li P., Zhang C., Liu R., Huang Y. Ultrathin core–sheath fibers for liposome stabilization. Colloids Surf. B Biointerfaces. 2014;122:630–637. PubMed
Hasanbegloo K., Banihashem S., Dizaji B.F., Bybordi S., Farrokh-Eslamlou N., Abadi P.G.-s., Jazi F.S., Irani M. Paclitaxel-loaded liposome-incorporated chitosan (core)/poly (ε-caprolactone)/chitosan (shell) nanofibers for the treatment of breast cancer. Int. J. Biol. Macromol. 2023;230:123380. PubMed
Kordbacheh H., Bahmani E., Bybordi S., Rezaee A., Dehghanian Z., Ehsanfar N., Goleij P., SharifianJazi F., Irani M. Co-delivery of Bcl-2 siRNA and doxorubicin using liposome-incorporated poly (ε-caprolactone)/chitosan nanofibers for the treatment of lung cancer. J. Drug Deliv. Sci. Technol. 2024;99:105994.
Harrington W.F., Rao N.V. Collagen structure in solution. I. Kinetics of helix regeneration in single-chain gelatins. Biochemistry. 1970;9:3714–3724. PubMed
Ciobanu B.C., Cadinoiu A.N., Popa M., Desbrieres J., Peptu C.A. Modulated release from liposomes entrapped in chitosan/gelatin hydrogels. Mater. Sci. Eng. C. 2014;43:383–391. PubMed
Justine R.Y., Janssen M., Liang B.J., Huang H.-C., Fisher J.P. A liposome/gelatin methacrylate nanocomposite hydrogel system for delivery of stromal cell-derived factor-1α and stimulation of cell migration. Acta Biomater. 2020;108:67–76. PubMed PMC
DiTizio V., Karlgard C., Lilge L., Khoury A.E., Mittelman M.W., DiCosmo F. Localized drug delivery using crosslinked gelatin gels containing liposomes: Factors influencing liposome stability and drug release. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2000;51:96–106. PubMed
Elkhoury K., Sanchez-Gonzalez L., Lavrador P., Almeida R., Gaspar V., Kahn C., Cleymand F., Arab-Tehrany E., Mano J.F. Gelatin methacryloyl (GelMA) nanocomposite hydrogels embedding bioactive naringin liposomes. Polymers. 2020;12:2944. doi: 10.3390/polym12122944. PubMed DOI PMC
Bigi A., Boanini E., Panzavolta S., Roveri N. Biomimetic growth of hydroxyapatite on gelatin films doped with sodium polyacrylate. Biomacromolecules. 2000;1:752–756. PubMed
Zhang Z., Li G., Shi B. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J. -Soc. Leather Technol. Chem. 2006;90:23.
Sajkiewicz P., Kołbuk D. Electrospinning of gelatin for tissue engineering–molecular conformation as one of the overlooked problems. J. Biomater. Sci. Polym. Ed. 2014;25:2009–2022. PubMed
Tung W.T., Zou J., Sun X., Wang W., Gould O.E., Kratz K., Ma N., Lendlein A. Coaxial electrospinning of PEEU/gelatin to fiber meshes with enhanced mesenchymal stem cell attachment and proliferation. Clin. Hemorheol. Microcirc. 2020;74:53–66. PubMed
Coimbra P., Santos P., Alves P., Miguel S.P., Carvalho M.P., de Sá K.D., Correia I., Ferreira P. Coaxial electrospun PCL/Gelatin-MA fibers as scaffolds for vascular tissue engineering. Colloids Surf. B Biointerfaces. 2017;159:7–15. PubMed
Pereira I.H., Ayres E., Averous L., Schlatter G., Hebraud A., Mendes S.T.O., Oréfice R.L. Elaboration and Characterization of Coaxial Electrospun Poly (ε-Caprolactone)/Gelatin Nanofibers for Biomedical Applications. Adv. Polym. Technol. 2014;33:21475.
Gualandi C., Torricelli P., Panzavolta S., Pagani S., Focarete M.L., Bigi A. An innovative co-axial system to electrospin in situ crosslinked gelatin nanofibers. Biomed. Mater. 2016;11:025007. PubMed
Mahmood K., Kamilah H., Karim A.A., Ariffin F. Enhancing the functional properties of fish gelatin mats by dual encapsulation of essential oils in β-cyclodextrins/fish gelatin matrix via coaxial electrospinning. Food Hydrocoll. 2023;137:108324.
Harrington W.F., von Hippel P.H. Formation and stabilization of the collagen-fold. Arch. Biochem. Biophys. 1961;92:100–113. PubMed
Von Hippel P.H., Harrington W.F. Enzymic studies of the gelatin → collagen-fold transition. Biochim. Biophys. Acta. 1959;36:427–447. PubMed
Kwak H.W., Shin M., Lee J.Y., Yun H., Song D.W., Yang Y., Shin B.-S., Park Y.H., Lee K.H. Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning. Int. J. Biol. Macromol. 2017;102:1092–1103. PubMed
Pant B., Park M., Park S.-J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review. Pharmaceutics. 2019;11:305. doi: 10.3390/pharmaceutics11070305. PubMed DOI PMC
Yoon J., Yang H.S., Lee B.S., Yu W.R. Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications. Adv. Mater. 2018;30:1704765. PubMed
Yang L., Fassihi R. Examination of drug solubility, polymer types, hydrodynamics and loading dose on drug release behavior from a triple-layer asymmetric configuration delivery system. Int. J. Pharm. 1997;155:219–229. doi: 10.1016/S0378-5173(97)00164-6. DOI
Al-Baadani M.A., Yie K.H.R., Al-Bishari A.M., Alshobi B.A., Zhou Z., Fang K., Dai B., Shen Y., Ma J., Liu J. Co-electrospinning polycaprolactone/gelatin membrane as a tunable drug delivery system for bone tissue regeneration. Mater. Des. 2021;209:109962. doi: 10.1016/j.matdes.2021.109962. DOI
Hassan N., Ahmad T., Zain N.M., Awang S.R. Identification of bovine, porcine and fish gelatin signatures using chemometrics fuzzy graph method. Sci. Rep. 2021;11:9793. doi: 10.1038/s41598-021-89358-2. PubMed DOI PMC
Hidayati D., Sabiyla G.R., Prasetyo E.N., Sa’adah N.N., Kurniawan F. The characteristic of gelatin extracted from the skin of adult and sub-adult striped catfish (pangasius hypophthalmus) using acid-base pretreatment: pH and FTIR. IOP Conf. Ser. Earth Environ. Sci. 2021;755:012018. doi: 10.1088/1755-1315/755/1/012018. DOI
Phillipson K., Hay J., Jenkins M. Thermal analysis FTIR spectroscopy of poly (ε-caprolactone) Thermochim. Acta. 2014;595:74–82. doi: 10.1016/j.tca.2014.08.027. DOI
Khorramnezhad M., Akbari B., Akbari M., Kharaziha M. Effect of surface modification on physical and cellular properties of PCL thin film. Colloids Surf. B Biointerfaces. 2021;200:111582. doi: 10.1016/j.colsurfb.2021.111582. PubMed DOI
Zhang L., Song X., Qi Q., Liu W. Interaction of DPPC liposomes with cholesterol and food protein during in vitro digestion using Dynamic Light Scattering and FTIR spectroscopy analysis. Food Chem. 2022;375:131893. doi: 10.1016/j.foodchem.2021.131893. PubMed DOI
Song F., Yang G., Wang Y., Tian S. Effect of phospholipids on membrane characteristics and storage stability of liposomes. Innov. Food Sci. Emerg. Technol. 2022;81:103155. doi: 10.1016/j.ifset.2022.103155. DOI
Lin M., Liu Y., Gao J., Wang D., Xia D., Liang C., Li N., Xu R. Synergistic effect of co-delivering ciprofloxacin and tetracycline hydrochloride for promoted wound healing by utilizing coaxial PCL/gelatin nanofiber membrane. Int. J. Mol. Sci. 2022;23:1895. doi: 10.3390/ijms23031895. PubMed DOI PMC
Hamid Q., Sun W. Coaxial electrospinning biopolymer with living cells; Proceedings of the ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology; Houston, TX, USA. 7–10 February 2010; pp. 167–172.
Johnston J.H., Peard G.T. The surface tension of gelatin solutions. Biochem. J. 1925;19:281. doi: 10.1042/bj0190281. PubMed DOI PMC
Choktaweesap N., Arayanarakul K., Aht-Ong D., Meechaisue C., Supaphol P. Electrospun gelatin fibers: Effect of solvent system on morphology and fiber diameters. Polym. J. 2007;39:622–631. doi: 10.1295/polymj.PJ2006190. DOI
Sato H., Ueberreiter K. Surface tension of aqueous gelatin solutions, 1. Concentration dependence. Die Makromol. Chem. Macromol. Chem. Phys. 1979;180:829–835. doi: 10.1002/macp.1979.021800330. DOI
Lin S.-Y., Wu T.-F., Tsao H.-K. Interfacial dynamics of a gelatin solution with surfactant. Macromolecules. 2003;36:8786–8795. doi: 10.1021/ma034853y. DOI
Likos C., Vaynberg K., Löwen H., Wagner N. Colloidal stabilization by adsorbed gelatin. Langmuir. 2000;16:4100–4108.
Akbulut M., Reddy N.K., Bechtloff B., Koltzenburg S., Vermant J., Prud’homme R.K. Flow-induced conformational changes in gelatin structure and colloidal stabilization. Langmuir. 2008;24:9636–9641. doi: 10.1021/la800487b. PubMed DOI
Kumar S., Dutta J., Dutta P., Koh J. A systematic study on chitosan-liposome based systems for biomedical applications. Int. J. Biol. Macromol. 2020;160:470–481. PubMed
Reise M., Kranz S., Guellmar A., Wyrwa R., Rosenbaum T., Weisser J., Jurke A., Schnabelrauch M., Heyder M., Watts D.C. Coaxial electrospun nanofibers as drug delivery system for local treatment of periodontitis. Dent. Mater. 2023;39:132–139. doi: 10.1016/j.dental.2022.12.008. PubMed DOI
Lu Y., Huang J., Yu G., Cardenas R., Wei S., Wujcik E.K., Guo Z. Coaxial electrospun fibers: Applications in drug delivery and tissue engineering. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016;8:654–677. doi: 10.1002/wnan.1391. PubMed DOI
Han D., Steckl A.J. Coaxial electrospinning formation of complex polymer fibers and their applications. ChemPlusChem. 2019;84:1453–1497. PubMed
Liu J., Rasheed A., Dong H., Carr W.W., Dadmun M.D., Kumar S. Electrospun Micro-and Nanostructured Polymer Particles. Macromol. Chem. Phys. 2008;209:2390–2398. doi: 10.1002/macp.200800396. DOI