Human centenarian-associated SIRT6 mutants modulate hepatocyte metabolism and collagen deposition in multilineage hepatic 3D spheroids

. 2023 Apr ; 45 (2) : 1177-1196. [epub] 20221219

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36534275

Grantová podpora
R01 AG027237 NIA NIH HHS - United States
P01 AG047200 NIA NIH HHS - United States

Odkazy

PubMed 36534275
PubMed Central PMC9886743
DOI 10.1007/s11357-022-00713-1
PII: 10.1007/s11357-022-00713-1
Knihovny.cz E-zdroje

Non-alcoholic fatty liver disease (NAFLD), encompassing fatty liver and its progression into nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), is one of the rapidly rising health concerns worldwide. SIRT6 is an essential nuclear sirtuin that regulates numerous pathological processes including insulin resistance and inflammation, and recently it has been implicated in the amelioration of NAFLD progression. SIRT6 overexpression protects from formation of fibrotic lesions. However, the underlying molecular mechanisms are not fully delineated. Moreover, new allelic variants of SIRT6 (N308K/A313S) were recently associated with the longevity in Ashkenazi Jews by improving genome maintenance and DNA repair, suppressing transposons and killing cancer cells. Whether these new SIRT6 variants play different or enhanced roles in liver diseases is currently unknown. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect liver metabolism and associated diseases. We present evidence that overexpression of centenarian-associated SIRT6 variants dramatically altered the metabolomic and secretomic profiles of unchallenged immortalized human hepatocytes (IHH). Most amino acids were increased in the SIRT6 N308K/A313S overexpressing IHH when compared to IHH transfected with the SIRT6 wild-type sequence. Several unsaturated fatty acids and glycerophospholipids were increased, and ceramide tended to be decreased upon SIRT6 N308K/A313S overexpression. Furthermore, we found that overexpression of SIRT6 N308K/A313S in a 3D hepatic spheroid model formed by the co-culture of human immortalized hepatocytes (IHH) and hepatic stellate cells (LX2) inhibited collagen deposition and fibrotic gene expression in absence of metabolic or dietary challenges. Hence, our findings suggest that novel longevity associated SIRT6 N308K/A313S variants could favor the prevention of NASH by altering hepatocyte proteome and lipidome.

Zobrazit více v PubMed

Sheedfar F, et al. Liver diseases and aging: friends or foes? Aging Cell. 2013;12(6):950–954. doi: 10.1111/acel.12128. PubMed DOI

Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2019;16(6):377–386. doi: 10.1038/s41575-019-0144-8. PubMed DOI

Ayonrinde OT. Historical narrative from fatty liver in the nineteenth century to contemporary NAFLD – Reconciling the present with the past. JHEP Reports. 2021;3(3):100261. doi: 10.1016/j.jhepr.2021.100261. PubMed DOI PMC

Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. 2016;64(1):73–84. 10.1002/hep.28431. PubMed

Kanwal F, et al. Preparing for the NASH Epidemic: A Call to Action. Gastroenterology. 2021;161(3):1030–1042.e8. doi: 10.1053/j.gastro.2021.04.074. PubMed DOI

Estes C, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol. 2018;69(4):896–904. doi: 10.1016/j.jhep.2018.05.036. PubMed DOI

Tilg H, et al. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat Metab. 2021;3(12):1596–1607. doi: 10.1038/s42255-021-00501-9. PubMed DOI

Eslam M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020 doi: 10.1016/j.jhep.2020.03.039. PubMed DOI

Gores GJ. Decade in review-hepatocellular carcinoma: HCC-subtypes, stratification and sorafenib. Nat Rev Gastroenterol Hepatol. 2014;11(11):645–647. doi: 10.1038/nrgastro.2014.157. PubMed DOI PMC

Reeves HL, Zaki MY, Day CP. Hepatocellular Carcinoma in Obesity, Type 2 Diabetes, and NAFLD. Dig Dis Sci. 2016;61(5):1234–1245. doi: 10.1007/s10620-016-4085-6. PubMed DOI

Mazzoccoli G, et al. Biology, Epidemiology, Clinical Aspects of Hepatocellular Carcinoma and the Role of Sorafenib. Curr Drug Targets. 2016;17(7):783–799. doi: 10.2174/1389450117666151209120831. PubMed DOI

Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–238. doi: 10.1038/nrm3293. PubMed DOI PMC

Tonkin J, et al. SIRT1 signaling as potential modulator of skeletal muscle diseases. Curr Opin Pharmacol. 2012;12(3):372–376. doi: 10.1016/j.coph.2012.02.010. PubMed DOI

Kanfi Y, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388):218–221. doi: 10.1038/nature10815. PubMed DOI

Korotkov A, Seluanov A, Gorbunova V. Sirtuin 6: linking longevity with genome and epigenome stability. Trends Cell Biol. 2021;31(12):994–1006. doi: 10.1016/j.tcb.2021.06.009. PubMed DOI PMC

Tian X, et al. SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell. 2019;177(3):622–638.e22. doi: 10.1016/j.cell.2019.03.043. PubMed DOI PMC

Sundaresan NR, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med. 2012;18(11):1643–1650. doi: 10.1038/nm.2961. PubMed DOI PMC

Roichman A, et al. SIRT6 Overexpression Improves Various Aspects of Mouse Healthspan. J Gerontol A Biol Sci Med Sci. 2017;72(5):603–615. doi: 10.1093/gerona/glw152. PubMed DOI

Kim HS, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010;12(3):224–236. doi: 10.1016/j.cmet.2010.06.009. PubMed DOI PMC

Zhong X, et al. SIRT6 Protects Against Liver Fibrosis by Deacetylation and Suppression of SMAD3 in Hepatic Stellate Cells. Cell Mol Gastroenterol Hepatol. 2020;10(2):341–364. doi: 10.1016/j.jcmgh.2020.04.005. PubMed DOI PMC

Kuang J, et al. Fat-Specific Sirt6 Ablation Sensitizes Mice to High-Fat Diet-Induced Obesity and Insulin Resistance by Inhibiting Lipolysis. Diabetes. 2017;66(5):1159–1171. doi: 10.2337/db16-1225. PubMed DOI

Xiong X, et al. SIRT6 protects against palmitate-induced pancreatic β-cell dysfunction and apoptosis. J Endocrinol. 2016;231(2):159–165. doi: 10.1530/joe-16-0317. PubMed DOI PMC

D’Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. Antioxid Redox Signal. 2018;28(8):711–732. doi: 10.1089/ars.2017.7178. PubMed DOI PMC

Yao L, et al. Cold-Inducible SIRT6 Regulates Thermogenesis of Brown and Beige Fat. Cell Rep. 2017;20(3):641–654. doi: 10.1016/j.celrep.2017.06.069. PubMed DOI

Kanfi Y, et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell. 2010;9(2):162–173. doi: 10.1111/j.1474-9726.2009.00544.x. PubMed DOI

Ka SO, et al. Hepatocyte-specific sirtuin 6 deletion predisposes to nonalcoholic steatohepatitis by up-regulation of Bach1, an Nrf2 repressor. Faseb j. 2017;31(9):3999–4010. doi: 10.1096/fj.201700098RR. PubMed DOI

Chen L, et al. Hepatocyte-specific Sirt6 deficiency impairs ketogenesis. J Biol Chem. 2019;294(5):1579–1589. doi: 10.1074/jbc.RA118.005309. PubMed DOI PMC

Bang IH, et al. Deacetylation of XBP1s by sirtuin 6 confers resistance to ER stress-induced hepatic steatosis. Exp Mol Med. 2019;51(9):1–11. doi: 10.1038/s12276-019-0309-0. PubMed DOI PMC

Hirvonen K, et al. SIRT6 polymorphism rs117385980 is associated with longevity and healthy aging in Finnish men. BMC Med Genet. 2017;18(1):41. doi: 10.1186/s12881-017-0401-z. PubMed DOI PMC

Simon M, et al. A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A. EMBO J. 2022;41(21):e110393. doi: 10.15252/embj.2021110393. PubMed DOI PMC

Atzmon G, et al. Clinical phenotype of families with longevity. J Am Geriatr Soc. 2004;52(2):274–277. doi: 10.1111/j.1532-5415.2004.52068.x. PubMed DOI

Atzmon G, et al. Evolution in health and medicine Sackler colloquium: Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc Natl Acad Sci U S A. 2010;107 Suppl 1(Suppl 1):1710–7. 10.1073/pnas.0906191106. PubMed PMC

TenNapel MJ, et al. SIRT6 Minor Allele Genotype Is Associated with >5-Year Decrease in Lifespan in an Aged Cohort. PLoS ONE. 2014;9(12):e115616. doi: 10.1371/journal.pone.0115616. PubMed DOI PMC

Kodo K, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol. 2016;18(10):1031–1042. doi: 10.1038/ncb3411. PubMed DOI PMC

Vinciguerra M. Old age and steatohepatitis: a dangerous liaison? Hepatology. 2013;58(2):830–831. doi: 10.1002/hep.26212. PubMed DOI

Ramos MJ, et al. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience. 2022;25(1):103549. doi: 10.1016/j.isci.2021.103549. PubMed DOI PMC

Pingitore P, et al. Human Multilineage 3D Spheroids as a Model of Liver Steatosis and Fibrosis. Int J Mol Sci. 2019;20(7):1629. doi: 10.3390/ijms20071629. PubMed DOI PMC

De Gottardi A, et al. Microarray analyses and molecular profiling of steatosis induction in immortalized human hepatocytes. Lab Invest. 2007;87(8):792–806. doi: 10.1038/labinvest.3700590. PubMed DOI

Giallongo S, et al. Histone Variant macroH2A1.1 Enhances Nonhomologous End Joining-dependent DNA Double-strand-break Repair and Reprogramming Efficiency of Human iPSCs. Stem Cells. 2022;40(1):35–48. doi: 10.1093/stmcls/sxab004. PubMed DOI PMC

Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc. 2006;1(1):241–245. doi: 10.1038/nprot.2006.37. PubMed DOI

Lo Re O, et al. Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells. Epigenetics. 2018;13(8):829–845. doi: 10.1080/15592294.2018.1514239. PubMed DOI PMC

Lo Re O, et al. Induction of cancer cell stemness by depletion of macrohistone H2A1 in hepatocellular carcinoma. Hepatology. 2018;67(2):636–650. doi: 10.1002/hep.29519. PubMed DOI

Pazienza V, et al. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging (Albany NY) 2014;6(1):35–47. doi: 10.18632/aging.100632. PubMed DOI PMC

Demolli S, et al. MicroRNA-30 mediates anti-inflammatory effects of shear stress and KLF2 via repression of angiopoietin 2. J Mol Cell Cardiol. 2015;88:111–119. doi: 10.1016/j.yjmcc.2015.10.009. PubMed DOI

Frohlich J, et al. GDF11 rapidly increases lipid accumulation in liver cancer cells through ALK5-dependent signaling. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(6):158920. doi: 10.1016/j.bbalip.2021.158920. PubMed DOI

Martínez-Arranz I, et al. Enhancing metabolomics research through data mining. J Proteomics. 2015;127:275–288. doi: 10.1016/j.jprot.2015.01.019. PubMed DOI

Martínez-Arranz I, et al. Data in support of enhancing metabolomics research through data mining. Data Brief. 2015;3:155–164. doi: 10.1016/j.dib.2015.02.008. PubMed DOI PMC

Ramos MJ, et al. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience. 2022;25(1):103549. doi: 10.1016/j.isci.2021.103549. PubMed DOI PMC

Raffaele M, et al. Inhibition of Heme Oxygenase Antioxidant Activity Exacerbates Hepatic Steatosis and Fibrosis In Vitro. Antioxidants (Basel) 2019;8(8):277. doi: 10.3390/antiox8080277. PubMed DOI PMC

Van Meter M, et al. SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle. 2011;10(18):3153–3158. doi: 10.4161/cc.10.18.17435. PubMed DOI PMC

Kugel S, et al. SIRT6 Suppresses Pancreatic Cancer through Control of Lin28b. Cell. 2016;165(6):1401–1415. doi: 10.1016/j.cell.2016.04.033. PubMed DOI PMC

Vinciguerra M, et al. PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NF-kappaBp65/mTOR-dependent mechanism. Gastroenterology. 2008;134(1):268–280. doi: 10.1053/j.gastro.2007.10.010. PubMed DOI

Roichman A, et al. Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat Commun. 2021;12(1):3208. doi: 10.1038/s41467-021-23545-7. PubMed DOI PMC

Barr J, et al. Obesity-Dependent Metabolic Signatures Associated with Nonalcoholic Fatty Liver Disease Progression. J Proteome Res. 2012;11(4):2521–2532. doi: 10.1021/pr201223p. PubMed DOI PMC

Lee DY, Kim EH. Therapeutic Effects of Amino Acids in Liver Diseases: Current Studies and Future Perspectives. J Cancer Prev. 2019;24(2):72–78. doi: 10.15430/jcp.2019.24.2.72. PubMed DOI PMC

Holeček M. Branched-chain amino acid supplementation in treatment of liver cirrhosis: Updated views on how to attenuate their harmful effects on cataplerosis and ammonia formation. Nutrition. 2017;41:80–85. doi: 10.1016/j.nut.2017.04.003. PubMed DOI

Fridén M, et al. Hepatic Unsaturated Fatty Acids Are Linked to Lower Degree of Fibrosis in Non-alcoholic Fatty Liver Disease. 2022;8. 10.3389/fmed.2021.814951. PubMed PMC

Pagadala M, et al. Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol Metab. 2012;23(8):365–371. doi: 10.1016/j.tem.2012.04.005. PubMed DOI PMC

Schwabe RF, Tabas I, Pajvani UB. Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology. 2020;158(7):1913–1928. doi: 10.1053/j.gastro.2019.11.311. PubMed DOI PMC

Fujisawa K, et al. Metabolic Alterations in Spheroid-Cultured Hepatic Stellate Cells. Int J Mol Sci. 2020;21(10):3451. doi: 10.3390/ijms21103451. PubMed DOI PMC

Lin HY, et al. Coexpression and expression quantitative trait loci analyses of the angiogenesis gene-gene interaction network in prostate cancer. Transl Cancer Res. 2016;5(Suppl 5):S951–S963. doi: 10.21037/tcr.2016.10.55. PubMed DOI PMC

Golabi P, et al. Prevalence and long-term outcomes of non-alcoholic fatty liver disease among elderly individuals from the United States. BMC Gastroenterol. 2019;19(1):56. doi: 10.1186/s12876-019-0972-6. PubMed DOI PMC

Berzlanovich AM, et al. Do Centenarians Die Healthy? An Autopsy Study. J Gerontol: Ser A. 2005;60(7):862–865. doi: 10.1093/gerona/60.7.862. PubMed DOI

Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt Signaling by Sirtuins. Circ Res. 2014;114(2):368–378. doi: 10.1161/CIRCRESAHA.113.300536. PubMed DOI PMC

Jegatheesan P, et al. Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats. Br J Nutr. 2016;116(2):191–203. doi: 10.1017/s0007114516001793. PubMed DOI

Vvedenskaya O, et al. Nonalcoholic fatty liver disease stratification by liver lipidomics. J Lipid Res. 2021;62:100104. doi: 10.1016/j.jlr.2021.100104. PubMed DOI PMC

Aggarwal S, et al. Post-translational Modification Crosstalk and Hotspots in Sirtuin Interactors Implicated in Cardiovascular Diseases. Front Genet. 2020;11:356. doi: 10.3389/fgene.2020.00356. PubMed DOI PMC

Beltrao P, et al. Evolution and functional cross-talk of protein post-translational modifications. Mol Syst Biol. 2013;9:714. doi: 10.1002/msb.201304521. PubMed DOI PMC

Sikarwar AS, Bhagirath AY, Dakshinamurti S. Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR-G Protein Complexes and the Role of Hypoxia. J Membr Biol. 2019;252(4–5):509–526. doi: 10.1007/s00232-019-00091-4. PubMed DOI

Sawant Dessai A, et al. Regulation of tumor metabolism by post translational modifications on metabolic enzymes. Cancer Gene Ther. 2022 doi: 10.1038/s41417-022-00521-x. PubMed DOI PMC

Hardy T, et al. The European NAFLD Registry: A real-world longitudinal cohort study of nonalcoholic fatty liver disease. Contemp Clin Trials. 2020;98:106175. doi: 10.1016/j.cct.2020.106175. PubMed DOI

Mao Z, et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332(6036):1443–1446. doi: 10.1126/science.1202723. PubMed DOI PMC

Brunner SF, et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature. 2019;574(7779):538–542. doi: 10.1038/s41586-019-1670-9. PubMed DOI PMC

Szanto M, Bai P. The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes Dev. 2020;34(5–6):321–340. doi: 10.1101/gad.334284.119. PubMed DOI PMC

Gibson BA, et al. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science. 2016;353(6294):45–50. doi: 10.1126/science.aaf7865. PubMed DOI PMC

Menghini R, et al. ITCH E3 ubiquitin ligase downregulation compromises hepatic degradation of branched-chain amino acids. Mol Metab. 2022;59:101454. doi: 10.1016/j.molmet.2022.101454. PubMed DOI PMC

Mouralidarane A, et al. Maternal obesity programs offspring non-alcoholic fatty liver disease through disruption of 24-h rhythms in mice. Int J Obes. 2015;39(9):1339–1348. doi: 10.1038/ijo.2015.85. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...