Shift of bacterial community in synanthropic mite Tyrophagus putrescentiae induced by Fusarium fungal diet

. 2012 ; 7 (10) : e48429. [epub] 20121031

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23119013

BACKGROUND: Tyrophagus putrescentiae (Acari: Astigmata) and Fusarium sp. co-occur in poorly managed grain. In a laboratory experiment, mite grazing resulted in significant reduction of fungal mycelium on cultivation plates. The destruction of mycelium appeared to be a result of an interaction between the mites, fungi and associated bacteria. METHODOLOGY AND PRINCIPAL FINDINGS: A laboratory experiment was performed to simulate a situation of grain multiinfested by mites and Fusarium fungi. Changes of mite-associated bacterial community in T. putrescentiae were described in 3 habitats: (i) T. putrescentiae mites from a rearing diet prior to their transfer to fungal diet; (ii) fungal mycelium before mite introduction; (iii) mites after 7 day diet of each Fusarium avenaceum, F. culmorum, F. poae and F. verticillioides. Bacterial communities were characterized by 16 S rRNA gene sequencing. In total, 157 nearly full-length 16 S rRNA gene sequences from 9 samples representing selected habitats were analyzed. In the mites, the shift from rearing to fungal diet caused changes in mite associated bacterial community. A diverse bacterial community was associated with mites feeding on F. avenaceum, while feeding on the other three Fusarium spp. led to selection of a community dominated by Bacillaceae. CONCLUSIONS/SIGNIFICANCE: The work demonstrated changes of bacterial community associated with T. putrescentiae after shift to fungal diets suggesting selection for Bacillaceae species known as chitinase producers, which might participate in the fungal mycelium hydrolysis.

Zobrazit více v PubMed

O’Connor BM (1979) Evolutionary origins of astigmatid mites inhabiting stored products. Recent Adv. Acarol. 1: 273–278.

O’Connor BM (1982) Evolutionary Ecology of Astigmatid Mites. Ann. Rev. Entomol. 27: 385–409.

Colloff MJ (2009). Dust mites. CSIRO Publishing, Collingwood, Victoria, Australia.

Sinha RN (1979) Ecology of microflora in stored grain. Annales of Technical Agriculture 28: 191–109.

Arlian LG, Vyszenski-Moher DL, Johansson SG, van Hage-Hamsten M (1997) Allergenic characterization of Tyrophagus putrescentiae using sera from occupationally exposed farmers. Ann. Allergy Asthma Immunol. 79: 525–529. PubMed

Jeong KY, Lee H, Lee JS, Lee J, Lee IY, et al. (2007) Molecular cloning and the allergenic characterization of tropomyosin from Tyrophagus putrescentiae. Protein Pept. Lett. 14: 431–436. PubMed

Armitage DM, George CL (1986) The effect of three species of mites upon fungal growth on wheat. Exp Appl Acarol. 2: 111–124. PubMed

Hubert J, Stejskal V, Munzbergová Z, Kubátová A, Vánová M, et al. (2004) Mites and fungi in heavily infested stores in the Czech Republic. J Econ Entomol. 97: 2144–2153. PubMed

Smrz J, Catska V (1987) Food selection of the field population of Tyrophagus putrescentiae (Schrank) (Acari: Acaridia). J. Appl. Entomol. 104: 329–335.

Smrz J, Catska V (1989) The effect of the consumption of some soil fungi on the internal microanatomy of the mite Tyrophagus putrescentiae (Schrank) (Acari: Acaridida). Acta Universitatis Carolinae-Biologica 33: 81–93.

Hubert J, Jarosik V, Mourek J, Kubatova A, Zdarkova E (2004) Astigmatid mite growth and fungi preference (Acari: Acaridida): Comparisons in laboratory experiments. Pedobiologia 48: 205–214.

Duek L, Kaufman G, Palevsky E, Berdicevsky I (2001) Mites in fungal cultures. Mycoses 44: 390–394. PubMed

Erban T, Hubert J (2008) Digestive function of lysozyme in synanthropic Acaridid mites enables utilization of bacteria as a food source. Exp. Appl. Acarol. 44: 199–212. PubMed

Childs M, Bowman CE (1981) Lysozyme activity in six species of economically important astigmatid mites. Comp. Biochem. Physiol. Part B. 70: 615–617.

Nesvorna M, Gabrielova L, Hubert J (2012) Tyrophagus putrescentiae is able to graze and develop on Fusarium fungi of mycotoxins importance under laboratory conditions. J. Stored Prod. Res. 48: 37–45.

Smrz J, Svobodova J, Catska V (1991) Synergetic participation of Tyrophagus putrescentiae (Schrank) (Acari, Acaridida) and its associated bacteria on the destruction of some soil micromycetes. J. Appl. Entomol. 111: 206–210.

Smrz J (2003) Microanatomical and biological aspects of bacterial associations in Tyrophagus putrescentiae (Acari: Acaridida). Exp. Appl. Acarol. 31: 105–113. PubMed

Smrz J, Catska V (2010) Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis 52: 33–40.

Magan N, Hope R, Cairns V, Aldred D (2003) Post-harvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain. Eur. J. Plant Pathol. 109: 723–730.

Athanassiou CG, Palyvos NE, Eliopoulos PA, Papadoulis GT (2001) Distribution and migration of insects and mites in flat storage containing wheat. Phytoparasitica. 29: 379–392.

Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (1996). Introduction to foodborne fungi. Baarn & Delft.

Barbieri E, Paster BJ, Hughes D, Zurek L, Moser DP, et al. (2001) Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda:Loliginidae). Environ. Microbiol. 3: 151–167. PubMed

Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 73: 5261–5267. PubMed PMC

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids. Res. 32: 1792–1797. PubMed PMC

Jow H, Hudelot C, Rattray M, Higgs P (2002) Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. Mol. Biol. Evol. 19: 1591–1601. PubMed

Felsenstein J (1989) PHYLIP-Phylogeny inference package (version 3.2). Cladistics 5: 164–166.

Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696–704. PubMed

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599. PubMed

Dillon RJ, Dillon VM (2004) The gut bacteria of insects: Nonpathogenic Interactions, An. Rev. Entomol. 49: 1–71. PubMed

Santo Domingo JW, Kaufman MG, Klug MJ, Holben WE, Harris D, et al. (1998) Influence of diet on the structure and function of the bacterial hindgut community of crickets. Mol Ecol 7: 761–767.

Hubert J, Kopecky J, Perotti AM, Nesvorna M, Braig HR, et al. (2012) Detection and identification of species-specific bacteria associated with synanthropic mites. Microbial. Ecol. 63: 919–928. PubMed

Mitchell R, Alexander M (1963) Lysis of soil fungi by bacteria. Can. J. Microbiol. 9: 169–177.

Watanabe T, Oyanagi W, Suzuki K, Tanaka H (1990) Chitinase system Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 172: 4017–4022. PubMed PMC

Trachuck LA, Revina LP, Shemyakina TM, Chestukhina GG, Stepanov VM (1996) Chitinases of Bacillus licheniformis B6839: isolation and properties. Can. J. Microbiol. 42: 307–315.

Pleban S, Chernin L, Shet I (1997) Chitinolytic activity of endophytic strain of Bacillus cereus. Lett. Appl. Microbiol. 25: 284–288. PubMed

Essghaier B, Fardeau ML, Cayol JL, Hajlaoui MR, Boudabous A, et al. (2009) Biological control of grey mould in strawberry fruits by halophilic bacteria. J. Appl. Microbiol. 106: 833–846. PubMed

De Boer W, Klein-Gunnewiek PJA, Lafeber P, Janse JD, Spit BE, et al. (1998) Antifungal properties of chitinolytic dune soil bacteria. Soil Biol. Biochem. 30: 193–203.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...