ITCH E3 ubiquitin ligase downregulation compromises hepatic degradation of branched-chain amino acids
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/L01632X/1
Medical Research Council - United Kingdom
Department of Health - United Kingdom
PubMed
35150905
PubMed Central
PMC8886057
DOI
10.1016/j.molmet.2022.101454
PII: S2212-8778(22)00023-0
Knihovny.cz E-zdroje
- Klíčová slova
- BCAA, Metabolomics, NAFLD, Transcriptomics,
- MeSH
- down regulace MeSH
- lidé MeSH
- myši knockoutované MeSH
- myši MeSH
- nádory jater * MeSH
- nealkoholová steatóza jater * MeSH
- obezita * komplikace MeSH
- ubikvitinligasy * genetika metabolismus MeSH
- větvené aminokyseliny * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Itch protein, mouse MeSH Prohlížeč
- ubikvitinligasy * MeSH
- větvené aminokyseliny * MeSH
Metabolic syndrome, obesity, and steatosis are characterized by a range of dysregulations including defects in ubiquitin ligase tagging proteins for degradation. The identification of novel hepatic genes associated with fatty liver disease and metabolic dysregulation may be relevant to unravelling new mechanisms involved in liver disease progression METHODS: Through integrative analysis of liver transcriptomic and metabolomic obtained from obese subjects with steatosis, we identified itchy E ubiquitin protein ligase (ITCH) as a gene downregulated in human hepatic tissue in relation to steatosis grade. Wild-type or ITCH knockout mouse models of non-alcoholic fatty liver disease (NAFLD) and obesity-related hepatocellular carcinoma were analyzed to dissect the causal role of ITCH in steatosis RESULTS: We show that ITCH regulation of branched-chain amino acids (BCAAs) degradation enzymes is impaired in obese women with grade 3 compared with grade 0 steatosis, and that ITCH acts as a gatekeeper whose loss results in elevation of circulating BCAAs associated with hepatic steatosis. When ITCH expression was specifically restored in the liver of ITCH knockout mice, ACADSB mRNA and protein are restored, and BCAA levels are normalized both in liver and plasma CONCLUSIONS: Our data support a novel functional role for ITCH in the hepatic regulation of BCAA metabolism and suggest that targeting ITCH in a liver-specific manner might help delay the progression of metabolic hepatic diseases and insulin resistance.
Department of Biosciences Nottingham Trent University Nottingham NG11 8NS United Kingdom
Department of Surgery University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy
Department of Systems Medicine University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy
European Brain Research Institute Via del Fosso del Cavaliere 100 00131 Rome Italy
International Clinical Research Center London United Kingdom
Zobrazit více v PubMed
Newgard C.B., An J., Bain J.R., Muehlbauer M.J., Stevens R.D., Lien L.F., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism. 2009;9(4):311–326. PubMed PMC
Hoyles L., Fernández-Real J.M., Federici M., Serino M., Abbott J., Charpentier J., et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Natura Med. 2018;24(7):1070–1080. PubMed PMC
Jang C., Oh S.F., Wada S., Rowe G.C., Liu L., Chan M.C., et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Natura Med. 2016;22(4):421–426. PubMed PMC
Gannon N.P., Schnuck J.K., Vaughan R.A. BCAA metabolism and insulin sensitivity - dysregulated by metabolic status? Molecular Nutrition & Food Research. 2018;62(6) PubMed
Zhao H., Zhang F., Sun D., Wang X., Zhang X., Zhang J., et al. Branched-chain amino acids exacerbate obesity-related hepatic glucose and lipid metabolic disorders via attenuating Akt2 signaling. Diabetes. 2020;69(6):1164–1177. PubMed
Zhang Z.Y., Monleon D., Verhamme P., Staessen J.A. Branched-chain amino acids as critical switches in health and disease. Hypertension. 2018;72(5):1012–1022. PubMed
Neinast M.D., Jang C., Hui S., Murashige D.S., Chu Q., Morscher R.J., et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metabolism. 2019;29(2):417–429. e4. PubMed PMC
Cummings N.E., Williams E.M., Kasza I., Konon E.N., Schaid M.D., Schmidt B.A., et al. Restoration of metabolic health by decreased consumption of branched-chain amino acids. Journal of Physiology. 2018;596(4):623–645. PubMed PMC
Yu D., Richardson N.E., Green C.L., Spicer A.B., Murphy M.E., Flores V., et al. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell Metabolism. 2021;33(5):905–922.e6. PubMed PMC
Zhang T., Kho D.H., Wang Y., Harazono Y., Nakajima K., Xie Y., et al. Gp78, an E3 ubiquitin ligase acts as a gatekeeper suppressing nonalcoholic steatohepatitis (NASH) and liver cancer. PLoS One. 2015;10(3) PubMed PMC
Yamada T., Murata D., Adachi Y., Itoh K., Kameoka S., Igarashi A., et al. Mitochondrial stasis reveals p62-mediated ubiquitination in parkin-independent mitophagy and mitigates nonalcoholic fatty liver disease. Cell Metabolism. 2018;28(4):588–604. e5. PubMed PMC
Lee M.S., Han H.J., Han S.Y., Kim I.Y., Chae S., Lee C.S., et al. Loss of the E3 ubiquitin ligase MKRN1 represses diet-induced metabolic syndrome through AMPK activation. Nature Communications. 2018;9(1):3404. PubMed PMC
Zhu K., Tang Y., Xu X., Dang H., Tang L.Y., Wang X., et al. Non-proteolytic ubiquitin modification of PPARγ by Smurf1 protects the liver from steatosis. PLoS Biology. 2018;16(12) PubMed PMC
Smyth G.K. In: Bioinformatics and computational biology solutions using R and bioconductor. Statistics for biology and health. Gentleman R., Carey V.J., Huber W., Irizarry R.A., Dudoit S., editors. Springer; New York, NY: 2005. Limma: linear models for microarray data.
Wu D., Smyth G.K. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Research. 2012;40(17):e133. PubMed PMC
Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B. 1995;57(1):289–300.
Chen E.Y., Tan C.M., Kou Y., Duan Q., Wang Z., Meirelles G.V., et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128. PubMed PMC
Kuleshov M.V., Jones M.R., Rouillard A.D., Fernandez N.F., Duan Q., Wang Z., et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research. 2016;44(W1):W90–W97. PubMed PMC
Blaise B.J., Giacomotto J., Elena B., Dumas M.E., Toulhoat P., Ségalat L., et al. Metabotyping of Caenorhabditis elegans reveals latent phenotypes. Proceedings of the National Academy of Sciences of the U S A. 2007;104(50):19808–19812. PubMed PMC
Dumas M.E., Barton R.H., Toye A., Cloarec O., Blancher C., Rothwell A., et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(33):12511–12516. PubMed PMC
Marino A., Menghini R., Fabrizi M., Casagrande V., Mavilio M., Stoehr R., et al. ITCH deficiency protects from diet-induced obesity. Diabetes. 2014;63(2):550–561. PubMed
Fang D., Elly C., Gao B., Fang N., Altman Y., Joazeiro C., et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nature Immunology. 2002;3(3):281–287. PubMed
Zhang H., Xing L. Ubiquitin e3 ligase itch negatively regulates osteoblast differentiation from mesenchymal progenitor cells. Stem Cells. 2013;31(8):1574–1583. PubMed PMC
Liu J., Li X., Zhang H., Gu R., Wang Z., Gao Z., et al. Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins. Bone Joint Res. 2017;6(3):154–161. PubMed PMC
Kirsch R., Clarkson V., Shephard E.G., Marais D.A., Jaffer M.A., Woodburne V.E., et al. Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. Journal of Gastroenterology and Hepatology. 2003;18(11):1272–1282. PubMed
Lee Y.H., Kim S.H., Kim S.N., Kwon H.J., Kim J.D., Oh J.Y., et al. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease. Oncotarget. 2016;7(30):46959–46971. PubMed PMC
Wu C.W., Chu E.S., Lam C.N., Cheng A.S., Lee C.W., Wong V.W., et al. PPARgamma is essential for protection against nonalcoholic steatohepatitis. Gene Therapy. 2010;17(6):790–798. PubMed
Nan Y., Wang R., Zhao S., Han F., Wu W.J., Kong L., et al. Heme oxygenase-1 prevents non-alcoholic steatohepatitis through suppressing hepatocyte apoptosis in mice. Lipids in Health and Disease. 2010;9:124. PubMed PMC
Li Q., Liu B., Breitkopf-Heinlein K., Weng H., Jiang Q., Dong P., et al. Adenovirus-mediated overexpression of bone morphogenetic protein-9 promotes methionine choline deficiency-induced non-alcoholic steatohepatitis in non-obese mice. Molecular Medicine Reports. 2019;20(3):2743–2753. PubMed PMC
He Y., Rodrigues R.M., Wang X., Seo W., Ma J., Hwang S., et al. Neutrophil-to-hepatocyte communication via LDLR-dependent miR-223-enriched extracellular vesicle transfer ameliorates nonalcoholic steatohepatitis. Journal of Clinical Investigation. 2021;131(3) PubMed PMC
Casagrande V., Mauriello A., Bischetti S., Mavilio M., Federici M., Menghini R. Hepatocyte specific TIMP3 expression prevents diet dependent fatty liver disease and hepatocellular carcinoma. Scientific Reports. 2017;7(1):6747. PubMed PMC
Stöhr R., Mavilio M., Marino A., Casagrande V., Kappel B., Möllmann J., et al. ITCH modulates SIRT6 and SREBP2 to influence lipid metabolism and atherosclerosis in ApoE null mice. Scientific Reports. 2015;5:9023. PubMed PMC
Aki D., Zhang W., Liu Y.C. The E3 ligase Itch in immune regulation and beyond. Immunological Reviews. 2015;266(1):6–26. PubMed
Venuprasad K., Zeng M., Baughan S.L., Massoumi R. Multifaceted role of the ubiquitin ligase Itch in immune regulation. Immunology & Cell Biology. 2015;93(5):452–460. PubMed
Bedossa P., Tordjman J., Aron-Wisnewsky J., Poitou C., Oppert J.M., Torcivia A., et al. Systematic review of bariatric surgery liver biopsies clarifies the natural history of liver disease in patients with severe obesity. Gut. 2017;66(9):1688–1696. PubMed
Rappa F., Greco A., Podrini C., Cappello F., Foti M., Bourgoin L., et al. Immunopositivity for histone macroH2A1 isoforms marks steatosis-associated hepatocellular carcinoma. PLoS One. 2013;8(1) PubMed PMC
Lu S.C., Mato J.M. S-adenosylmethionine in liver health, injury, and cancer. Physiological Reviews. 2012;92(4):1515–1542. PubMed PMC
Park E.J., Lee J.H., Yu G.Y., He G., Ali S.R., Holzer R.G., et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140(2):197–208. PubMed PMC
Field N.S., Moser E.K., Oliver P.M.J. Itch regulation of innate and adaptive immune responses in mice and humans. Leukoc Biol. 2020;108(1):353–362. PubMed PMC
Masoodi M., Gastaldelli A., Hyötyläinen T., Arretxe E., Alonso C., Gaggini M., et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nature Reviews Gastroenterology & Hepatology. 2021 doi: 10.1038/s41575-021-00502-9. PubMed DOI
Teufel A., Itzel T., Erhart W., Brosch M., Wang X.Y., Kim Y.O., et al. Comparison of gene expression patterns between mouse models of nonalcoholic fatty liver disease and liver tissues from patients. Gastroenterology. 2016;151(3):513–525.e0. PubMed
Abdul Rahim M.B.H., Chilloux J., Martinez-Gili L., Neves A.L., Myridakis A., Gooderham N., et al. Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles. Acta Diabetologica. 2019;56(5):493–500. PubMed PMC
Mayneris-Perxachs J., Cardellini M., Hoyles L., Latorre J., Davato F., Moreno-Navarrete J.M., et al. Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome. Microbiome. 2021;9(1):104. PubMed PMC
von Schönfels W., Patsenker E., Fahrner R., Itzel T., Hinrichsen H., Brosch M., et al. Metabolomic tissue signature in human non-alcoholic fatty liver disease identifies protective candidate metabolites. Liver International. 2015;35(1):207–214. PubMed
Lake A.D., Novak P., Shipkova P., Aranibar N., Robertson D.G., Reily M.D., et al. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids. 2015;47(3):603–615. PubMed PMC
White P.J., McGarrah R.W., Herman M.A., Bain J.R., Shah S.H., Newgard C.B. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Molecular Metabolism. 2021;52:101261. PubMed PMC
Bernassola F., Chillemi G., Melino G. HECT-type E3 ubiquitin ligases in cancer. Trends in biochemical sciences. 2019;44(12):1057–1075. PubMed
Melino G., Cecconi F., Pelicci P.G., Mak T.W., Bernassola F. Emerging roles of HECT-type E3 ubiquitin ligases in autophagy regulation. Mol Oncol. 2019;13(10):2033–2048. PubMed PMC
Karusheva Y., Koessler T., Strassburger K., Markgraf D., Mastrototaro L., Jelenik T., et al. Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: a randomised controlled crossover trial. American Journal of Clinical Nutrition. 2019;110(5):1098–1107. PubMed PMC
White P.J., Lapworth A.L., An J., Wang L., McGarrah R.W., Stevens R.D., et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Molecular Metabolism. 2016;5(7):538–551. PubMed PMC
Lee J., Vijayakumar A., White P.J., Xu Y., Ilkayeva O., Lynch C.J., et al. BCAA supplementation in mice with diet-induced obesity alters the metabolome without impairing glucose homeostasis. Endocrinology. 2021;162(7):bqab062. PubMed PMC
Maida A., Chan J.S.K., Sjøberg K.A., Zota A., Schmoll D., Kiens B., et al. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution. Molecular Metabolism. 2017;6(8):873–881. PubMed PMC
Buzzetti E., Pinzani M., Tsochatzis E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) Metabolism. 2016;65(8):1038–1048. PubMed
Kleine-Eggebrecht N., Staufner C., Kathemann S., Elgizouli M., Kopajtich R., Prokisch H., et al. Mutation in ITCH gene can cause syndromic multisystem Autoimmune disease with acute liver failure. Pediatrics. 2019;143(2) PubMed
Lohr N.J., Molleston J.P., Strauss K.A., Torres-Martinez W., Sherman E.A., Squires R.H., et al. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease. The American Journal of Human Genetics. 2010;86(3):447–453. PubMed PMC
Neinast M., Murashige D., Arany Z. Branched chain amino acids. Annual Review of Physiology. 2019;81:139–164. PubMed PMC
Neinast M.D., Jang C., Hui S., Murashige D.S., Chu Q., Morscher R.J., et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metabolism. 2019;29(2):417–429.e4. PubMed PMC
Liu S., Li L., Lou P., Zhao M., Wang Y., Tang M., et al. Elevated branched-chain α-keto acids exacerbate macrophage oxidative stress and chronic inflammatory damage in type 2 diabetes mellitus. Free Radical Biology and Medicine. 2021;175:141–154. PubMed
Papathanassiu A.E., Ko J.H., Imprialou M., Bagnati M., Srivastava P.K., Vu H.A., et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nature Communications. 2017;8:16040. PubMed PMC
Hooper C., Puttamadappa S.S., Loring Z., Shekhtman A., Bakowska J.C. Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biology. 2010;8:72. PubMed PMC
Griffin J.D., Bejarano E., Wang X.D., Greenberg A.S. Integrated action of autophagy and adipose tissue triglyceride lipase ameliorates diet-induced hepatic steatosis in liver-specific PLIN2 knockout mice. Cells. 2021;10(5):1016. PubMed PMC
Nocetti D., Espinosa A., Pino-De la Fuente F., Sacristán C., Bucarey J.L., Ruiz P., et al. Lipid droplets are both highly oxidized and Plin2-covered in hepatocytes of diet-induced obese mice. Applied Physiology Nutrition and Metabolism. 2020;45(12):1368–1376. PubMed
Jin Y., Tan Y., Chen L., Liu Y., Ren Z. Reactive oxygen species induces lipid droplet accumulation in HepG2 cells by increasing perilipin 2 expression. International Journal of Molecular Sciences. 2018;19(11):3445. PubMed PMC
Conte M., Franceschi C., Sandri M., Salvioli S. Perilipin 2 and age-related metabolic diseases: a new perspective. Trends in Endocrinology and Metabolism. 2016;27(12):893–903. PubMed
Robichaud S., Fairman G., Vijithakumar V., Mak E., Cook D.P., Pelletier A.R., et al. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy. 2021;26:1–19. PubMed PMC
Filali-Mouncef Y., Hunter C., Roccio F., Zagkou S., Dupont N., Primard C., et al. The menage a trois of autophagy, lipid droplets and liver disease. Autophagy. 2021;2:1–24. PubMed PMC
Li F., Ma K., Sun M., Shi S. Identification of the tumor-suppressive function of circular RNA ITCH in glioma cells through sponging miR-214 and promoting linear ITCH expression. Am J Transl Res. 2018;10(5):1373–1386. PubMed PMC
Li F., Zhang L., Li W., Deng J., Zheng J., An M., et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway. Oncotarget. 2015;6(8):6001–6013. PubMed PMC
Li Y., Ge Y.Z., Xu L., Jia R. Circular RNA ITCH: a novel tumor suppressor in multiple cancers. Life Sciences. 2020;254:117176. PubMed
Yang B., Zhao J., Huo T., Zhang M., Wu X. Effects of CircRNA-ITCH on proliferation and apoptosis of hepatocellular carcinoma cells through inhibiting Wnt/beta-catenin signaling pathway. J BUON. 2020;25(3):1368–1374. PubMed
Wu M., Deng X., Zhong Y., Hu L., Zhang X., Liang Y., et al. MafF is regulated via the circ-ITCH/miR-224-5p Axis and acts as a tumor suppressor in hepatocellular carcinoma. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics. 2020;28(3):299–309. PubMed PMC
Guo W., Zhang J., Zhang D., Cao S., Li G., Zhang S., et al. Polymorphisms and expression pattern of circular RNA circ-ITCH contributes to the carcinogenesis of hepatocellular carcinoma. Oncotarget. 2017;8(29):48169–48177. PubMed PMC