ITCH E3 ubiquitin ligase downregulation compromises hepatic degradation of branched-chain amino acids

. 2022 May ; 59 () : 101454. [epub] 20220209

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35150905

Grantová podpora
MR/L01632X/1 Medical Research Council - United Kingdom
Department of Health - United Kingdom

Odkazy

PubMed 35150905
PubMed Central PMC8886057
DOI 10.1016/j.molmet.2022.101454
PII: S2212-8778(22)00023-0
Knihovny.cz E-zdroje

Metabolic syndrome, obesity, and steatosis are characterized by a range of dysregulations including defects in ubiquitin ligase tagging proteins for degradation. The identification of novel hepatic genes associated with fatty liver disease and metabolic dysregulation may be relevant to unravelling new mechanisms involved in liver disease progression METHODS: Through integrative analysis of liver transcriptomic and metabolomic obtained from obese subjects with steatosis, we identified itchy E ubiquitin protein ligase (ITCH) as a gene downregulated in human hepatic tissue in relation to steatosis grade. Wild-type or ITCH knockout mouse models of non-alcoholic fatty liver disease (NAFLD) and obesity-related hepatocellular carcinoma were analyzed to dissect the causal role of ITCH in steatosis RESULTS: We show that ITCH regulation of branched-chain amino acids (BCAAs) degradation enzymes is impaired in obese women with grade 3 compared with grade 0 steatosis, and that ITCH acts as a gatekeeper whose loss results in elevation of circulating BCAAs associated with hepatic steatosis. When ITCH expression was specifically restored in the liver of ITCH knockout mice, ACADSB mRNA and protein are restored, and BCAA levels are normalized both in liver and plasma CONCLUSIONS: Our data support a novel functional role for ITCH in the hepatic regulation of BCAA metabolism and suggest that targeting ITCH in a liver-specific manner might help delay the progression of metabolic hepatic diseases and insulin resistance.

Department of Biosciences Nottingham Trent University Nottingham NG11 8NS United Kingdom

Department of Diabetes Endocrinology and Nutrition University Hospital of Girona 'Dr Josep Trueta' Institut d'Investigacio Biomedica de Girona IdibGi; and CIBER Fisiopatologia de la Obesidad y Nutricion Girona Spain

Department of Diabetes Endocrinology and Nutrition University Hospital of Girona 'Dr Josep Trueta' Institut d'Investigacio Biomedica de Girona IdibGi; and CIBER Fisiopatologia de la Obesidad y Nutricion Girona Spain; Department of Medical Sciences School of Medicine University of Girona Spain

Department of Experimental Medicine University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy

Department of Surgery University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy

Department of Systems Medicine University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy

Department of Systems Medicine University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy; Center for Atherosclerosis University Hospital Policlinico Tor Vergata Italy

European Brain Research Institute Via del Fosso del Cavaliere 100 00131 Rome Italy

Imperial College London Section of Biomolecular Medicine Division of Systems Medicine Department of Metabolism Digestion and Reproduction Imperial College London Exhibition Road London SW7 2AZ United Kingdom

Imperial College London Section of Biomolecular Medicine Division of Systems Medicine Department of Metabolism Digestion and Reproduction Imperial College London Exhibition Road London SW7 2AZ United Kingdom; Section of Genomic and Environmental Medicine Respiratory Division National Heart and Lung Institute Imperial College London Dovehouse St London SW3 6LY United Kingdom; European Genomic Institute for Diabetes CNRS UMR 8199 INSERM UMR 1283 Institut Pasteur de Lille Lille University Hospital University of Lille 59045 Lille France; McGill University and Genome Quebec Innovation Centre 740 Doctor Penfield Avenue Montréal QC H3A 0G1 Canada

INSERM and University Paul Sabatier Institut des Maladies Métaboliques et Cardiovasculaires INSERM U1048 F 31432 Toulouse France and Université Paul Sabatier F 31432 Toulouse France

International Clinical Research Center London United Kingdom

Section of Human Anatomy Department of Biomedicine Neuroscience and Advanced Diagnostic Palermo Italy

Zobrazit více v PubMed

Newgard C.B., An J., Bain J.R., Muehlbauer M.J., Stevens R.D., Lien L.F., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism. 2009;9(4):311–326. PubMed PMC

Hoyles L., Fernández-Real J.M., Federici M., Serino M., Abbott J., Charpentier J., et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Natura Med. 2018;24(7):1070–1080. PubMed PMC

Jang C., Oh S.F., Wada S., Rowe G.C., Liu L., Chan M.C., et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Natura Med. 2016;22(4):421–426. PubMed PMC

Gannon N.P., Schnuck J.K., Vaughan R.A. BCAA metabolism and insulin sensitivity - dysregulated by metabolic status? Molecular Nutrition & Food Research. 2018;62(6) PubMed

Zhao H., Zhang F., Sun D., Wang X., Zhang X., Zhang J., et al. Branched-chain amino acids exacerbate obesity-related hepatic glucose and lipid metabolic disorders via attenuating Akt2 signaling. Diabetes. 2020;69(6):1164–1177. PubMed

Zhang Z.Y., Monleon D., Verhamme P., Staessen J.A. Branched-chain amino acids as critical switches in health and disease. Hypertension. 2018;72(5):1012–1022. PubMed

Neinast M.D., Jang C., Hui S., Murashige D.S., Chu Q., Morscher R.J., et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metabolism. 2019;29(2):417–429. e4. PubMed PMC

Cummings N.E., Williams E.M., Kasza I., Konon E.N., Schaid M.D., Schmidt B.A., et al. Restoration of metabolic health by decreased consumption of branched-chain amino acids. Journal of Physiology. 2018;596(4):623–645. PubMed PMC

Yu D., Richardson N.E., Green C.L., Spicer A.B., Murphy M.E., Flores V., et al. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell Metabolism. 2021;33(5):905–922.e6. PubMed PMC

Zhang T., Kho D.H., Wang Y., Harazono Y., Nakajima K., Xie Y., et al. Gp78, an E3 ubiquitin ligase acts as a gatekeeper suppressing nonalcoholic steatohepatitis (NASH) and liver cancer. PLoS One. 2015;10(3) PubMed PMC

Yamada T., Murata D., Adachi Y., Itoh K., Kameoka S., Igarashi A., et al. Mitochondrial stasis reveals p62-mediated ubiquitination in parkin-independent mitophagy and mitigates nonalcoholic fatty liver disease. Cell Metabolism. 2018;28(4):588–604. e5. PubMed PMC

Lee M.S., Han H.J., Han S.Y., Kim I.Y., Chae S., Lee C.S., et al. Loss of the E3 ubiquitin ligase MKRN1 represses diet-induced metabolic syndrome through AMPK activation. Nature Communications. 2018;9(1):3404. PubMed PMC

Zhu K., Tang Y., Xu X., Dang H., Tang L.Y., Wang X., et al. Non-proteolytic ubiquitin modification of PPARγ by Smurf1 protects the liver from steatosis. PLoS Biology. 2018;16(12) PubMed PMC

Smyth G.K. In: Bioinformatics and computational biology solutions using R and bioconductor. Statistics for biology and health. Gentleman R., Carey V.J., Huber W., Irizarry R.A., Dudoit S., editors. Springer; New York, NY: 2005. Limma: linear models for microarray data.

Wu D., Smyth G.K. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Research. 2012;40(17):e133. PubMed PMC

Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B. 1995;57(1):289–300.

Chen E.Y., Tan C.M., Kou Y., Duan Q., Wang Z., Meirelles G.V., et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128. PubMed PMC

Kuleshov M.V., Jones M.R., Rouillard A.D., Fernandez N.F., Duan Q., Wang Z., et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research. 2016;44(W1):W90–W97. PubMed PMC

Blaise B.J., Giacomotto J., Elena B., Dumas M.E., Toulhoat P., Ségalat L., et al. Metabotyping of Caenorhabditis elegans reveals latent phenotypes. Proceedings of the National Academy of Sciences of the U S A. 2007;104(50):19808–19812. PubMed PMC

Dumas M.E., Barton R.H., Toye A., Cloarec O., Blancher C., Rothwell A., et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(33):12511–12516. PubMed PMC

Marino A., Menghini R., Fabrizi M., Casagrande V., Mavilio M., Stoehr R., et al. ITCH deficiency protects from diet-induced obesity. Diabetes. 2014;63(2):550–561. PubMed

Fang D., Elly C., Gao B., Fang N., Altman Y., Joazeiro C., et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nature Immunology. 2002;3(3):281–287. PubMed

Zhang H., Xing L. Ubiquitin e3 ligase itch negatively regulates osteoblast differentiation from mesenchymal progenitor cells. Stem Cells. 2013;31(8):1574–1583. PubMed PMC

Liu J., Li X., Zhang H., Gu R., Wang Z., Gao Z., et al. Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins. Bone Joint Res. 2017;6(3):154–161. PubMed PMC

Kirsch R., Clarkson V., Shephard E.G., Marais D.A., Jaffer M.A., Woodburne V.E., et al. Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. Journal of Gastroenterology and Hepatology. 2003;18(11):1272–1282. PubMed

Lee Y.H., Kim S.H., Kim S.N., Kwon H.J., Kim J.D., Oh J.Y., et al. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease. Oncotarget. 2016;7(30):46959–46971. PubMed PMC

Wu C.W., Chu E.S., Lam C.N., Cheng A.S., Lee C.W., Wong V.W., et al. PPARgamma is essential for protection against nonalcoholic steatohepatitis. Gene Therapy. 2010;17(6):790–798. PubMed

Nan Y., Wang R., Zhao S., Han F., Wu W.J., Kong L., et al. Heme oxygenase-1 prevents non-alcoholic steatohepatitis through suppressing hepatocyte apoptosis in mice. Lipids in Health and Disease. 2010;9:124. PubMed PMC

Li Q., Liu B., Breitkopf-Heinlein K., Weng H., Jiang Q., Dong P., et al. Adenovirus-mediated overexpression of bone morphogenetic protein-9 promotes methionine choline deficiency-induced non-alcoholic steatohepatitis in non-obese mice. Molecular Medicine Reports. 2019;20(3):2743–2753. PubMed PMC

He Y., Rodrigues R.M., Wang X., Seo W., Ma J., Hwang S., et al. Neutrophil-to-hepatocyte communication via LDLR-dependent miR-223-enriched extracellular vesicle transfer ameliorates nonalcoholic steatohepatitis. Journal of Clinical Investigation. 2021;131(3) PubMed PMC

Casagrande V., Mauriello A., Bischetti S., Mavilio M., Federici M., Menghini R. Hepatocyte specific TIMP3 expression prevents diet dependent fatty liver disease and hepatocellular carcinoma. Scientific Reports. 2017;7(1):6747. PubMed PMC

Stöhr R., Mavilio M., Marino A., Casagrande V., Kappel B., Möllmann J., et al. ITCH modulates SIRT6 and SREBP2 to influence lipid metabolism and atherosclerosis in ApoE null mice. Scientific Reports. 2015;5:9023. PubMed PMC

Aki D., Zhang W., Liu Y.C. The E3 ligase Itch in immune regulation and beyond. Immunological Reviews. 2015;266(1):6–26. PubMed

Venuprasad K., Zeng M., Baughan S.L., Massoumi R. Multifaceted role of the ubiquitin ligase Itch in immune regulation. Immunology & Cell Biology. 2015;93(5):452–460. PubMed

Bedossa P., Tordjman J., Aron-Wisnewsky J., Poitou C., Oppert J.M., Torcivia A., et al. Systematic review of bariatric surgery liver biopsies clarifies the natural history of liver disease in patients with severe obesity. Gut. 2017;66(9):1688–1696. PubMed

Rappa F., Greco A., Podrini C., Cappello F., Foti M., Bourgoin L., et al. Immunopositivity for histone macroH2A1 isoforms marks steatosis-associated hepatocellular carcinoma. PLoS One. 2013;8(1) PubMed PMC

Lu S.C., Mato J.M. S-adenosylmethionine in liver health, injury, and cancer. Physiological Reviews. 2012;92(4):1515–1542. PubMed PMC

Park E.J., Lee J.H., Yu G.Y., He G., Ali S.R., Holzer R.G., et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140(2):197–208. PubMed PMC

Field N.S., Moser E.K., Oliver P.M.J. Itch regulation of innate and adaptive immune responses in mice and humans. Leukoc Biol. 2020;108(1):353–362. PubMed PMC

Masoodi M., Gastaldelli A., Hyötyläinen T., Arretxe E., Alonso C., Gaggini M., et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nature Reviews Gastroenterology & Hepatology. 2021 doi: 10.1038/s41575-021-00502-9. PubMed DOI

Teufel A., Itzel T., Erhart W., Brosch M., Wang X.Y., Kim Y.O., et al. Comparison of gene expression patterns between mouse models of nonalcoholic fatty liver disease and liver tissues from patients. Gastroenterology. 2016;151(3):513–525.e0. PubMed

Abdul Rahim M.B.H., Chilloux J., Martinez-Gili L., Neves A.L., Myridakis A., Gooderham N., et al. Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles. Acta Diabetologica. 2019;56(5):493–500. PubMed PMC

Mayneris-Perxachs J., Cardellini M., Hoyles L., Latorre J., Davato F., Moreno-Navarrete J.M., et al. Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome. Microbiome. 2021;9(1):104. PubMed PMC

von Schönfels W., Patsenker E., Fahrner R., Itzel T., Hinrichsen H., Brosch M., et al. Metabolomic tissue signature in human non-alcoholic fatty liver disease identifies protective candidate metabolites. Liver International. 2015;35(1):207–214. PubMed

Lake A.D., Novak P., Shipkova P., Aranibar N., Robertson D.G., Reily M.D., et al. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids. 2015;47(3):603–615. PubMed PMC

White P.J., McGarrah R.W., Herman M.A., Bain J.R., Shah S.H., Newgard C.B. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Molecular Metabolism. 2021;52:101261. PubMed PMC

Bernassola F., Chillemi G., Melino G. HECT-type E3 ubiquitin ligases in cancer. Trends in biochemical sciences. 2019;44(12):1057–1075. PubMed

Melino G., Cecconi F., Pelicci P.G., Mak T.W., Bernassola F. Emerging roles of HECT-type E3 ubiquitin ligases in autophagy regulation. Mol Oncol. 2019;13(10):2033–2048. PubMed PMC

Karusheva Y., Koessler T., Strassburger K., Markgraf D., Mastrototaro L., Jelenik T., et al. Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: a randomised controlled crossover trial. American Journal of Clinical Nutrition. 2019;110(5):1098–1107. PubMed PMC

White P.J., Lapworth A.L., An J., Wang L., McGarrah R.W., Stevens R.D., et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Molecular Metabolism. 2016;5(7):538–551. PubMed PMC

Lee J., Vijayakumar A., White P.J., Xu Y., Ilkayeva O., Lynch C.J., et al. BCAA supplementation in mice with diet-induced obesity alters the metabolome without impairing glucose homeostasis. Endocrinology. 2021;162(7):bqab062. PubMed PMC

Maida A., Chan J.S.K., Sjøberg K.A., Zota A., Schmoll D., Kiens B., et al. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution. Molecular Metabolism. 2017;6(8):873–881. PubMed PMC

Buzzetti E., Pinzani M., Tsochatzis E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) Metabolism. 2016;65(8):1038–1048. PubMed

Kleine-Eggebrecht N., Staufner C., Kathemann S., Elgizouli M., Kopajtich R., Prokisch H., et al. Mutation in ITCH gene can cause syndromic multisystem Autoimmune disease with acute liver failure. Pediatrics. 2019;143(2) PubMed

Lohr N.J., Molleston J.P., Strauss K.A., Torres-Martinez W., Sherman E.A., Squires R.H., et al. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease. The American Journal of Human Genetics. 2010;86(3):447–453. PubMed PMC

Neinast M., Murashige D., Arany Z. Branched chain amino acids. Annual Review of Physiology. 2019;81:139–164. PubMed PMC

Neinast M.D., Jang C., Hui S., Murashige D.S., Chu Q., Morscher R.J., et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metabolism. 2019;29(2):417–429.e4. PubMed PMC

Liu S., Li L., Lou P., Zhao M., Wang Y., Tang M., et al. Elevated branched-chain α-keto acids exacerbate macrophage oxidative stress and chronic inflammatory damage in type 2 diabetes mellitus. Free Radical Biology and Medicine. 2021;175:141–154. PubMed

Papathanassiu A.E., Ko J.H., Imprialou M., Bagnati M., Srivastava P.K., Vu H.A., et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nature Communications. 2017;8:16040. PubMed PMC

Hooper C., Puttamadappa S.S., Loring Z., Shekhtman A., Bakowska J.C. Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biology. 2010;8:72. PubMed PMC

Griffin J.D., Bejarano E., Wang X.D., Greenberg A.S. Integrated action of autophagy and adipose tissue triglyceride lipase ameliorates diet-induced hepatic steatosis in liver-specific PLIN2 knockout mice. Cells. 2021;10(5):1016. PubMed PMC

Nocetti D., Espinosa A., Pino-De la Fuente F., Sacristán C., Bucarey J.L., Ruiz P., et al. Lipid droplets are both highly oxidized and Plin2-covered in hepatocytes of diet-induced obese mice. Applied Physiology Nutrition and Metabolism. 2020;45(12):1368–1376. PubMed

Jin Y., Tan Y., Chen L., Liu Y., Ren Z. Reactive oxygen species induces lipid droplet accumulation in HepG2 cells by increasing perilipin 2 expression. International Journal of Molecular Sciences. 2018;19(11):3445. PubMed PMC

Conte M., Franceschi C., Sandri M., Salvioli S. Perilipin 2 and age-related metabolic diseases: a new perspective. Trends in Endocrinology and Metabolism. 2016;27(12):893–903. PubMed

Robichaud S., Fairman G., Vijithakumar V., Mak E., Cook D.P., Pelletier A.R., et al. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy. 2021;26:1–19. PubMed PMC

Filali-Mouncef Y., Hunter C., Roccio F., Zagkou S., Dupont N., Primard C., et al. The menage a trois of autophagy, lipid droplets and liver disease. Autophagy. 2021;2:1–24. PubMed PMC

Li F., Ma K., Sun M., Shi S. Identification of the tumor-suppressive function of circular RNA ITCH in glioma cells through sponging miR-214 and promoting linear ITCH expression. Am J Transl Res. 2018;10(5):1373–1386. PubMed PMC

Li F., Zhang L., Li W., Deng J., Zheng J., An M., et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway. Oncotarget. 2015;6(8):6001–6013. PubMed PMC

Li Y., Ge Y.Z., Xu L., Jia R. Circular RNA ITCH: a novel tumor suppressor in multiple cancers. Life Sciences. 2020;254:117176. PubMed

Yang B., Zhao J., Huo T., Zhang M., Wu X. Effects of CircRNA-ITCH on proliferation and apoptosis of hepatocellular carcinoma cells through inhibiting Wnt/beta-catenin signaling pathway. J BUON. 2020;25(3):1368–1374. PubMed

Wu M., Deng X., Zhong Y., Hu L., Zhang X., Liang Y., et al. MafF is regulated via the circ-ITCH/miR-224-5p Axis and acts as a tumor suppressor in hepatocellular carcinoma. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics. 2020;28(3):299–309. PubMed PMC

Guo W., Zhang J., Zhang D., Cao S., Li G., Zhang S., et al. Polymorphisms and expression pattern of circular RNA circ-ITCH contributes to the carcinogenesis of hepatocellular carcinoma. Oncotarget. 2017;8(29):48169–48177. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace