Three-Step Enzymatic Remodeling of Chitin into Bioactive Chitooligomers

. 2024 Jul 17 ; 72 (28) : 15613-15623. [epub] 20240708

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38978453

Here we describe a complex enzymatic approach to the efficient transformation of abundant waste chitin, a byproduct of the food industry, into valuable chitooligomers with a degree of polymerization (DP) ranging from 6 to 11. This method involves a three-step process: initial hydrolysis of chitin using engineered variants of a novel fungal chitinase from Talaromyces flavus to generate low-DP chitooligomers, followed by an extension to the desired DP using the high-yielding Y445N variant of β-N-acetylhexosaminidase from Aspergillus oryzae, achieving yields of up to 57%. Subsequently, enzymatic deacetylation of chitooligomers with DP 6 and 7 was accomplished using peptidoglycan deacetylase from Bacillus subtilis BsPdaC. The innovative enzymatic procedure demonstrates a sustainable and feasible route for converting waste chitin into unavailable bioactive chitooligomers potentially applicable as natural pesticides in ecological and sustainable agriculture.

Zobrazit více v PubMed

Liaqat F.; Eltem R. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr. Polym. 2018, 184, 243–259. 10.1016/j.carbpol.2017.12.067. PubMed DOI

Das S. N.; Madhuprakash J.; Sarma P. V. S. R. N.; Purushotham P.; Suma K.; Manjeet K.; Rambabu S.; El Gueddari N. E.; Moerschbacher B. M.; Podile A. R. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit. Rev. Biotechnol. 2015, 35, 29–43. 10.3109/07388551.2013.798255. PubMed DOI

Ramakrishna B.; Sarma P. V. S. R. N.; Ankati S.; Bhuvanachandra B.; Podile A. R. Elicitation of defense response by transglycosylated chitooligosaccharides in rice seedlings. Carbohydr. Res. 2021, 510, 108459.10.1016/j.carres.2021.108459. PubMed DOI

Yan N.; Chen X. Sustainability: don’t waste seafood waste. Nature 2015, 524, 155–157. 10.1038/524155a. PubMed DOI

Zhang B.; Ramonell K.; Somerville S.; Stacey G. Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant-Microbe Interact. 2002, 15, 963–970. 10.1094/MPMI.2002.15.9.963. PubMed DOI

Cabrera J. C.; Messiaen J.; Cambier P.; van Cutsem P. Size, acetylation and concentration of chitooligosaccharide elicitors determine the switch from defence involving PAL activation to cell death and water peroxide production in Arabidopsis cell suspensions. Physiol. Plant. 2006, 127, 44–56. 10.1111/j.1399-3054.2006.00677.x. DOI

dos Santos A. L. W.; El Gueddari N. E.; Trombotto S.; Moerschbacher B. M. Partially acetylated chitosan oligo- and polymers induce an oxidative burst in suspension cultured cells of the gymnosperm Araucaria angustifolia. Biomacromolecules 2008, 9, 3411–3415. 10.1021/bm801025g. PubMed DOI

Mészáros Z.; Nekvasilová P.; Bojarová P.; Křen V.; Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol. Adv. 2021, 49, 107733.10.1016/j.biotechadv.2021.107733. PubMed DOI

Li K.; Xing R.; Liu S.; Li P. Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. J. Agric. Food Chem. 2020, 68, 12203–12211. 10.1021/acs.jafc.0c05316. PubMed DOI

Coines J.; Alfonso-Prieto M.; Biarnés X.; Planas A.; Rovira C. Oxazoline or oxazolinium ion? The protonation state and conformation of the reaction intermediate of chitinase enzymes revisited. Chem.—Eur. J. 2018, 24, 19258–19265. 10.1002/chem.201803905. PubMed DOI

Cuxart I.; Coines J.; Esquivias O.; Faijes M.; Planas A.; Biarnés X.; Rovira C. Enzymatic hydrolysis of human milk oligosaccharides. The molecular mechanism of Bifidobacterium bifidum lacto-N-biosidase. ACS Catal. 2022, 12, 4737–4743. 10.1021/acscatal.2c00309. PubMed DOI PMC

Muschiol J.; Vuillemin M.; Meyer A. S.; Zeuner B. β-N-Acetylhexosaminidases for carbohydrate synthesis via trans-glycosylation. Catalysts 2020, 10, 365.10.3390/catal10040365. DOI

Mészáros Z.; Petrásková L.; Kulik N.; Pelantová H.; Bojarová P.; Křen V.; Slámová K. Hypertransglycosylating variants of the GH20 β-N-acetylhexosaminidase for the synthesis of chitooligomers. Adv. Synth. Catal. 2022, 364, 2009–2022. 10.1002/adsc.202200046. DOI

Slámová K.; Krejzová J.; Marhol P.; Kalachova L.; Kulik N.; Pelantová H.; Cvačka J.; Křen V. Synthesis of derivatized chitooligomers using transglycosidases engineered from the fungal GH20 β-N-acetylhexosaminidase. Adv. Synth. Catal. 2015, 357, 1941–1950. 10.1002/adsc.201500075. DOI

Kapešová J.; Petrásková L.; Kulik N.; Straková Z.; Bojarová P.; Markošová K.; Rebroš M.; Křen V.; Slámová K. Transglycosidase activity of glycosynthase-type mutants of a fungal GH20 β-N-acetylhexosaminidase. Int. J. Biol. Macromol. 2020, 161, 1206–1215. 10.1016/j.ijbiomac.2020.05.273. PubMed DOI

Taokaew S.; Kriangkrai W. Chitinase-assisted bioconversion of chitinous waste for development of value-added chito-oligosaccharides products. Biology 2023, 12, 87.10.3390/biology12010087. PubMed DOI PMC

Visootsat A.; Nakamura A.; Wang T.-W.; Iino R. Combined approach to engineer a highly active mutant of processive chitinase hydrolyzing crystalline chitin. ACS Omega 2020, 5, 26807–26816. 10.1021/acsomega.0c03911. PubMed DOI PMC

Xu P.; Ni Z.-F.; Zong M.-H.; Ou X.-Y.; Yang J.-G.; Lou W.-Y. Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design. Int. J. Biol. Macromol. 2020, 150, 9–15. 10.1016/j.ijbiomac.2020.02.033. PubMed DOI

Drula E.; Garron M.-L.; Dogan S.; Lombard V.; Henrissat B.; Terrapon N. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 2022, 50, D571–D577. 10.1093/nar/gkab1045. PubMed DOI PMC

Grifoll-Romero L.; Sainz-Polo M. A.; Albesa-Jové D.; Guerin M. E.; Biarnés X.; Planas A. Structure-function relationships underlying the dual N-acetylmuramic and N-acetylglucosamine specificities of the bacterial peptidoglycan deacetylase PdaC. J. Biol. Chem. 2019, 294, 19066–19080. 10.1074/jbc.RA119.009510. PubMed DOI PMC

Pascual S.; Planas A. Carbohydrate de-N-acetylases acting on structural polysaccharides and glycoconjugates. Curr. Opin. Chem. Biol. 2021, 61, 9–18. 10.1016/j.cbpa.2020.09.003. PubMed DOI

Altschul S. F.; Madden T. L.; Schäffer A. A.; Zhang J.; Zhang Z.; Miller W.; Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. 10.1093/nar/25.17.3389. PubMed DOI PMC

Berman H. M.; Westbrook J.; Feng Z.; Gilliland G.; Bhat T. N.; Weissig H.; Shindyalov I. N.; Bourne P. E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. 10.1093/nar/28.1.235. PubMed DOI PMC

Madeira F.; Pearce M.; Tivey A. R. N.; Basutkar P.; Lee J.; Edbali O.; Madhusoodanan N.; Kolesnikov A.; Lopez R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. 10.1093/nar/gkac240. PubMed DOI PMC

Waterhouse A. M.; Procter J. B.; Martin D. M. A.; Clamp M.; Barton G. J. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. 10.1093/bioinformatics/btp033. PubMed DOI PMC

Robert X.; Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. 10.1093/nar/gku316. PubMed DOI PMC

Rao F. V.; Andersen O. A.; Vora K. A.; DeMartino J. A.; van Aalten D. M. F. Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes. Chem. Biol. 2005, 12, 973–980. 10.1016/j.chembiol.2005.07.009. PubMed DOI

Liu T.; Han H.; Wang D.; Guo X.; Zhou Y.; Fukamizo T.; Yang Q. Potent fungal chitinase for the bioconversion of mycelial waste. J. Agric. Food Chem. 2020, 68, 5384–5390. 10.1021/acs.jafc.0c01342. PubMed DOI

Šali A.; Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815. 10.1006/jmbi.1993.1626. PubMed DOI

Liu T.; Zhu W.; Wang J.; Zhou Y.; Duan Y.; Qu M.; Yang Q. The deduced role of a Chitinase containing two nonsynergistic catalytic domains. Acta Crystallogr., Sect. D: Struct. Biol. 2018, 74, 30–40. 10.1107/S2059798317018289. PubMed DOI PMC

Land H.; Humble M. S. YASARA: a tool to obtain structural guidance in biocatalytic investigations. Methods Mol. Biol. 2018, 1685, 43–67. 10.1007/978-1-4939-7366-8_4. PubMed DOI

Willard L.; Ranjan A.; Zhang H.; Monzavi H.; Boyko R. F.; Sykes B. D.; Wishart D. S. VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 2003, 31, 3316–3319. 10.1093/nar/gkg565. PubMed DOI PMC

Kirschner K. N.; Yongye A. B.; Tschampel S. M.; González-Outeiriño J.; Daniels C. R.; Foley B. L.; Woods R. J. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 2008, 29, 622–655. 10.1002/jcc.20820. PubMed DOI PMC

Krieger E.; Joo K.; Lee J.; Lee J.; Raman S.; Thompson J.; Tyka M.; Baker D.; Karplus K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 2009, 77, 114–122. 10.1002/prot.22570. PubMed DOI PMC

Konagurthu A. S.; Whisstock J. C.; Stuckey P. J.; Lesk A. M. MUSTANG: a multiple structural alignment algorithm. Proteins 2006, 64, 559–574. 10.1002/prot.20921. PubMed DOI

Meekrathok J.; Kukic P.; Nielsen J. E.; Suginta W. Investigation of ionization pattern of the adjacent acidic residues in the DXDXE motif of GH-18 chitinases using theoretical pKa calculations. J. Chem. Inf. Model. 2017, 57 (3), 572–583. 10.1021/acs.jcim.6b00536. PubMed DOI

López E. D.; Arcon J. P.; Gauto D. F.; Petruk A. A.; Modenutti C. P.; Dumas V. G.; Marti M. A.; Turjanski A. G. WATCLUST: a tool for improving the design of drugs based on protein-water interactions. Bioinformatics 2015, 31, 3697–3699. 10.1093/bioinformatics/btv411. PubMed DOI

Eberhardt J.; Santos-Martins D.; Tillack A. F.; Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model. 2021, 61 (8), 3891–3898. 10.1021/acs.jcim.1c00203. PubMed DOI PMC

Aronson N. N.; Halloran B. A.; Alexyev M. F.; Amable L.; Madura J. D.; Pasupulati L.; Worth C.; Van Roey P. Family 18 chitinase–oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens Chitinase A. Biochem. J. 2003, 376, 87–95. 10.1042/bj20030273. PubMed DOI PMC

Krolicka M.; Hinz S. W. A.; Koetsier M. J.; Joosten R.; Eggink G.; van den Broek L. A. M.; Boeriu C. G. Chitinase Chi1 from Myceliophthora thermophila C1, a thermostable enzyme for chitin and chitosan depolymerization. J. Agric. Food Chem. 2018, 66, 1658–1669. 10.1021/acs.jafc.7b04032. PubMed DOI PMC

Juárez-Hernández E. O.; Casados-Vázquez L. E.; Brieba L. G.; Torres-Larios A.; Jimenez-Sandoval P.; Barboza-Corona J. E. The crystal structure of the chitinase ChiA74 of Bacillus thuringiensis has a multidomain assembly. Sci. Rep. 2019, 9, 2591.10.1038/s41598-019-39464-z. PubMed DOI PMC

Fusetti F.; von Moeller H.; Houston D.; Rozeboom H. J.; Dijkstra B. W.; Boot R. G.; Aerts J. M.; van Aalten D. M. F. Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins. J. Biol. Chem. 2002, 277, 25537–25544. 10.1074/jbc.M201636200. PubMed DOI

Drozdetskiy A.; Cole C.; Procter J.; Barton G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 2015, 43, W389–W394. 10.1093/nar/gkv332. PubMed DOI PMC

Lundemo P.; Nordberg Karlsson E.; Adlercreutz P. Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 β-glucosidase. Appl. Environ. Microbiol. 2017, 101, 1121–1131. 10.1007/s00253-016-7833-9. PubMed DOI PMC

Alsina C.; Faijes M.; Planas A. Glycosynthase-type GH18 mutant chitinases at the assisting catalytic residue for polymerization of chitooligosaccharides. Carbohydr. Res. 2019, 478, 1–9. 10.1016/j.carres.2019.04.001. PubMed DOI

Madhuprakash J.; Dalhus B.; Rani T. S.; Podile A. R.; Eijsink V. G. H.; Sørlie M. Key residues affecting transglycosylation activity in family 18 chitinases: insights into donor and acceptor subsites. Biochemistry 2018, 57, 4325–4337. 10.1021/acs.biochem.8b00381. PubMed DOI

Grifoll-Romero L.; Pascual S.; Aragunde H.; Biarnés X.; Planas A. Chitin deacetylases: structures, specificities, and biotech applications. Polymers 2018, 10, 352.10.3390/polym10040352. PubMed DOI PMC

Aragunde H.; Biarnés X.; Planas A. Substrate recognition and specificity of chitin deacetylases and related family 4 carbohydrate esterases. Int. J. Mol. Sci. 2018, 19, 412.10.3390/ijms19020412. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...