Three-Step Enzymatic Remodeling of Chitin into Bioactive Chitooligomers
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38978453
PubMed Central
PMC11261597
DOI
10.1021/acs.jafc.4c03077
Knihovny.cz E-zdroje
- Klíčová slova
- chitin, chitinase, chitooligomer, peptidoglycan deacetylase, β-N-acetylhexosaminidase,
- MeSH
- Aspergillus oryzae * enzymologie genetika metabolismus MeSH
- Bacillus subtilis genetika enzymologie chemie metabolismus MeSH
- bakteriální proteiny genetika metabolismus chemie MeSH
- biokatalýza MeSH
- chitin * metabolismus chemie MeSH
- chitinasy * metabolismus genetika chemie MeSH
- fungální proteiny * metabolismus genetika chemie MeSH
- hydrolýza MeSH
- oligosacharidy * metabolismus chemie MeSH
- Talaromyces * enzymologie genetika chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- chitin * MeSH
- chitinasy * MeSH
- fungální proteiny * MeSH
- oligosacharidy * MeSH
Here we describe a complex enzymatic approach to the efficient transformation of abundant waste chitin, a byproduct of the food industry, into valuable chitooligomers with a degree of polymerization (DP) ranging from 6 to 11. This method involves a three-step process: initial hydrolysis of chitin using engineered variants of a novel fungal chitinase from Talaromyces flavus to generate low-DP chitooligomers, followed by an extension to the desired DP using the high-yielding Y445N variant of β-N-acetylhexosaminidase from Aspergillus oryzae, achieving yields of up to 57%. Subsequently, enzymatic deacetylation of chitooligomers with DP 6 and 7 was accomplished using peptidoglycan deacetylase from Bacillus subtilis BsPdaC. The innovative enzymatic procedure demonstrates a sustainable and feasible route for converting waste chitin into unavailable bioactive chitooligomers potentially applicable as natural pesticides in ecological and sustainable agriculture.
Laboratory of Biochemistry Institut Químic de Sarrià University Ramon Llull ES 08017 Barcelona Spain
Zobrazit více v PubMed
Liaqat F.; Eltem R. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr. Polym. 2018, 184, 243–259. 10.1016/j.carbpol.2017.12.067. PubMed DOI
Das S. N.; Madhuprakash J.; Sarma P. V. S. R. N.; Purushotham P.; Suma K.; Manjeet K.; Rambabu S.; El Gueddari N. E.; Moerschbacher B. M.; Podile A. R. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit. Rev. Biotechnol. 2015, 35, 29–43. 10.3109/07388551.2013.798255. PubMed DOI
Ramakrishna B.; Sarma P. V. S. R. N.; Ankati S.; Bhuvanachandra B.; Podile A. R. Elicitation of defense response by transglycosylated chitooligosaccharides in rice seedlings. Carbohydr. Res. 2021, 510, 108459.10.1016/j.carres.2021.108459. PubMed DOI
Yan N.; Chen X. Sustainability: don’t waste seafood waste. Nature 2015, 524, 155–157. 10.1038/524155a. PubMed DOI
Zhang B.; Ramonell K.; Somerville S.; Stacey G. Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant-Microbe Interact. 2002, 15, 963–970. 10.1094/MPMI.2002.15.9.963. PubMed DOI
Cabrera J. C.; Messiaen J.; Cambier P.; van Cutsem P. Size, acetylation and concentration of chitooligosaccharide elicitors determine the switch from defence involving PAL activation to cell death and water peroxide production in Arabidopsis cell suspensions. Physiol. Plant. 2006, 127, 44–56. 10.1111/j.1399-3054.2006.00677.x. DOI
dos Santos A. L. W.; El Gueddari N. E.; Trombotto S.; Moerschbacher B. M. Partially acetylated chitosan oligo- and polymers induce an oxidative burst in suspension cultured cells of the gymnosperm Araucaria angustifolia. Biomacromolecules 2008, 9, 3411–3415. 10.1021/bm801025g. PubMed DOI
Mészáros Z.; Nekvasilová P.; Bojarová P.; Křen V.; Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol. Adv. 2021, 49, 107733.10.1016/j.biotechadv.2021.107733. PubMed DOI
Li K.; Xing R.; Liu S.; Li P. Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. J. Agric. Food Chem. 2020, 68, 12203–12211. 10.1021/acs.jafc.0c05316. PubMed DOI
Coines J.; Alfonso-Prieto M.; Biarnés X.; Planas A.; Rovira C. Oxazoline or oxazolinium ion? The protonation state and conformation of the reaction intermediate of chitinase enzymes revisited. Chem.—Eur. J. 2018, 24, 19258–19265. 10.1002/chem.201803905. PubMed DOI
Cuxart I.; Coines J.; Esquivias O.; Faijes M.; Planas A.; Biarnés X.; Rovira C. Enzymatic hydrolysis of human milk oligosaccharides. The molecular mechanism of Bifidobacterium bifidum lacto-N-biosidase. ACS Catal. 2022, 12, 4737–4743. 10.1021/acscatal.2c00309. PubMed DOI PMC
Muschiol J.; Vuillemin M.; Meyer A. S.; Zeuner B. β-N-Acetylhexosaminidases for carbohydrate synthesis via trans-glycosylation. Catalysts 2020, 10, 365.10.3390/catal10040365. DOI
Mészáros Z.; Petrásková L.; Kulik N.; Pelantová H.; Bojarová P.; Křen V.; Slámová K. Hypertransglycosylating variants of the GH20 β-N-acetylhexosaminidase for the synthesis of chitooligomers. Adv. Synth. Catal. 2022, 364, 2009–2022. 10.1002/adsc.202200046. DOI
Slámová K.; Krejzová J.; Marhol P.; Kalachova L.; Kulik N.; Pelantová H.; Cvačka J.; Křen V. Synthesis of derivatized chitooligomers using transglycosidases engineered from the fungal GH20 β-N-acetylhexosaminidase. Adv. Synth. Catal. 2015, 357, 1941–1950. 10.1002/adsc.201500075. DOI
Kapešová J.; Petrásková L.; Kulik N.; Straková Z.; Bojarová P.; Markošová K.; Rebroš M.; Křen V.; Slámová K. Transglycosidase activity of glycosynthase-type mutants of a fungal GH20 β-N-acetylhexosaminidase. Int. J. Biol. Macromol. 2020, 161, 1206–1215. 10.1016/j.ijbiomac.2020.05.273. PubMed DOI
Taokaew S.; Kriangkrai W. Chitinase-assisted bioconversion of chitinous waste for development of value-added chito-oligosaccharides products. Biology 2023, 12, 87.10.3390/biology12010087. PubMed DOI PMC
Visootsat A.; Nakamura A.; Wang T.-W.; Iino R. Combined approach to engineer a highly active mutant of processive chitinase hydrolyzing crystalline chitin. ACS Omega 2020, 5, 26807–26816. 10.1021/acsomega.0c03911. PubMed DOI PMC
Xu P.; Ni Z.-F.; Zong M.-H.; Ou X.-Y.; Yang J.-G.; Lou W.-Y. Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design. Int. J. Biol. Macromol. 2020, 150, 9–15. 10.1016/j.ijbiomac.2020.02.033. PubMed DOI
Drula E.; Garron M.-L.; Dogan S.; Lombard V.; Henrissat B.; Terrapon N. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 2022, 50, D571–D577. 10.1093/nar/gkab1045. PubMed DOI PMC
Grifoll-Romero L.; Sainz-Polo M. A.; Albesa-Jové D.; Guerin M. E.; Biarnés X.; Planas A. Structure-function relationships underlying the dual N-acetylmuramic and N-acetylglucosamine specificities of the bacterial peptidoglycan deacetylase PdaC. J. Biol. Chem. 2019, 294, 19066–19080. 10.1074/jbc.RA119.009510. PubMed DOI PMC
Pascual S.; Planas A. Carbohydrate de-N-acetylases acting on structural polysaccharides and glycoconjugates. Curr. Opin. Chem. Biol. 2021, 61, 9–18. 10.1016/j.cbpa.2020.09.003. PubMed DOI
Altschul S. F.; Madden T. L.; Schäffer A. A.; Zhang J.; Zhang Z.; Miller W.; Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. 10.1093/nar/25.17.3389. PubMed DOI PMC
Berman H. M.; Westbrook J.; Feng Z.; Gilliland G.; Bhat T. N.; Weissig H.; Shindyalov I. N.; Bourne P. E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. 10.1093/nar/28.1.235. PubMed DOI PMC
Madeira F.; Pearce M.; Tivey A. R. N.; Basutkar P.; Lee J.; Edbali O.; Madhusoodanan N.; Kolesnikov A.; Lopez R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. 10.1093/nar/gkac240. PubMed DOI PMC
Waterhouse A. M.; Procter J. B.; Martin D. M. A.; Clamp M.; Barton G. J. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. 10.1093/bioinformatics/btp033. PubMed DOI PMC
Robert X.; Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. 10.1093/nar/gku316. PubMed DOI PMC
Rao F. V.; Andersen O. A.; Vora K. A.; DeMartino J. A.; van Aalten D. M. F. Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes. Chem. Biol. 2005, 12, 973–980. 10.1016/j.chembiol.2005.07.009. PubMed DOI
Liu T.; Han H.; Wang D.; Guo X.; Zhou Y.; Fukamizo T.; Yang Q. Potent fungal chitinase for the bioconversion of mycelial waste. J. Agric. Food Chem. 2020, 68, 5384–5390. 10.1021/acs.jafc.0c01342. PubMed DOI
Šali A.; Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815. 10.1006/jmbi.1993.1626. PubMed DOI
Liu T.; Zhu W.; Wang J.; Zhou Y.; Duan Y.; Qu M.; Yang Q. The deduced role of a Chitinase containing two nonsynergistic catalytic domains. Acta Crystallogr., Sect. D: Struct. Biol. 2018, 74, 30–40. 10.1107/S2059798317018289. PubMed DOI PMC
Land H.; Humble M. S. YASARA: a tool to obtain structural guidance in biocatalytic investigations. Methods Mol. Biol. 2018, 1685, 43–67. 10.1007/978-1-4939-7366-8_4. PubMed DOI
Willard L.; Ranjan A.; Zhang H.; Monzavi H.; Boyko R. F.; Sykes B. D.; Wishart D. S. VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 2003, 31, 3316–3319. 10.1093/nar/gkg565. PubMed DOI PMC
Kirschner K. N.; Yongye A. B.; Tschampel S. M.; González-Outeiriño J.; Daniels C. R.; Foley B. L.; Woods R. J. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 2008, 29, 622–655. 10.1002/jcc.20820. PubMed DOI PMC
Krieger E.; Joo K.; Lee J.; Lee J.; Raman S.; Thompson J.; Tyka M.; Baker D.; Karplus K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 2009, 77, 114–122. 10.1002/prot.22570. PubMed DOI PMC
Konagurthu A. S.; Whisstock J. C.; Stuckey P. J.; Lesk A. M. MUSTANG: a multiple structural alignment algorithm. Proteins 2006, 64, 559–574. 10.1002/prot.20921. PubMed DOI
Meekrathok J.; Kukic P.; Nielsen J. E.; Suginta W. Investigation of ionization pattern of the adjacent acidic residues in the DXDXE motif of GH-18 chitinases using theoretical pKa calculations. J. Chem. Inf. Model. 2017, 57 (3), 572–583. 10.1021/acs.jcim.6b00536. PubMed DOI
López E. D.; Arcon J. P.; Gauto D. F.; Petruk A. A.; Modenutti C. P.; Dumas V. G.; Marti M. A.; Turjanski A. G. WATCLUST: a tool for improving the design of drugs based on protein-water interactions. Bioinformatics 2015, 31, 3697–3699. 10.1093/bioinformatics/btv411. PubMed DOI
Eberhardt J.; Santos-Martins D.; Tillack A. F.; Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model. 2021, 61 (8), 3891–3898. 10.1021/acs.jcim.1c00203. PubMed DOI PMC
Aronson N. N.; Halloran B. A.; Alexyev M. F.; Amable L.; Madura J. D.; Pasupulati L.; Worth C.; Van Roey P. Family 18 chitinase–oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens Chitinase A. Biochem. J. 2003, 376, 87–95. 10.1042/bj20030273. PubMed DOI PMC
Krolicka M.; Hinz S. W. A.; Koetsier M. J.; Joosten R.; Eggink G.; van den Broek L. A. M.; Boeriu C. G. Chitinase Chi1 from Myceliophthora thermophila C1, a thermostable enzyme for chitin and chitosan depolymerization. J. Agric. Food Chem. 2018, 66, 1658–1669. 10.1021/acs.jafc.7b04032. PubMed DOI PMC
Juárez-Hernández E. O.; Casados-Vázquez L. E.; Brieba L. G.; Torres-Larios A.; Jimenez-Sandoval P.; Barboza-Corona J. E. The crystal structure of the chitinase ChiA74 of Bacillus thuringiensis has a multidomain assembly. Sci. Rep. 2019, 9, 2591.10.1038/s41598-019-39464-z. PubMed DOI PMC
Fusetti F.; von Moeller H.; Houston D.; Rozeboom H. J.; Dijkstra B. W.; Boot R. G.; Aerts J. M.; van Aalten D. M. F. Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins. J. Biol. Chem. 2002, 277, 25537–25544. 10.1074/jbc.M201636200. PubMed DOI
Drozdetskiy A.; Cole C.; Procter J.; Barton G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 2015, 43, W389–W394. 10.1093/nar/gkv332. PubMed DOI PMC
Lundemo P.; Nordberg Karlsson E.; Adlercreutz P. Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 β-glucosidase. Appl. Environ. Microbiol. 2017, 101, 1121–1131. 10.1007/s00253-016-7833-9. PubMed DOI PMC
Alsina C.; Faijes M.; Planas A. Glycosynthase-type GH18 mutant chitinases at the assisting catalytic residue for polymerization of chitooligosaccharides. Carbohydr. Res. 2019, 478, 1–9. 10.1016/j.carres.2019.04.001. PubMed DOI
Madhuprakash J.; Dalhus B.; Rani T. S.; Podile A. R.; Eijsink V. G. H.; Sørlie M. Key residues affecting transglycosylation activity in family 18 chitinases: insights into donor and acceptor subsites. Biochemistry 2018, 57, 4325–4337. 10.1021/acs.biochem.8b00381. PubMed DOI
Grifoll-Romero L.; Pascual S.; Aragunde H.; Biarnés X.; Planas A. Chitin deacetylases: structures, specificities, and biotech applications. Polymers 2018, 10, 352.10.3390/polym10040352. PubMed DOI PMC
Aragunde H.; Biarnés X.; Planas A. Substrate recognition and specificity of chitin deacetylases and related family 4 carbohydrate esterases. Int. J. Mol. Sci. 2018, 19, 412.10.3390/ijms19020412. PubMed DOI PMC