Quantitative Acetylomics Uncover Acetylation-Mediated Pathway Changes Following Histone Deacetylase Inhibition in Anaplastic Large Cell Lymphoma
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35954222
PubMed Central
PMC9368142
DOI
10.3390/cells11152380
PII: cells11152380
Knihovny.cz E-zdroje
- Klíčová slova
- ALCL, MS-275, SAHA, acetylomics, anaplastic large cell lymphoma, entinostat, histone deacetylase inhibitors, histone deacetylases, proteomics, vorinostat,
- MeSH
- acetylace MeSH
- anaplastický velkobuněčný lymfom * farmakoterapie MeSH
- chromatografie kapalinová MeSH
- histondeacetylasy * metabolismus MeSH
- histony metabolismus MeSH
- kyseliny hydroxamové farmakologie MeSH
- myši MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histondeacetylasy * MeSH
- histony MeSH
- kyseliny hydroxamové MeSH
Histone deacetylases (HDACs) target acetylated lysine residues in histone and non-histone proteins. HDACs are implicated in the regulation of genomic stability, cell cycle, cell death and differentiation and thus critically involved in tumorigenesis. Further, HDACs regulate T-cell development and HDAC inhibitors (HDACis) have been approved for clinical use in some T-cell malignancies. Still, the exact targets and mechanisms of HDAC inhibition in cancer are understudied. We isolated tumor cell lines from a transgenic mouse model of anaplastic large cell lymphoma (ALCL), a rare T-cell lymphoma, and abrogated HDAC activity by treatment with the HDACis Vorinostat and Entinostat or Cre-mediated deletion of Hdac1. Changes in overall protein expression as well as histone and protein acetylation were measured following Hdac1 deletion or pharmacological inhibition using label-free liquid chromatography mass spectrometry (LC-MS/MS). We found changes in overall protein abundance and increased acetylation of histones and non-histone proteins, many of which were newly discovered and associated with major metabolic and DNA damage pathways. For non-histone acetylation, we mapped a total of 1204 acetylated peptides corresponding to 603 proteins, including chromatin modifying proteins and transcription factors. Hyperacetylated proteins were involved in processes such as transcription, RNA metabolism and DNA damage repair (DDR). The DDR pathway was majorly affected by hyperacetylation following HDAC inhibition. This included acetylation of H2AX, PARP1 and previously unrecognized acetylation sites in TP53BP1. Our data provide a comprehensive view of the targets of HDAC inhibition in malignant T cells with general applicability and could have translational impact for the treatment of ALCL with HDACis alone or in combination therapies.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Comprehensive Cancer Center Medical University of Vienna 1090 Vienna Austria
Department of Pathology Medical University of Vienna 1090 Vienna Austria
Department of Urology Medical University of Vienna 1090 Vienna Austria
Ludwig Boltzmann Institute Applied Diagnostics 1090 Vienna Austria
Zobrazit více v PubMed
Verdin E., Ott M. 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 2015;16:258–264. doi: 10.1038/nrm3931. PubMed DOI
Haberland M., Montgomery R.L., Olson E.N. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat. Rev. Genet. 2009;10:32–42. doi: 10.1038/nrg2485. PubMed DOI PMC
Narita T., Weinert B.T., Choudhary C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 2019;20:156–174. doi: 10.1038/s41580-018-0081-3. PubMed DOI
Stengel K.R., Hiebert S.W. Class I HDACs Affect DNA Replication, Repair, and Chromatin Structure: Implications for Cancer Therapy. Antioxid. Redox Signal. 2015;23:51–65. doi: 10.1089/ars.2014.5915. PubMed DOI PMC
Lahue R.S., Frizzell A. Histone deacetylase complexes as caretakers of genome stability. Epigenetics. 2012;7:806–810. doi: 10.4161/epi.20922. PubMed DOI PMC
Roos W.P., Krumm A. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic Acids Res. 2016;44:10017–10030. doi: 10.1093/nar/gkw922. PubMed DOI PMC
Faiola F., Liu X., Lo S., Pan S., Zhang K., Lymar E., Martinez E. Dual Regulation of c-Myc by p300 via Acetylation-Dependent Control of Myc Protein Turnover and Coactivation of Myc-Induced Transcription. Mol. Cell. Biol. 2005;25:10220–10234. doi: 10.1128/MCB.25.23.10220-10234.2005. PubMed DOI PMC
Yuan Z., Guan Y., Chatterjee D., Chin Y.E. Stat3 Dimerization Regulated by Reversible Acetylation of a Single Lysine Residue. Science. 2005;307:269–273. doi: 10.1126/science.1105166. PubMed DOI
Ikenoue T., Inoki K., Zhao B., Guan K.-L. PTEN Acetylation Modulates Its Interaction with PDZ Domain. Cancer Res. 2008;68:6908–6912. doi: 10.1158/0008-5472.CAN-08-1107. PubMed DOI
Tang Y., Zhao W., Chen Y., Zhao Y., Gu W. Acetylation Is Indispensable for p53 Activation. Cell. 2008;133:612–626. doi: 10.1016/j.cell.2008.03.025. PubMed DOI PMC
Guha M. HDAC inhibitors still need a home run, despite recent approval. Nat. Rev. Drug Discov. 2015;14:225–226. doi: 10.1038/nrd4583. PubMed DOI
Jones P.A., Issa J.-P.J., Baylin S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 2016;17:630–641. doi: 10.1038/nrg.2016.93. PubMed DOI
Suraweera A., O’Byrne K.J., Richard D.J. Combination Therapy with Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi. [(accessed on 14 January 2022)];Front. Oncol. 2018 8:92. doi: 10.3389/fonc.2018.00092. Available online: https://www.frontiersin.org/article/10.3389/fonc.2018.00092. PubMed DOI PMC
Johnstone R.W. Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. 2002;1:287–299. doi: 10.1038/nrd772. PubMed DOI
Xu W.S., Parmigiani R.B., Marks P.A. Histone deacetylase inhibitors: Molecular mechanisms of action. Oncogene. 2007;26:5541–5552. doi: 10.1038/sj.onc.1210620. PubMed DOI
Balasubramanian S., Verner E., Buggy J.J. Isoform-specific histone deacetylase inhibitors: The next step? Cancer Lett. 2009;280:211–221. doi: 10.1016/j.canlet.2009.02.013. PubMed DOI
Li W., Sun Z. Mechanism of Action for HDAC Inhibitors—Insights from Omics Approaches. Int. J. Mol. Sci. 2019;20:1616. doi: 10.3390/ijms20071616. PubMed DOI PMC
Dovey O.M., Foster C.T., Conte N., Edwards S.A., Edwards J.M., Singh R., Cowley S.M. Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood. 2013;121:1335–1344. doi: 10.1182/blood-2012-07-441949. PubMed DOI PMC
Heideman M.R., Wilting R.H., Yanover E., Velds A., de Jong J., Kerkhoven R.M., Dannenberg J.H. Dosage-dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function. Blood. 2013;121:2038–2050. doi: 10.1182/blood-2012-08-450916. PubMed DOI PMC
Santoro F., Botrugno O.A., Dal Zuffo R., Pallavicini I., Matthews G.M., Cluse L., Minucci S. A dual role for Hdac1: Oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood. 2013;121:3459–3468. doi: 10.1182/blood-2012-10-461988. PubMed DOI
Grausenburger R., Bilic I., Boucheron N., Zupkovitz G., El-Housseiny L., Tschismarov R., Ellmeier W. Conditional Deletion of Histone Deacetylase 1 in T Cells Leads to Enhanced Airway Inflammation and Increased Th2 Cytokine Production. J. Immunol. 2010;185:3489–3497. doi: 10.4049/jimmunol.0903610. PubMed DOI PMC
Boucheron N., Tschismarov R., Goeschl L., Moser M.A., Lagger S., Sakaguchi S., Ellmeier W. CD4+ T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC. Nat. Immunol. 2014;15:439–448. doi: 10.1038/ni.2864. PubMed DOI PMC
Tschismarov R., Firner S., Gil-Cruz C., Göschl L., Boucheron N., Steiner G., Ellmeier W. HDAC1 Controls CD8+ T Cell Homeostasis and Antiviral Response. PLoS ONE. 2014;9:e110576. doi: 10.1371/journal.pone.0110576. PubMed DOI PMC
Morris S.W., Kirstein M.N., Valentine M.B., Dittmer K.G., Shapiro D.N., Saltman D.L., Look A.T. Fusion of a Kinase Gene, ALK, to a Nucleolar Protein Gene, NPM, in Non-Hodgkin’s Lymphoma. Science. 1994;263:1281–1284. doi: 10.1126/science.8122112. PubMed DOI
Werner M.T., Zhang Q., Wasik M.A. From Pathology to Precision Medicine in Anaplastic Large Cell Lymphoma Expressing Anaplastic Lymphoma Kinase (ALK+ ALCL) Cancers. 2017;9:138. doi: 10.3390/cancers9100138. PubMed DOI PMC
Chiarle R., Voena C., Ambrogio C., Piva R., Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer. 2008;8:11–23. doi: 10.1038/nrc2291. PubMed DOI
Amin H.M., Lai R. Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood. 2007;110:2259–2267. doi: 10.1182/blood-2007-04-060715. PubMed DOI PMC
Prokoph N., Larose H., Lim M.S., Burke G.A.A., Turner S.D. Treatment Options for Paediatric Anaplastic Large Cell Lymphoma (ALCL): Current Standard and beyond. Cancers. 2018;10:99. doi: 10.3390/cancers10040099. PubMed DOI PMC
Kuchaříková H., Dobrovolná P., Lochmanová G., Zdráhal Z. Trimethylacetic Anhydride–Based Derivatization Facilitates Quantification of Histone Marks at the MS1 Level. Mol. Cell Proteom. 2021;20:100114. doi: 10.1016/j.mcpro.2021.100114. PubMed DOI PMC
Chiarle R., Gong J.Z., Guasparri I., Pesci A., Cai J., Liu J., Inghirami G. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood. 2003;101:1919–1927. doi: 10.1182/blood-2002-05-1343. PubMed DOI
Yamaguchi T., Cubizolles F., Zhang Y., Reichert N., Kohler H., Seiser C., Matthias P. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev. 2010;24:455–469. doi: 10.1101/gad.552310. PubMed DOI PMC
Činčárová L., Lochmanová G., Nováková K., Šultesová P., Konečná H., Fajkusová L., Zdráhal Z. A combined approach for the study of histone deacetylase inhibitors. Mol. Biosyst. 2012;8:2937–2945. doi: 10.1039/c2mb25136a. PubMed DOI
Lochmanová G., Ihnatová I., Kuchaříková H., Brabencová S., Zachová D., Fajkus J., Fojtová M. Different Modes of Action of Genetic and Chemical Downregulation of Histone Deacetylases with Respect to Plant Development and Histone Modifications. Int. J. Mol. Sci. 2019;20:5093. doi: 10.3390/ijms20205093. PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Vizcaíno J.A. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Khan N., Jeffers M., Kumar S., Hackett C., Boldog F., Khramtsov N., Sehested M. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J. 2007;409:581–589. doi: 10.1042/BJ20070779. PubMed DOI
Wang Z., Zang C., Cui K., Schones D.E., Barski A., Peng W., Zhao K. Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes. Cell. 2009;138:1019–1031. doi: 10.1016/j.cell.2009.06.049. PubMed DOI PMC
Mrakovcic M., Kleinheinz J., Fröhlich L.F. p53 at the Crossroads between Different Types of HDAC Inhibitor-Mediated Cancer Cell Death. Int. J. Mol. Sci. 2019;20:2415. doi: 10.3390/ijms20102415. PubMed DOI PMC
Winter M., Moser M.A., Meunier D., Fischer C., Machat G., Mattes K., Seiser C. Divergent roles of HDAC1 and HDAC2 in the regulation of epidermal development and tumorigenesis. EMBO J. 2013;32:3176–3191. doi: 10.1038/emboj.2013.243. PubMed DOI PMC
Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., von Mering C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D612. doi: 10.1093/nar/gkaa1074. PubMed DOI PMC
Martínez-Reyes I., Chandel N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020;11:102. doi: 10.1038/s41467-019-13668-3. PubMed DOI PMC
Wardell S.E., Ilkayeva O.R., Wieman H.L., Frigo D.E., Rathmell J.C., Newgard C.B., McDonnell D.P. Glucose Metabolism as a Target of Histone Deacetylase Inhibitors. Mol. Endocrinol. 2009;23:388–401. doi: 10.1210/me.2008-0179. PubMed DOI PMC
Hoffmann M.J., Meneceur S., Hommel K., Schulz W.A., Niegisch G. Downregulation of Cell Cycle and Checkpoint Genes by Class I HDAC Inhibitors Limits Synergism with G2/M Checkpoint Inhibitor MK-1775 in Bladder Cancer Cells. Genes. 2021;12:260. doi: 10.3390/genes12020260. PubMed DOI PMC
Dong Z., Yang Y., Liu S., Lu J., Huang B., Zhang Y. HDAC inhibitor PAC-320 induces G2/M cell cycle arrest and apoptosis in human prostate cancer. Oncotarget. 2017;9:512–523. doi: 10.18632/oncotarget.23070. PubMed DOI PMC
Luchenko V.L., Litman T., Chakraborty A.R., Heffner A., Devor C., Wilkerson J., Bates S.E. Histone deacetylase inhibitor-mediated cell death is distinct from its global effect on chromatin. Mol. Oncol. 2014;8:1379–1392. doi: 10.1016/j.molonc.2014.05.001. PubMed DOI PMC
Nalawansha D.A., Gomes I.D., Wambua M.K., Pflum M.K.H. HDAC Inhibitor-Induced Mitotic Arrest Is Mediated by Eg5/KIF11 Acetylation. Cell Chem. Biol. 2017;24:481–492. doi: 10.1016/j.chembiol.2017.03.008. PubMed DOI PMC
Song M.S., Salmena L., Pandolfi P.P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 2012;13:283–296. doi: 10.1038/nrm3330. PubMed DOI
Vega F., Medeiros L.J., Leventaki V., Atwell C., Cho-Vega J.H., Tian L., Rassidakis G.Z. Activation of Mammalian Target of Rapamycin Signaling Pathway Contributes to Tumor Cell Survival in Anaplastic Lymphoma Kinase–Positive Anaplastic Large Cell Lymphoma. Cancer Res. 2006;66:6589–6597. doi: 10.1158/0008-5472.CAN-05-3018. PubMed DOI PMC
Turner S.D., Yeung D., Hadfield K., Cook S.J., Alexander D.R. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms. Cell Signal. 2007;19:740–747. doi: 10.1016/j.cellsig.2006.09.007. PubMed DOI
Robert C., Rassool F.V. Chapter Three-HDAC Inhibitors: Roles of DNA Damage and Repair. In: Grant S., editor. Advances in Cancer Research. Volume 116. Academic Press; Cambridge, MA, USA: 2012. [(accessed on 14 January 2022)]. pp. 87–129. Histone Deacetylase Inhibitors as Cancer Therapeutics. Available online: https://www.sciencedirect.com/science/article/pii/B9780123943873000033. PubMed
Choudhary C., Weinert B.T., Nishida Y., Verdin E., Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 2014;15:536–550. doi: 10.1038/nrm3841. PubMed DOI
Weinert B.T., Iesmantavicius V., Moustafa T., Schölz C., Wagner S.A., Magnes C., Choudhary C. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 2014;10:716. doi: 10.1002/msb.134766. PubMed DOI PMC
Lee J.-H., Choy M.L., Ngo L., Foster S.S., Marks P.A. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc. Natl. Acad. Sci. USA. 2010;107:14639–14644. doi: 10.1073/pnas.1008522107. PubMed DOI PMC
Lauffer B.E., Mintzer R., Fong R., Mukund S., Tam C., Zilberleyb I., Steiner P. Histone Deacetylase (HDAC) Inhibitor Kinetic Rate Constants Correlate with Cellular Histone Acetylation but Not Transcription and Cell Viability. J. Biol. Chem. 2013;288:26926–26943. doi: 10.1074/jbc.M113.490706. PubMed DOI PMC
Becher I., Dittmann A., Savitski M.M., Hopf C., Drewes G., Bantscheff M. Chemoproteomics reveals time-dependent binding of histone deacetylase inhibitors to endogenous repressor complexes. ACS Chem. Biol. 2014;9:1736–1746. doi: 10.1021/cb500235n. PubMed DOI
Gong F., Miller K.M. Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation. Mutat Res. Mol. Mech Mutagen. 2013;750:23–30. doi: 10.1016/j.mrfmmm.2013.07.002. PubMed DOI
Sun Y., Jiang X., Chen S., Fernandes N., Price B.D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. USA. 2005;102:13182–13187. doi: 10.1073/pnas.0504211102. PubMed DOI PMC
Yuan Z., Seto E. A Functional Link Between SIRT1 Deacetylase and NBS1 in DNA Damage Response. Cell Cycle. 2007;6:2869–2871. doi: 10.4161/cc.6.23.5026. PubMed DOI
Eliezer Y., Argaman L., Rhie A., Doherty A.J., Goldberg M. The Direct Interaction between 53BP1 and MDC1 Is Required for the Recruitment of 53BP1 to Sites of Damage. J. Biol. Chem. 2009;284:426–435. doi: 10.1074/jbc.M807375200. PubMed DOI
Nelson G., Buhmann M., von Zglinicki T. DNA damage foci in mitosis are devoid of 53BP. Cell Cycle. 2009;8:3379–3383. doi: 10.4161/cc.8.20.9857. PubMed DOI
Belotserkovskaya R., Jackson S.P. Keeping 53BP1 out of focus in mitosis. Cell Res. 2014;24:781–782. doi: 10.1038/cr.2014.62. PubMed DOI PMC
Kelly R.D.W., Cowley S.M. The physiological roles of histone deacetylase (HDAC) 1 and 2: Complex co-stars with multiple leading parts. Biochem. Soc. Trans. 2013;41:741–749. doi: 10.1042/BST20130010. PubMed DOI
Wagner G.R., Hirschey M.D. Nonenzymatic Protein Acylation as a Carbon Stress Regulated by Sirtuin Deacylases. Mol. Cell. 2014;54:5–16. doi: 10.1016/j.molcel.2014.03.027. PubMed DOI PMC
Guo X., Bai Y., Zhao M., Zhou M., Shen Q., Yun C.H., Wang J. Acetylation of 53BP1 dictates the DNA double strand break repair pathway. Nucleic Acids Res. 2018;46:689–703. doi: 10.1093/nar/gkx1208. PubMed DOI PMC
Kruglov O., Wu X., Hwang S.T., Akilov O.E. The synergistic proapoptotic effect of PARP-1 and HDAC inhibition in cutaneous T-cell lymphoma is mediated via Blimp-1. Blood Adv. 2020;4:4788–4797. doi: 10.1182/bloodadvances.2020002049. PubMed DOI PMC
Robert C., Nagaria P.K., Pawar N., Adewuyi A., Gojo I., Meyers D.J., Rassool F.V. Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin. Leuk Res. 2016;45:14–23. doi: 10.1016/j.leukres.2016.03.007. PubMed DOI PMC
Valdez B.C., Li Y., Murray D., Liu Y., Nieto Y., Champlin R.E., Andersson B.S. Combination of a hypomethylating agent and inhibitors of PARP and HDAC traps PARP1 and DNMT1 to chromatin, acetylates DNA repair proteins, down-regulates NuRD and induces apoptosis in human leukemia and lymphoma cells. Oncotarget. 2017;9:3908–3921. doi: 10.18632/oncotarget.23386. PubMed DOI PMC