HDAC1 acts as a tumor suppressor in ALK-positive anaplastic large cell lymphoma: implications for HDAC inhibitor therapy
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 CA196703-01
Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
R01 CA196703
NCI NIH HHS - United States
10.55776/P32771
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
101072735
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
10.55776/F8300
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
32771
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
I 4066
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
SFB F83
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
10.55776/I4066
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
PubMed
40175628
PubMed Central
PMC12133565
DOI
10.1038/s41375-025-02584-9
PII: 10.1038/s41375-025-02584-9
Knihovny.cz E-zdroje
- MeSH
- anaplastická lymfomová kináza * metabolismus genetika MeSH
- anaplastický velkobuněčný lymfom * farmakoterapie patologie genetika metabolismus MeSH
- benzamidy farmakologie MeSH
- histondeacetylasa 1 * genetika antagonisté a inhibitory fyziologie metabolismus MeSH
- histondeacetylasa 2 genetika MeSH
- inhibitory histondeacetylas * farmakologie terapeutické užití MeSH
- lidé MeSH
- myši MeSH
- pyridiny farmakologie MeSH
- tumor supresorové geny * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Alk protein, mouse MeSH Prohlížeč
- anaplastická lymfomová kináza * MeSH
- benzamidy MeSH
- entinostat MeSH Prohlížeč
- Hdac1 protein, mouse MeSH Prohlížeč
- histondeacetylasa 1 * MeSH
- histondeacetylasa 2 MeSH
- inhibitory histondeacetylas * MeSH
- pyridiny MeSH
Histone deacetylases (HDACs) are frequently deregulated in cancer, and several HDAC inhibitors (HDACi) have gained approval for treating peripheral T cell lymphomas. Here, we investigated the effects of pharmacological or genetic HDAC inhibition on NPM::ALK positive anaplastic large cell lymphoma (ALCL) development to assess the potential use of HDACi for the treatment of this disease. Short-term systemic pharmacological inhibition of HDACs using the HDACi Entinostat in a premalignant ALCL mouse model postponed or even abolished lymphoma development, despite high expression of the NPM::ALK fusion oncogene. To further disentangle the effects of systemic HDAC inhibition from thymocyte intrinsic effects, conditional genetic deletions of HDAC1 and HDAC2 enzymes were employed. In sharp contrast, T cell-specific deletion of Hdac1 or Hdac2 in the ALCL mouse model significantly accelerated NPM::ALK-driven lymphomagenesis, with Hdac1 loss having a more pronounced effect. Integration of gene expression and chromatin accessibility data revealed that Hdac1 deletion selectively perturbed cell type-specific transcriptional programs, crucial for T cell differentiation and signaling. Moreover, multiple oncogenic signaling pathways, including PDGFRB signaling, were highly upregulated. Our findings underscore the tumor-suppressive function of HDAC1 and HDAC2 in T cells during ALCL development. Nevertheless, systemic pharmacological inhibition of HDACs could still potentially improve current therapeutic outcomes.
Comprehensive Cancer Center Medical University of Vienna Vienna Austria
Department of Molecular Biotechnology and Health Sciences University of Torino Torino Italy
Department of Pathology Boston Children's Hospital and Harvard Medical School Boston MA USA
Department of Pathology Medical University of Vienna Vienna Austria
Department of Pathology University of Cambridge Cambridge UK
Division of Hematopathology IEO European Institute of Oncology IRCCS Milan Italy
Faculty of Medicine Masaryk University Brno Czech Republic
Ludwig Boltzmann Institute Applied Diagnostics Vienna Austria
Zobrazit více v PubMed
Stein H, Foss HD, Dürkop H, Marafioti T, Delsol G, Pulford K, et al. CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96:3681–95. PubMed
Staber PB, Vesely P, Haq N, Ott RG, Funato K, Bambach I, et al. The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling. Blood. 2007;110:3374–83. PubMed
Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J. Nucleophosmin–anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood. 2000;96:4319–27. PubMed
Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R, et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med. 2005;11:623–9. PubMed
Noguchi K, Ikawa Y. Strategy for pediatric patients with relapsed or refractory anaplastic lymphoma kinase-positive anaplastic large cell lymphoma: a review. Cancers. 2023;15:5733. PubMed PMC
Horwitz S, O’Connor OA, Pro B, Illidge T, Fanale M, Advani R, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet. 2019;393:229–40. PubMed PMC
Prokoph N, Larose H, Lim MS, Burke GAA, Turner SD. Treatment options for paediatric anaplastic large cell lymphoma (ALCL): current standard and beyond. Cancers. 2018;10:99. PubMed PMC
Merino M, Kasamon Y, Li H, Ma L, Leong R, Zhou J, et al. FDA approval summary: crizotinib for pediatric and young adult patients with relapsed or refractory systemic anaplastic large cell lymphoma. Pediatr Blood Cancer. 2022;69:e29602. PubMed
Lowe EJ, Reilly AF, Lim MS, Gross TG, Saguilig L, Barkauskas DA, et al. Brentuximab vedotin in combination with chemotherapy for pediatric patients with ALK+ ALCL: results of COG trial ANHL12P1. Blood. 2021;137:3595–603. PubMed PMC
Lowe EJ, Reilly AF, Lim MS, Gross TG, Saguilig L, Barkauskas DA, et al. Crizotinib in combination with chemotherapy for pediatric patients with ALK+ anaplastic large-cell lymphoma: the results of Children’s Oncology Group Trial ANHL12P1. J Clin Oncol. 2023;41:2043–53. PubMed PMC
Gambacorti-Passerini C, Mussolin L, Brugieres L. Abrupt Relapse of ALK-positive lymphoma after discontinuation of crizotinib. N Engl J Med. 2016;374:95–6. PubMed
Prokoph N, Probst NA, Lee LC, Monahan JM, Matthews JD, Liang HC, et al. IL10RA modulates crizotinib sensitivity in NPM1-ALK+ anaplastic large cell lymphoma. Blood. 2020;136:1657–69. PubMed PMC
Karaca Atabay E, Mecca C, Wang Q, Ambrogio C, Mota I, Prokoph N, et al. Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma. Blood. 2022;139:717–31. PubMed PMC
Mastini C, Campisi M, Patrucco E, Mura G, Ferreira A, Costa C, et al. Targeting CCR7-PI3Kγ overcomes resistance to tyrosine kinase inhibitors in ALK-rearranged lymphoma. Sci Transl Med. 2023;15:eabo3826. PubMed PMC
Lu G, Jin S, Lin S, Gong Y, Zhang L, Yang J, et al. Update on histone deacetylase inhibitors in peripheral T-cell lymphoma (PTCL). Clin Epigenetics. 2023;15:124. PubMed PMC
Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol Cancer. 2020;19:5. PubMed PMC
Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. 2016;6:a026831. PubMed PMC
Piazza R, Magistroni V, Mogavero A, Andreoni F, Ambrogio C, Chiarle R, et al. Epigenetic silencing of the proapoptotic gene BIM in anaplastic large cell lymphoma through an MeCP2/SIN3a deacetylating complex. Neoplasia. 2013;15:511–22. PubMed PMC
Zrimšek M, Kuchaříková H, Draganić K, Dobrovolná P, Heiss Spornberger V, Winkelmayer L, et al. Quantitative acetylomics uncover acetylation-mediated pathway changes following histone deacetylase inhibition in anaplastic large cell lymphoma. Cells. 2022;11:2380. PubMed PMC
Zhuang S. Regulation of STAT signaling by acetylation. Cell Signal. 2013;25:1924–31. PubMed PMC
Boucheron N, Tschismarov R, Göschl L, Moser MA, Lagger S, Sakaguchi S, et al. CD4+ T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat Immunol. 2014;15:439–48. PubMed PMC
Dovey OM, Foster CT, Conte N, Edwards SA, Edwards JM, Singh R, et al. Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood. 2013;121:1335–44. PubMed PMC
Heideman MR, Wilting RH, Yanover E, Velds A, de Jong J, Kerkhoven RM, et al. Dosage-dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function. Blood. 2013;121:2038–50. PubMed PMC
Santoro F, Botrugno OA, Dal Zuffo R, Pallavicini I, Matthews GM, Cluse L, et al. A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood. 2013;121:3459–68. PubMed
Chiarle R, Gong JZ, Guasparri I, Pesci A, Cai J, Liu J, et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood. 2003;101:1919–27. PubMed
Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C, et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev. 2010;24:455–69. PubMed PMC
Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity. 2001;15:763–74. PubMed
Hagelkruys A, Mattes K, Moos V, Rennmayr M, Ringbauer M, Sawicka A, et al. Essential nonredundant function of the catalytic activity of histone deacetylase 2 in mouse development. Mol Cell Biol. 2016;36:462–74. PubMed PMC
Zhu C, Stolz V, Simonovic N, Al-Rubaye O, Vcelkova T, Moos V, et al. Targeting the catalytic activity of HDAC1 in T cells protects against experimental autoimmune encephalomyelitis. bioRxiv; 2023 [cited 2024 May 6]. p. 2023.04.14.536700. Available from: https://www.biorxiv.org/content/10.1101/2023.04.14.536700v1. DOI
Prokoph N, Matthews JD, Trigg RM, Montes-Mojarro IA, Burke GAA, Fend F, et al. Patient-derived xenograft models of ALK+ ALCL reveal preclinical promise for therapy with brigatinib. Br J Haematol. 2023;202:985–94. PubMed PMC
Zhang P, Zhang M. Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clin Epigenetics. 2020;12:169. PubMed PMC
O’Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33:2492–9. PubMed PMC
Foss F, Horwitz S, Pro B, Prince HM, Sokol L, Balser B, et al. Romidepsin for the treatment of relapsed/refractory peripheral T cell lymphoma: prolonged stable disease provides clinical benefits for patients in the pivotal trial. J Hematol Oncol. 2016;9:22. PubMed PMC
Gao S, Zang J, Gao Q, Liang X, Ding Q, Li X, et al. Design, synthesis and anti-tumor activity study of novel histone deacetylase inhibitors containing isatin-based caps and o-phenylenediamine-based zinc binding groups. Bioorg Med Chem. 2017;25:2981–94. PubMed PMC
Kelly RDW, Cowley SM. The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem Soc Trans. 2013;41:741–9. PubMed
Porter NJ, Christianson DW. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases. Curr Opin Struct Biol. 2019;59:9–18. PubMed PMC
Ambrogio C, Martinengo C, Voena C, Tondat F, Riera L, di Celle PF, et al. NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells. Cancer Res. 2009;69:8611–9. PubMed PMC
Malcolm TIM, Villarese P, Fairbairn CJ, Lamant L, Trinquand A, Hook CE, et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat Commun. 2016;7:10087. PubMed PMC
Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape of gene promoters. Nature. 2012;489:109–13. PubMed PMC
Johanson TM, Coughlan HD, Lun ATL, Bediaga NG, Naselli G, Garnham AL, et al. Genome-wide analysis reveals no evidence of trans chromosomal regulation of mammalian immune development. PLOS Genet. 2018;14:e1007431. PubMed PMC
Krämer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30:523–30. PubMed PMC
Jones D, Fletcher CDM, Pulford K, Shahsafaei A, Dorfman DM. The T-cell activation markers CD30 and OX40/CD134 are expressed in nonoverlapping subsets of peripheral T-cell lymphoma. Blood. 1999;93:3487–93. PubMed
Zhang Q, Wang H, Kantekure K, Paterson JC, Liu X, Schaffer A, et al. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS. Blood. 2011;118:3062–71. PubMed PMC
Marzec M, Halasa K, Liu X, Wang HY, Cheng M, Baldwin D, et al. Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming. J Immunol. 2013;191:6200–7. PubMed PMC
Montes-Mojarro IA, Steinhilber J, Bonzheim I, Quintanilla-Martinez L, Fend F. The pathological spectrum of systemic anaplastic large cell lymphoma (ALCL). Cancers. 2018;10:107. PubMed PMC
Raetz EA, Perkins SL, Carlson MA, Schooler KP, Carroll WL, Virshup DM. The nucleophosmin-anaplastic lymphoma kinase fusion protein induces c-Myc expression in pediatric anaplastic large cell lymphomas. Am J Pathol. 2002;161:875–83. PubMed PMC
Redl E, Sheibani-Tezerji R, Cardona C de J, Hamminger P, Timelthaler G, et al. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK–driven lymphomagenesis. Life Sci Alliance. 2021;4 [cited 2022 Sep 5]. Available from: https://www.life-science-alliance.org/content/4/2/e202000794. PubMed PMC
Pao-Chun L, Chan PM, Chan W, Manser E. Cytoplasmic ACK1 interaction with multiple receptor tyrosine kinases is mediated by Grb2. J Biol Chem. 2009;284:34954–63. PubMed PMC
Garces de los Fayos Alonso I, Zujo L, Wiest I, Kodajova P, Timelthaler G, Edtmayer S, et al. PDGFRβ promotes oncogenic progression via STAT3/STAT5 hyperactivation in anaplastic large cell lymphoma. Mol Cancer. 2022;21. 172. PubMed PMC
Turner SD, Yeung D, Hadfield K, Cook SJ, Alexander DR. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms. Cell Signal. 2007;19:740–7. PubMed
Macián F, López-Rodríguez C, Rao A. Partners in transcription: NFAT and AP-1. Oncogene. 2001;20:2476–89. PubMed
Wu Z, Nicoll M, Ingham RJ. AP-1 family transcription factors: a diverse family of proteins that regulate varied cellular activities in classical Hodgkin lymphoma and ALK+ ALCL. Exp Hematol Oncol. 2021;10:4. PubMed PMC
Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol. 2005;5:472–84. PubMed
Kerr JS, Galloway S, Lagrutta A, Armstrong M, Miller T, Richon VM, et al. Nonclinical safety assessment of the histone deacetylase inhibitor vorinostat. Int J Toxicol. 2010;29:3–19. PubMed
Kreutmair S, Klingeberg C, Poggio T, Andrieux G, Keller A, Miething C, et al. Existence of reprogrammed lymphoma stem cells in a murine ALCL-like model. Leukemia. 2020;34:3242–55. PubMed PMC
Nusinzon I, Horvath CM. Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci STKE. 2005;2005:re11. PubMed
Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009;138:1019–31. PubMed PMC
Greer CB, Tanaka Y, Kim YJ, Xie P, Zhang MQ, Park IH, et al. Histone deacetylases positively regulate transcription through the elongation machinery. Cell Rep. 2015;13:1444–55. PubMed PMC
Gryder BE, Pomella S, Sayers C, Wu XS, Song Y, Chiarella AM, et al. Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma. Nat Genet. 2019;51:1714–22. PubMed PMC
Gryder BE, Wu L, Woldemichael GM, Pomella S, Quinn TR, Park PMC, et al. Chemical genomics reveals histone deacetylases are required for core regulatory transcription. Nat Commun. 2019;10:3004. PubMed PMC
Eckerle S, Brune V, Döring C, Tiacci E, Bohle V, Sundström C, et al. Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma. Leukemia. 2009;23:2129–38. PubMed
Laurent C, Lopez C, Desjobert C, Berrebi A, Damm-Welk C, Delsol G, et al. Circulating t(2;5)-positive cells can be detected in cord blood of healthy newborns. Leukemia. 2012;26:188–90. PubMed
Moti N, Malcolm T, Hamoudi R, Mian S, Garland G, Hook CE, et al. Anaplastic large cell lymphoma-propagating cells are detectable by side population analysis and possess an expression profile reflective of a primitive origin. Oncogene. 2015;34:1843–52. PubMed
Hassler MR, Pulverer W, Lakshminarasimhan R, Redl E, Hacker J, Garland GD, et al. Insights into the pathogenesis of anaplastic large-cell lymphoma through genome-wide DNA methylation profiling. Cell Rep. 2016;17:596–608. PubMed PMC
Raney BJ, Barber GP, Benet-Pagès A, Casper J, Clawson H, Cline MS, et al. The UCSC genome browser database: 2024 update. Nucleic Acids Res. 2023;52:D1082–8. PubMed PMC
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89. PubMed PMC