Substantial Variability of Multiple Microbial Communities Collected at Similar Acidic Mine Water Outlets

. 2016 Jul ; 72 (1) : 163-174. [epub] 20160408

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27059740
Odkazy

PubMed 27059740
DOI 10.1007/s00248-016-0760-6
PII: 10.1007/s00248-016-0760-6
Knihovny.cz E-zdroje

Deep sequencing of prokaryotic 16S rDNA regularly reveals thousands of microbial species thriving in many common habitats. It is still unknown how this huge microbial diversity, including many potentially competing organisms, may persist at a single site. One of plausible hypotheses is that a large number of spatially separated microcommunities exist within each complex habitat. Smaller subset of the species may exist in each microcommunity and actually interact with each other. We sampled two groups of microbial stalactites growing at a single acidic mine drainage outlet as a model of multiplicated, low-complexity microhabitat. Samples from six other sites were added for comparison. Both tRFLP and 16S rDNA pyrosequencing showed that microbial communities containing 6 to 51 species-level operational taxonomic units (OTU) inhabited all stalactites. Interestingly, most OTUs including the highly abundant ones unpredictably alternated regardless of physical and environmental distance of the stalactites. As a result, the communities clustered independently on sample site and other variables when using both phylogenetic dissimilarity and OTU abundance metrics. Interestingly, artificial communities generated by pooling the biota of several adjacent stalactites together clustered by the locality more strongly than when the stalactites were analyzed separately. The most probable interpretation is that each stalactite contains likely random selection from the pool of plausible species. Such degree of stochasticity in assembly of extremophilic microbial communities is significantly greater than commonly proposed and requires caution when interpreting microbial diversity.

Zobrazit více v PubMed

ISME J. 2011 Jan;5(1):42-50 PubMed

Extremophiles. 2010 Jan;14(1):9-19 PubMed

FEMS Microbiol Ecol. 2009 Nov;70(2):121-9 PubMed

Appl Environ Microbiol. 2006 Mar;72(3):2022-30 PubMed

FEMS Microbiol Ecol. 2012 Aug;81(2):303-14 PubMed

ISME J. 2010 Jan;4(1):17-27 PubMed

ISME J. 2008 Jun;2(6):590-601 PubMed

Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2761-6 PubMed

ISME J. 2015 Mar 17;9(4):1014-23 PubMed

Environ Microbiol. 2011 Jan;13(1):135-44 PubMed

Nat Methods. 2010 Oct;7(10):813-9 PubMed

Appl Environ Microbiol. 2014 Jan;80(2):672-80 PubMed

Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 PubMed

FEMS Microbiol Ecol. 2012 Jul;81(1):2-12 PubMed

Appl Environ Microbiol. 2002 Apr;68(4):1706-14 PubMed

Extremophiles. 2011 Mar;15(2):271-9 PubMed

Mol Ecol. 2014 Feb;23(2):254-8 PubMed

Syst Biol. 2003 Oct;52(5):696-704 PubMed

FEMS Microbiol Ecol. 2003 May 1;44(2):139-52 PubMed

BMC Bioinformatics. 2008 Sep 19;9:386 PubMed

Extremophiles. 2012 Nov;16(6):911-22 PubMed

Environ Microbiol. 2009 Sep;11(9):2329-38 PubMed

J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38 PubMed

Life (Basel). 2013 Feb 07;3(1):189-210 PubMed

Environ Microbiol. 2007 Jul;9(7):1761-71 PubMed

Int J Syst Evol Microbiol. 2000 May;50 Pt 3:997-1006 PubMed

Bioinformatics. 2010 Oct 1;26(19):2460-1 PubMed

Int J Mol Sci. 2009 Nov 03;10(11):4723-41 PubMed

Environ Sci Technol. 2009 Aug 15;43(16):6138-44 PubMed

Appl Environ Microbiol. 2009 Dec;75(23):7537-41 PubMed

Microbiol Mol Biol Rev. 2013 Sep;77(3):342-56 PubMed

Appl Environ Microbiol. 2000 Sep;66(9):3842-9 PubMed

Environ Microbiol. 2011 Aug;13(8):2092-104 PubMed

Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed

Environ Microbiol. 2007 Jun;9(6):1402-14 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...