Microbiology of diverse acidic and non-acidic microhabitats within a sulfidic ore mine
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Acidithiobacillus genetika izolace a purifikace MeSH
- Bacteria genetika izolace a purifikace MeSH
- bakteriální geny MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- Gallionellaceae genetika izolace a purifikace MeSH
- geny rRNA MeSH
- geologické sedimenty chemie mikrobiologie MeSH
- hornictví MeSH
- koncentrace vodíkových iontů MeSH
- minerály MeSH
- sulfidy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- minerály MeSH
- sulfidy MeSH
A wide variety of microhabitats within the extremely acidic abandoned underground copper mine Zlaté Hory (Czech Republic) was investigated. SSU rDNA libraries were analyzed from 15 samples representing gossan, sulfide-leaching environments in the oxidation zone, and acidic water springs in the mine galleries. Microbial analyses were extended by analyses of chemical composition of water and solid phases and identification of arising secondary minerals. The microbial communities of the three main classes of microenvironments differed in almost every aspect. Among others, ecological partitioning of Acidithiobacillus ferrooxidans and the recently described A. ferrivorans was observed. Distinct types of communities inhabiting the water springs were detected. The more extreme springs (pH <3, conductivity >2 mS/cm) were inhabited by "Ferrovum" spp. and A. ferrivorans, whereas Gallionella sp. dominated the less extreme ones. A new role for gossan in the extremely acidic ecosystem is proposed. This zone was inhabited by a large diversity of neutrophilic heterotrophs that appeared to be continuously washed out to the acidic environments localized downstream. Five species originating in gossan were found in several acidic habitats. Here they can survive and probably serve as scavengers of dead biomass, particularly from chemoautotrophic growths. No such process has been described from acidic mine environments so far.
Zobrazit více v PubMed
Environ Microbiol. 2001 Oct;3(10):630-7 PubMed
Environ Sci Technol. 2009 Aug 15;43(16):6138-44 PubMed
Antonie Van Leeuwenhoek. 2007 Apr;91(3):253-66 PubMed
J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38 PubMed
J Biosci Bioeng. 2005 Dec;100(6):644-52 PubMed
Annu Rev Microbiol. 2002;56:65-91 PubMed
FEMS Microbiol Ecol. 2003 May 1;44(2):139-52 PubMed
Environ Pollut. 2009 Mar;157(3):1045-50 PubMed
Biotechnol Bioeng. 2008 Mar 1;99(4):811-20 PubMed
Appl Environ Microbiol. 2000 Sep;66(9):3842-9 PubMed
Environ Microbiol. 2005 Sep;7(9):1277-88 PubMed
J Cell Biol. 1963 Apr;17:208-12 PubMed
Nature. 2002 May 9;417(6885):137 PubMed
FEMS Microbiol Ecol. 2007 Jan;59(1):118-26 PubMed
Environ Microbiol. 2007 Jun;9(6):1402-14 PubMed
Extremophiles. 2011 Mar;15(2):271-9 PubMed
ISME J. 2011 Jan;5(1):42-50 PubMed
Environ Microbiol. 2007 Jul;9(7):1761-71 PubMed
Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 PubMed
Environ Technol. 2010 Jul-Aug;31(8-9):1045-60 PubMed
Extremophiles. 2010 Jan;14(1):9-19 PubMed
Environ Microbiol. 2011 Aug;13(8):2092-104 PubMed
Bioresour Technol. 2010 Jan;101(2):501-9 PubMed
FEMS Microbiol Ecol. 2009 Nov;70(2):121-9 PubMed
Bioinformatics. 2006 Nov 1;22(21):2688-90 PubMed
Science. 1998 Mar 6;279(5356):1519-22 PubMed
Int J Syst Evol Microbiol. 2000 May;50 Pt 3:997-1006 PubMed
Appl Environ Microbiol. 2006 Mar;72(3):2022-30 PubMed
Appl Environ Microbiol. 2008 Jun;74(12):3899-907 PubMed