Ploidy Levels and Fitness-Related Traits in Purebreds and Hybrids Originating from Sterlet (Acipenser ruthenus) and Unusual Ploidy Levels of Siberian Sturgeon (A. baerii)

. 2020 Oct 02 ; 11 (10) : . [epub] 20201002

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33023081

The present study aimed to investigate and compare fitness-related traits and ploidy levels of purebreds and hybrids produced from sturgeon broodstock with both normal and abnormal ploidy levels. We used diploid Acipenser ruthenus and tetraploid A. baerii males and females to produce purebreds and reciprocal hybrids of normal ploidy levels. Likewise, we used diploid A. ruthenus and tetraploid A. baerii females mated to pentaploid and hexaploid A. baerii males to produce hybrids of abnormal ploidy levels. Fertilization of ova of A. ruthenus and A. baerii of normal ploidy with the sperm of pentaploid and hexaploid A. baerii produced fully viable progeny with ploidy levels that were intermediate between those of the parents as was also found in crosses of purebreds and reciprocal hybrids of normal ploidy levels. The A. ruthenus × pentaploid A. baerii and A. ruthenus × hexaploid A. baerii hybrids did not survive after 22 days post-hatch (dph). Mean body weight and cumulative survival were periodically checked at seven-time intervals. The recorded values of mean body weight were significantly higher in A. baerii × pentaploid A. baerii hybrids than other groups at three sampling points (160, 252 and 330 dph). In contrast, the highest cumulative survival was observed in A. baerii × A. ruthenus hybrids at all sampling points (14.47 ± 5.70 at 497 dph). Overall, most of the studied sturgeon hybrids displayed higher mean BW and cumulative survival compared to the purebreds. The utilization of sturgeon hybrids should be restricted to aquaculture purposes because they can pose a significant genetic threat to native populations through ecological interactions.

Zobrazit více v PubMed

Grande L., Bemis W.E. Osteology and phylogenetic relationships of fossil and recent paddlefishes (Polyodontidae) with comments on the interrelationships of Acipenseriformes. J. Vertebr. Paleontol. 1991;11:1–121. doi: 10.1080/02724634.1991.10011424. DOI

Inoue J.G., Miya M., Venkatesh B., Nishida M. The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene. 2005;349:227–235. doi: 10.1016/j.gene.2005.01.008. PubMed DOI

De La Herrán R., Robles F., Martínez-Espín E., Lorente J., Rejon C.R., Garrido-Ramos M.A., Rejon M.R. Genetic identification of western Mediterranean sturgeons and its implication for conservation. Conserv. Genet. 2004;5:545–551. doi: 10.1023/B:COGE.0000041023.59291.39. DOI

Ludwig A. Identification of Acipenseriformes species in trade. J. Appl. Ichthyol. 2008;24:2–19. doi: 10.1111/j.1439-0426.2008.01085.x. DOI

Ruiz-Rejón M. Biology, Conservation and Sustainable Development of Sturgeons. Springer; New York, NY, USA: 2009.

Havelka M., Hulák M., Bailie D.A., Prodöhl P.A., Flajšhans M. Extensive genome duplications in sturgeons: New evidence from microsatellite data. J. Appl. Ichthyol. 2013;29:704–708. doi: 10.1111/jai.12224. DOI

Birstein V.J., Bemis W.E. How many species are there within the genus Acipenser. Environ. Biol. Fishes. 1997;48:157–163. doi: 10.1023/A:1007354827093. DOI

Ludwig A., Belfiore N.M., Pitra C., Svirsky V., Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus) Genetics. 2001;158:1203–1215. PubMed PMC

Fontana F., Congiu L., Mudrak V.A., Quattro J.M., Smith T.I., Ware K., Doroshov S.I. Evidence of hexaploid karyotype in shortnose sturgeon. Genome. 2008;51:113–119. doi: 10.1139/G07-112. PubMed DOI

Vasil’eva E.D. Some morphological characteristics of Acipenserid fishes: Considerations of their variability and utility in taxonomy. J. Appl. Ichthyol. 1999;15:32–35. doi: 10.1111/j.1439-0426.1999.tb00201.x. DOI

Fontana F. A cytogenetic approach to the study of taxonomy and evolution in sturgeons. J. Appl. Ichthyol. 2002;18:226–233. doi: 10.1046/j.1439-0426.2002.00360.x. DOI

Du K., Stöck M., Kneitz S., Klopp C., Woltering J., Adolfi M.C., Feron R., Prokopov D., Makunin A., Kichigin I., et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 2020;4:841–852. doi: 10.1038/s41559-020-1166-x. PubMed DOI PMC

Havelka M., Bytyutskyy D., Symonová R., Ráb P., Flajšhans M. The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet. Sel. Evol. 2016;48:1–9. doi: 10.1186/s12711-016-0194-0. PubMed DOI PMC

Birstein V.J., Poletaev A.I., Goncharov B.F. DNA content in Eurasian sturgeon species determined by flow cytometry. Cytom. A. 1993;14:377–383. doi: 10.1002/cyto.990140406. PubMed DOI

Tranah G., Campton D.E., May B. Genetic evidence for hybridization of pallid and shovelnose sturgeon. J. Hered. 2004;95:474–480. doi: 10.1093/jhered/esh077. PubMed DOI

Ludwig A., Lippold S., Debus L., Reinartz R. First evidence of hybridization between endangered starlets (Acipenser ruthenus) andexotic Siberian sturgeons (Acipenser baerii) in the Danube River. Biol. Invasions. 2009;11:753–760. doi: 10.1007/s10530-008-9289-z. DOI

Dudu A., Suciu R., Paraschiv M., Georgescu S.E., Costache M., Berrebi P. Nuclear markers of Danube sturgeons hybridization. Int. J. Mol. Sci. 2011;12:6796–6809. doi: 10.3390/ijms12106796. PubMed DOI PMC

Zhang X., Wu W., Li L., Ma X., Chen J. Genetic variation and relationships of seven sturgeon species and ten interspecific hybrids. Genet. Sel. Evol. 2013;45:21. doi: 10.1186/1297-9686-45-21. PubMed DOI PMC

Flajšhans M., Vajcová V. Odd ploidy levels in sturgeons suggest a backcross of interspecific hexaploid sturgeon hybrids to evolutionarily tetraploid and/or octaploid parental species. Folia Zool. 2000;49:133–138.

Zhou H., Fujimoto T., Adachi S., Yamaha E., Arai K. Genome size variation estimated by flow cytometry in Acipenser mikadoi, Huso dauricus in relation to other species of Acipenseriformes. J. Appl. Ichthyol. 2011;27:484–491. doi: 10.1111/j.1439-0426.2010.01648.x. DOI

Schreier A.D., Rodzen J., Ireland S., May B. Genetic techniques inform conservation aquaculture of the endangered Kootenai River white sturgeon Acipenser transmontanus. Endanger. Species Res. 2012;16:65–75. doi: 10.3354/esr00387. DOI

Havelka M., Hulák M., Ráb P., Rábová M., Lieckfeldt D., Ludwig A., Rodina M., Gela D., Pšenička M., Bytyutskyy D., et al. Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genet. 2014;15:5. doi: 10.1186/1471-2156-15-5. PubMed DOI PMC

Gille D.A., Famula T.R., May B.P., Schreier A.D. Evidence for a maternal origin of spontaneous autopolyploidy in cultured white sturgeon (Acipenser transmontanus) Aquaculture. 2015;435:467–474. doi: 10.1016/j.aquaculture.2014.10.002. DOI

Vasil’ev V.P. Mechanisms of Polyploid Evolution in Fish: Polyploidy in Sturgeons. Springer; New York, NY, USA: 2009.

Piferrer F., Beaumont A., Falguière J.C., Flajšhans M., Haffray P., Colombo L. Polyploid fish and shellfish: Production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009;293:125–156. doi: 10.1016/j.aquaculture.2009.04.036. DOI

Vasil’ev V.P., Rachek E.I., Lebedeva E.B., Vasil’eva E.D. Karyological study in backcross hybrids between the sterlet, Acipenser ruthenus, and kaluga, A. dauricus (Actinopterygii: Acipenseriformes: Acipenseridae): A. ruthenus × (A. ruthenus × A. dauricus) and A. dauricus × (A. ruthenus × A. dauricus) Acta Ichthyol. Piscat. 2014;44:301–308.

Linhartová Z., Havelka M., Pšenička M., Flajšhans M. Interspecific hybridization of sturgeon species affects differently their gonadal development. Czech J. Anim. Sci. 2017;63:1–10. doi: 10.17221/37/2016-CJAS. DOI

Bronzi P., Rosenthal H., Gessner J. Global sturgeon aquaculture production: An overview. J. Appl. Ichthyol. 2011;27:169–175. doi: 10.1111/j.1439-0426.2011.01757.x. DOI

Shivaramu S., Vuong D.T., Havelka M., Lebeda I., Kašpar V., Flajšhans M. The heterosis estimates for growth and survival traits in sterlet and Siberian sturgeon purebreds and hybrids. J. Appl. Ichthyol. 2020;36:267–274. doi: 10.1111/jai.14034. DOI

Shivaramu S., Vuong D.T., Havelka M., Šachlová H., Lebeda I., Kašpar V., Flajšhans M. Influence of interspecific hybridization on fitness-related traits in Siberian sturgeon and Russian sturgeon. Czech J. Anim. Sci. 2019;64:78–88. doi: 10.17221/165/2018-CJAS. DOI

Bronzi P., Chebanov M., Michaels J.T., Wei Q., Rosenthal H., Gessner J. Sturgeon meat and caviar production: Global update 2017. J. Appl. Ichthyol. 2019;35:257–266. doi: 10.1111/jai.13870. DOI

Leal M.J., Clark B.E., Van Eenennaam J.P., Schreier A.D., Todgham A.E. The effects of warm temperature acclimation on constitutive stress, immunity, and metabolism in white sturgeon (Acipenser transmontanus) of different ploidies. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2018;224:23–34. doi: 10.1016/j.cbpa.2018.05.021. PubMed DOI

Fiske J.A., Van Eenennaam J.P., Todgham A.E., Young S.P., Holem-Bell C.E., Goodbla A.M., Schreier A.D. A comparison of methods for determining ploidy in white sturgeon (Acipenser transmontanus) Aquaculture. 2019;507:435–442. doi: 10.1016/j.aquaculture.2019.03.009. DOI

Štěch L., Linhart O., Shelton W.L., Mims S.D. Minimally invasive surgical removal of ovulated eggs of paddlefish (Polyodon spathula) Aquac. Int. 1999;7:129–133. doi: 10.1023/A:1009253806766. DOI

Gela D., Rodina M., Linhart O. Řízená reprodukce jeseterů [The Artificial Reproduction of the Sturgeons (Acipenser)] Research Institute of Fish Culture and Hydrobiology University of South Bohemia; Vodňany, Czech Republic: 2008. p. 24. (Methodology edition (Technology Series)).

Linhart O., Rodina M., Cosson J. Cryopreservation of sperm in common carp Cyprinus carpio: Sperm motility and hatching success of embryos. Cryobiology. 2000;41:241–250. doi: 10.1006/cryo.2000.2284. PubMed DOI

Dettlaff T.A., Ginzburg A.S., Schmalhausen O.I. Sturgeon Fishes: Developmental Biology and Aquaculture. Springer Science & Business Media; London, UK: 1993.

Wei Q.W., Zou Y., Li P., Li L. Sturgeon aquaculture in China: Progress, strategies and prospects assessed on the basis of nation-wide surveys (2007–2009) J. Appl. Ichthyol. 2011;27:162–168. doi: 10.1111/j.1439-0426.2011.01669.x. DOI

Havelka M., Zhou H., Hagihara S., Ichimura M., Fujimoto T., Yamaha E., Adachi S., Arai K. Spontaneous polyploidization in critically endangered Acipenser mikadoi. Fish. Sci. 2017;83:587–595. doi: 10.1007/s12562-017-1083-3. DOI

Gorshkova G., Gorshkov S., Gordin H., Knibb W. Karyological studies in hybrids of Beluga Huso huso (L.) and the Russian sturgeon Acipenser güldenstädti Brandt. Isr. J. Aquacult Bamid. 1996;48:35–39.

Arnold M.L. Natural Hybridization: Outcomes. Oxford University Press; Oxford, UK: 1997. (Oxford Series in ecology and Evolution).

Rieseberg L.H., Wendel J.F. Introgression and its consequences in plants. Hybrid Zones Evol. Process. 1993;70:109.

Seehausen O. Hybridization and adaptive radiation. Trends Ecol. Evol. 2004;19:198–207. doi: 10.1016/j.tree.2004.01.003. PubMed DOI

Mayr E. Animal Species and Evolution. Harvard University Press; Cambridge, UK: 1963.

Yamashita M., Jiang J., Onozato H., Nakanishi T., Nagahama Y. A Tripolar Spindle Formed at Meiosis I Assures the Retention of the Original Ploidy in the Gynogenetic Triploid Crucian Carp, Ginbuna Carassius auratus langsdorfii: (fish oocytes/gynogenesis/meiosis/spindle formation/histone H1 kinase) Dev. Growth Differ. 1993;35:631–636. doi: 10.1111/j.1440-169X.1993.00631.x. PubMed DOI

Li Y.J., Yu Z., Zhang M.Z., Qian C., Abe S., Arai K. The origin of natural tetraploid loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) inferred from meiotic chromosome configurations. Genetica. 2011;139:805. doi: 10.1007/s10709-011-9585-x. PubMed DOI

Arai K., Fujimoto T. Genomic constitution and atypical reproduction in polyploid and unisexual lineages of the Misgurnus loach, a teleost fish. Cytogenet. Genome Res. 2013;140:226–240. doi: 10.1159/000353301. PubMed DOI

Glover K.A., Madhun A.S., Dahle G., Sørvik A.G.E., Wennevik V., Skaala Ø., Morton H.C., Hansen T.J., Fjelldal P.G. The frequency of spontaneous triploidy in farmed Atlantic salmon produced in Norway during the period 2007–2014. BMC Genet. 2015;16:1–10. doi: 10.1186/s12863-015-0193-0. PubMed DOI PMC

Schreier A.D., Van Eenennaam J.P. Genetic Diversity Monitoring of White Sturgeon in the Kootenai Tribe of Idaho Native Fish Conservation Aquaculture Program and Study of 10N Reproductive Development. University of California, Davis; Davis, CA, USA: 2017.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...