Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA196703
NCI NIH HHS - United States
PubMed
34657149
PubMed Central
PMC8814675
DOI
10.1182/blood.2020008136
PII: S0006-4971(21)01753-5
Knihovny.cz E-zdroje
- MeSH
- anaplastická lymfomová kináza antagonisté a inhibitory metabolismus MeSH
- anaplastický velkobuněčný lymfom farmakoterapie metabolismus MeSH
- inhibitory proteinkinas farmakologie MeSH
- krizotinib farmakologie MeSH
- lidé MeSH
- myši inbrední NOD MeSH
- myši SCID MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- protinádorové látky farmakologie MeSH
- tyrosinfosfatasa nereceptorového typu 1 metabolismus MeSH
- tyrosinfosfatasa nereceptorového typu 2 metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ALK protein, human MeSH Prohlížeč
- anaplastická lymfomová kináza MeSH
- inhibitory proteinkinas MeSH
- krizotinib MeSH
- protinádorové látky MeSH
- tyrosinfosfatasa nereceptorového typu 1 MeSH
- tyrosinfosfatasa nereceptorového typu 2 MeSH
Anaplastic large cell lymphomas (ALCLs) frequently carry oncogenic fusions involving the anaplastic lymphoma kinase (ALK) gene. Targeting ALK using tyrosine kinase inhibitors (TKIs) is a therapeutic option in cases relapsed after chemotherapy, but TKI resistance may develop. By applying genomic loss-of-function screens, we identified PTPN1 and PTPN2 phosphatases as consistent top hits driving resistance to ALK TKIs in ALK+ ALCL. Loss of either PTPN1 or PTPN2 induced resistance to ALK TKIs in vitro and in vivo. Mechanistically, we demonstrated that PTPN1 and PTPN2 are phosphatases that bind to and regulate ALK phosphorylation and activity. In turn, oncogenic ALK and STAT3 repress PTPN1 transcription. We found that PTPN1 is also a phosphatase for SHP2, a key mediator of oncogenic ALK signaling. Downstream signaling analysis showed that deletion of PTPN1 or PTPN2 induces resistance to crizotinib by hyperactivating SHP2, the MAPK, and JAK/STAT pathways. RNA sequencing of patient samples that developed resistance to ALK TKIs showed downregulation of PTPN1 and PTPN2 associated with upregulation of SHP2 expression. Combination of crizotinib with a SHP2 inhibitor synergistically inhibited the growth of wild-type or PTPN1/PTPN2 knock-out ALCL, where it reverted TKI resistance. Thus, we identified PTPN1 and PTPN2 as ALK phosphatases that control sensitivity to ALK TKIs in ALCL and demonstrated that a combined blockade of SHP2 potentiates the efficacy of ALK inhibition in TKI-sensitive and -resistant ALK+ ALCL.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Medicine and Surgery University of Milan Bicocca Monza Italy
Department of Molecular Biotechnology and Health Sciences University of Torino Torino Italy
Department of Pathology Boston Children's Hospital and Harvard Medical School Boston MA
Department of Pediatric and Adolescent Oncology Gustave Roussy Cancer Center Villejuif France
Zobrazit více v PubMed
Horwitz S, O’Connor OA, Pro B, et al. ; ECHELON-2 Study Group . Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet. 2019;393(10168):229-240. PubMed PMC
Piva R, Chiarle R, Manazza AD, et al. . Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood. 2006;107(2):689-697. PubMed PMC
Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8(1):11-23. PubMed
Mossé YP, Lim MS, Voss SD, et al. . Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472-480. PubMed PMC
Gambacorti Passerini C, Farina F, Stasia A, et al. . Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J Natl Cancer Inst. 2014;106(2):djt378. PubMed
Gambacorti-Passerini C, Mussolin L, Brugieres L. Abrupt relapse of ALK-positive lymphoma after discontinuation of crizotinib. N Engl J Med. 2016;374(1):95-96. PubMed
Shaw AT. ALK inhibitors in non-small cell lung cancer: how many are needed and how should they be sequenced? Clin Adv Hematol Oncol. 2017;15(12):941-945. PubMed
Sharma GG, Mota I, Mologni L, Patrucco E, Gambacorti-Passerini C, Chiarle R. Tumor resistance against ALK targeted therapy-where it comes from and where it goes. Cancers (Basel). 2018;10(3):62. PubMed PMC
Li W, Xu H, Xiao T, et al. . MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15(12):554. PubMed PMC
Frankish A, Diekhans M, Ferreira AM, et al. . GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47(D1):D766-D773. PubMed PMC
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417-419. PubMed PMC
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000 Res. 2015;4:1521. PubMed PMC
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40(10):4288-4297. PubMed PMC
Ng SY, Yoshida N, Christie AL, et al. . Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun. 2018;9(1):2024. PubMed PMC
Martinengo C, Poggio T, Menotti M, et al. . ALK-dependent control of hypoxia-inducible factors mediates tumor growth and metastasis. Cancer Res. 2014;74(21):6094-6106. PubMed
Nagasawa T, Zhang Q, Raghunath PN, et al. . Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing. Leuk Res. 2006; 30(3):303-312. PubMed
Cheng A, Dubé N, Gu F, Tremblay ML. Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur J Biochem. 2002;269(4):1050-1059. PubMed
Sangwan V, Paliouras GN, Abella JV, et al. . Regulation of the Met receptor-tyrosine kinase by the protein-tyrosine phosphatase 1B and T-cell phosphatase. J Biol Chem. 2008;283(49):34374-34383. PubMed PMC
Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, et al. . PTP1B regulates leptin signal transduction in vivo. Dev Cell. 2002; 2(4):489-495. PubMed
Myers MP, Andersen JN, Cheng A, et al. . TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem. 2001;276(51):47771-47774. PubMed
Johnson KJ, Peck AR, Liu C, et al. . PTP1B suppresses prolactin activation of Stat5 in breast cancer cells. Am J Pathol. 2010; 177(6):2971-2983. PubMed PMC
Wiede F, Shields BJ, Chew SH, et al. . T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J Clin Invest. 2011;121(12):4758-4774. PubMed PMC
Wiede F, Dudakov JA, Lu KH, et al. . PTPN2 regulates T cell lineage commitment and αβ versus γδ specification. J Exp Med. 2017;214(9):2733-2758. PubMed PMC
Wiede F, La Gruta NL, Tiganis T. PTPN2 attenuates T-cell lymphopenia-induced proliferation. Nat Commun. 2014;5(1):3073. PubMed
Doody KM, Bourdeau A, Tremblay ML. T-cell protein tyrosine phosphatase is a key regulator in immune cell signaling: lessons from the knockout mouse model and implications in human disease. Immunol Rev. 2009;228(1):325-341. PubMed
Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ. The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol. 2002;12(6):446-453. PubMed
ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, et al. . Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol. 2002;22(16):5662-5668. PubMed PMC
Fukushima A, Loh K, Galic S, et al. . T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis. Diabetes. 2010;59(8):1906-1914. PubMed PMC
Gurzov EN, Tran M, Fernandez-Rojo MA, et al. . Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein tyrosine phosphatase N2. Cell Metab. 2014;20(1):85-102. PubMed PMC
Zamo A, Chiarle R, Piva R, et al. . Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene. 2002;21(7):1038-1047. PubMed
Zhang Q, Raghunath PN, Xue L, et al. . Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol. 2002; 168(1):466-474. PubMed
Chiarle R, Simmons WJ, Cai H, et al. . Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med. 2005;11(6):623-629. PubMed
Hallberg B, Palmer RH. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology [published correction appears in Nat Rev Cancer. 2013;13(11):820]. Nat Rev Cancer. 2013;13(10):685-700. PubMed
Werner MT, Zhao C, Zhang Q, Wasik MA. Nucleophosmin-anaplastic lymphoma kinase: the ultimate oncogene and therapeutic target. Blood. 2017;129(7):823-831. PubMed
Yao Z, Darowski K, St-Denis N, et al. . A global analysis of the receptor tyrosine kinase-protein phosphatase interactome. Mol Cell. 2017;65(2):347-360. PubMed PMC
Powell CE, Gao Y, Tan L, et al. . Chemically induced degradation of anaplastic lymphoma kinase (ALK). J Med Chem. 2018;61(9):4249-4255. PubMed PMC
Menotti M, Ambrogio C, Cheong TC, et al. . Wiskott-Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat Med. 2019;25(1):130-140. PubMed PMC
Voena C, Conte C, Ambrogio C, et al. . The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Res. 2007;67(9):4278-4286. PubMed
Dardaei L, Wang HQ, Singh M, et al. . SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nat Med. 2018;24(4):512-517. PubMed PMC
Araki T, Nawa H, Neel BG. Tyrosyl phosphorylation of Shp2 is required for normal ERK activation in response to some, but not all, growth factors. J Biol Chem. 2003;278(43):41677-41684. PubMed
Ferrari E, Tinti M, Costa S, et al. . Identification of new substrates of the protein-tyrosine phosphatase PTP1B by Bayesian integration of proteome evidence. J Biol Chem. 2011;286(6):4173-4185. PubMed PMC
Chan G, Kalaitzidis D, Neel BG. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev. 2008;27(2):179-192. PubMed
LaRochelle JR, Fodor M, Vemulapalli V, et al. . Structural reorganization of SHP2 by oncogenic mutations and implications for oncoprotein resistance to allosteric inhibition. Nat Commun. 2018;9(1):4508. PubMed PMC
Pádua RAP, Sun Y, Marko I, et al. . Mechanism of activating mutations and allosteric drug inhibition of the phosphatase SHP2. Nat Commun. 2018;9(1):4507. PubMed PMC
Chen YN, LaMarche MJ, Chan HM, et al. . Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535(7610):148-152. PubMed
Wong GS, Zhou J, Liu JB, et al. . Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition [published correction appears in Nat Med. 2018;24(10):1627]. Nat Med. 2018;24(7):968-977. PubMed PMC
Sun X, Ren Y, Gunawan S, et al. . Selective inhibition of leukemia-associated SHP2E69K mutant by the allosteric SHP2 inhibitor SHP099. Leukemia. 2018;32(5):1246-1249. PubMed PMC
Fedele C, Ran H, Diskin B, et al. . SHP2 inhibition prevents adaptive resistance to MEK inhibitors in multiple cancer models. Cancer Discov. 2018;8(10):1237-1249. PubMed PMC
Bai L, Zhou H, Xu R, et al. . A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell. 2019;36(5):498-511.e17. PubMed PMC
Prokoph N, Probst NA, Lee LC, et al. . IL10RA modulates crizotinib sensitivity in NPM1-ALK+ anaplastic large cell lymphoma. Blood. 2020;136(14):1657-1669. PubMed PMC
Honorat JF, Ragab A, Lamant L, Delsol G, Ragab-Thomas J. SHP1 tyrosine phosphatase negatively regulates NPM-ALK tyrosine kinase signaling. Blood. 2006; 107(10):4130-4138. PubMed
Zhang X, Guo A, Yu J, et al. . Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T. Proc Natl Acad Sci USA. 2007;104(10):4060-4064. PubMed PMC
Peyser ND, Du Y, Li H, et al. . Loss-of-function PTPRD mutations lead to increased STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer. PLoS One. 2015;10(8):e0135750. PubMed PMC
Haj FG, Markova B, Klaman LD, Bohmer FD, Neel BG. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J Biol Chem. 2003;278(2):739-744. PubMed
Eden ER, White IJ, Tsapara A, Futter CE. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat Cell Biol. 2010;12(3):267-272. PubMed
Sangwan V, Abella J, Lai A, et al. . Protein-tyrosine phosphatase 1B modulates early endosome fusion and trafficking of Met and epidermal growth factor receptors. J Biol Chem. 2011;286(52):45000-45013. PubMed PMC
Fan G, Lin G, Lucito R, Tonks NK. Protein-tyrosine phosphatase 1B antagonized signaling by insulin-like growth factor-1 receptor and kinase BRK/PTK6 in ovarian cancer cells. J Biol Chem. 2013;288(34):24923-24934. PubMed PMC
Boutterin MC, Mazot P, Faure C, et al. . Control of ALK (wild type and mutated forms) phosphorylation: specific role of the phosphatase PTP1B. Cell Signal. 2013;25(6):1505-1513. PubMed
Wu Z, Lu M, Li T. Prediction of substrate sites for protein phosphatases 1B, SHP-1, and SHP-2 based on sequence features. Amino Acids. 2014;46(8):1919-1928. PubMed
Liu F, Sells MA, Chernoff J. Protein tyrosine phosphatase 1B negatively regulates integrin signaling. Curr Biol. 1998;8(3):173-176. PubMed
Bjorge JD, Pang A, Fujita DJ. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J Biol Chem. 2000;275(52):41439-41446. PubMed
Manguso RT, Pope HW, Zimmer MD, et al. . In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547(7664):413-418. PubMed PMC
LaFleur MW, Nguyen TH, Coxe MA, et al. . PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat Immunol. 2019;20(10):1335-1347. PubMed PMC
Laimer D, Dolznig H, Kollmann K, et al. . PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med. 2012;18(11):1699-1704. PubMed
Shi P, Lai R, Lin Q, et al. . IGF-IR tyrosine kinase interacts with NPM-ALK oncogene to induce survival of T-cell ALK+ anaplastic large-cell lymphoma cells. Blood. 2009; 114(2):360-370. PubMed PMC
Prutsch N, Gurnhofer E, Suske T, et al. . Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma [published correction appears in Leukemia. 2020;34(11):3105]. Leukemia. 2019;33(3):696-709. PubMed PMC
Crockett DK, Lin Z, Elenitoba-Johnson KS, Lim MS. Identification of NPM-ALK interacting proteins by tandem mass spectrometry. Oncogene. 2004;23(15):2617-2629. PubMed
Amin HM, Lin Q, Lai R. Jak3 contributes to the activation of ALK and Stat3 in ALK(+) anaplastic large cell lymphoma. Lab Invest. 2006;86(4):417-419, author reply 420-421. PubMed
Ambrogio C, Voena C, Manazza AD, et al. . p130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood. 2005;106(12):3907-3916. PubMed PMC
Cussac D, Greenland C, Roche S, et al. . Nucleophosmin-anaplastic lymphoma kinase of anaplastic large-cell lymphoma recruits, activates, and uses pp60c-src to mediate its mitogenicity. Blood. 2004;103(4):1464-1471. PubMed
Gunawardana J, Chan FC, Telenius A, et al. . Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat Genet. 2014;46(4):329-335. PubMed
Tiacci E, Ladewig E, Schiavoni G, et al. . Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood. 2018;131(22):2454-2465. PubMed PMC
Laurent C, Nicolae A, Laurent C, et al. . Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood. 2020; 135(5):360-370. PubMed PMC
Kleppe M, Lahortiga I, El Chaar T, et al. . Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat Genet. 2010;42(6):530-535. PubMed PMC
Liu Y, Easton J, Shao Y, et al. . The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211-1218. PubMed PMC
Kleppe M, Tousseyn T, Geissinger E, et al. . Mutation analysis of the tyrosine phosphatase PTPN2 in Hodgkin’s lymphoma and T-cell non-Hodgkin’s lymphoma. Haematologica. 2011;96(11):1723-1727. PubMed PMC
Pike KA, Tremblay ML. TC-PTP and PTP1B: regulating JAK-STAT signaling, controlling lymphoid malignancies. Cytokine. 2016;82:52-57. PubMed
Shields BJ, Wiede F, Gurzov EN, et al. . TCPTP regulates SFK and STAT3 signaling and is lost in triple-negative breast cancers. Mol Cell Biol. 2013;33(3):557-570. PubMed PMC
Lee CF, Ling ZQ, Zhao T, et al. . Genomic-wide analysis of lymphatic metastasis-associated genes in human hepatocellular carcinoma. World J Gastroenterol. 2009; 15(3):356-365. PubMed PMC
Mullard A. Phosphatases start shedding their stigma of undruggability. Nat Rev Drug Discov. 2018;17(12):847-849. PubMed
Crescenzo R, Abate F, Lasorsa E, et al. ; European T-Cell Lymphoma Study Group, T-Cell Project: Prospective Collection of Data in Patients with Peripheral T-Cell Lymphoma and the AIRC 5xMille Consortium “Genetics-Driven Targeted Management of Lymphoid Malignancies” . Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma [published correction appears in Cancer Cell. 2015;27(5):744]. Cancer Cell. 2015;27(4):516-532. PubMed PMC
Scarfò I, Pellegrino E, Mereu E, et al. ; European T-Cell Lymphoma Study Group . Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood. 2016;127(2):221-232. PubMed
Targeting CCR7-PI3Kγ overcomes resistance to tyrosine kinase inhibitors in ALK-rearranged lymphoma
Resistance to Targeted Agents Used to Treat Paediatric ALK-Positive ALCL