Resistance to Targeted Agents Used to Treat Paediatric ALK-Positive ALCL

. 2021 Nov 29 ; 13 (23) : . [epub] 20211129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34885113

Non-Hodgkin lymphoma (NHL) is the third most common malignancy diagnosed in children. The vast majority of paediatric NHL are either Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), anaplastic large cell lymphoma (ALCL), or lymphoblastic lymphoma (LL). Multi-agent chemotherapy is used to treat all of these types of NHL, and survival is over 90% but the chemotherapy regimens are intensive, and outcomes are generally poor if relapse occurs. Therefore, targeted therapies are of interest as potential solutions to these problems. However, the major problem with all targeted agents is the development of resistance. Mechanisms of resistance are not well understood, but increased knowledge will facilitate optimal management strategies through improving our understanding of when to select each targeted agent, and when a combinatorial approach may be helpful. This review summarises currently available knowledge regarding resistance to targeted therapies used in paediatric anaplastic lymphoma kinase (ALK)-positive ALCL. Specifically, we outline where gaps in knowledge exist, and further investigation is required in order to find a solution to the clinical problem of drug resistance in ALCL.

Zobrazit více v PubMed

Prokoph N., Larose H., Lim M.S., Burke G.A.A., Turner S.D. Treatment options for paediatric anaplastic large cell lymphoma (ALCL): Current standard and beyond. Cancers. 2018;10:99. doi: 10.3390/cancers10040099. PubMed DOI PMC

Abla O., Alexander S., Attarbaschi A., Batchelor T.T., Beishuizen A., Bond J., Borkhardt A., Brugieres L., Burke A., Burkhardt B., et al. Non-Hodgkin’s Lymphoma in Childhood and Adolescence. 1st ed. Springer International Publishing; Cham, Switzerland: 2019.

Morris S.W., Kirstein M.N., Valentine M.B., Dittmer K.G., Shapiro D.N., Saltman D.L., Look A.T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263:1281–1284. doi: 10.1126/science.8122112. PubMed DOI

Chiarle R., Voena C., Ambrogio C., Piva R., Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer. 2008;8:11–23. doi: 10.1038/nrc2291. PubMed DOI

Bischof D., Pulford K., Mason D.Y., Morris S.W. Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol. Cell. Biol. 1997;17:2312–2325. doi: 10.1128/MCB.17.4.2312. PubMed DOI PMC

Turner S.D., Tooze R., Maclennan K., Alexander D.R. Vav-promoter regulated oncogenic fusion protein NPM-ALK in transgenic mice causes B-cell lymphomas with hyperactive Jun kinase. Oncogene. 2003;22:7750–7761. doi: 10.1038/sj.onc.1207048. PubMed DOI

Malcolm T.I., Villarese P., Fairbairn C.J., Lamant L., Trinquand A., Hook C.E., Burke G.A.A., Brugières L., Hughes K., Payet D., et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat. Commun. 2016;7:10087. doi: 10.1038/ncomms10087. PubMed DOI PMC

Chiarle R., Gong J.Z., Guasparri I., Pesci A., Cai J., Liu J., Simmons W.J., Dhall G., Howes J., Piva R., et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood. 2003;101:1919–1927. doi: 10.1182/blood-2002-05-1343. PubMed DOI

Turner S.D., Merz H., Yeung D., Alexander D.R. CD2 promoter regulated nucleophosmin-anaplastic lymphoma kinase in transgenic mice causes B lymphoid malignancy. Anticancer Res. 2006;26:3275–3279. PubMed

Werner M.T., Zhao C., Zhang Q., Wasik M.A. Nucleophosmin-anaplastic lymphoma kinase: The ultimate oncogene and therapeutic target. Blood. 2017;129:823–831. doi: 10.1182/blood-2016-05-717793. PubMed DOI

Turner S.D., Yeung D., Hadfield K., Cook S.J., Alexander D.R. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms. Cell. Signal. 2007;19:740–747. doi: 10.1016/j.cellsig.2006.09.007. PubMed DOI

Slupianek A., Nieborowska-Skorska M., Hoser G., Morrione A., Majewski M., Xue L., Morris S.W., Wasik M.A., Skorski T. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res. 2001;61:2194–2199. PubMed

Zhang Q., Raghunath P.N., Xue L., Majewski M., Carpentieri D.F., Odum N., Morris S., Skorski T., Wasik M.A. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J. Immunol. 2002;168:466–474. doi: 10.4049/jimmunol.168.1.466. PubMed DOI

Bai R.Y., Dieter P., Peschel C., Morris S.W., Duyster J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol. Cell. Biol. 1998;18:6951–6961. doi: 10.1128/MCB.18.12.6951. PubMed DOI PMC

Roskoski R. Anaplastic lymphoma kinase (ALK) inhibitors in the treatment of ALK-driven lung cancers. Pharmacol. Res. 2017;117:343–356. doi: 10.1016/j.phrs.2017.01.007. PubMed DOI

Ducray S.P., Natarajan K., Garland G.D., Turner S.D., Egger G. The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis. Cancers. 2019;11:1074. doi: 10.3390/cancers11081074. PubMed DOI PMC

Sharma G.G., Mota I., Mologni L., Patrucco E., Gambacorti-Passerini C., Chiarle R. Tumor resistance against ALK targeted therapy—Where it comes from and where it goes. Cancers. 2018;10:62. doi: 10.3390/cancers10030062. PubMed DOI PMC

Trigg R.M., Turner S.D. ALK in neuroblastoma: Biological and therapeutic implications. Cancers. 2018;10:113. doi: 10.3390/cancers10040113. PubMed DOI PMC

Laurent C., Lopez C., Desjobert C., Berrebi A., Damm-Welk C., Delsol G., Brousset P., Lamant L. Circulating t(2;5)-positive cells can be detected in cord blood of healthy newborns. Leukemia. 2012;26:188–190. doi: 10.1038/leu.2011.209. PubMed DOI

Turner S.D., Lamant L., Kenner L., Brugières L. Anaplastic large cell lymphoma in paediatric and young adult patients. Br. J. Haematol. 2016;173:560–572. doi: 10.1111/bjh.13958. PubMed DOI

Knörr F., Damm-Welk C., Ruf S., Singh V.K., Zimmermann M., Reiter A., Woessmann W. Blood cytokine concentrations in pediatric patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2018;103:477–485. doi: 10.3324/haematol.2017.177972. PubMed DOI PMC

Bonzheim I., Geissinger E., Roth S., Zettl A., Marx A., Rosenwald A., Müller-Hermelink H.K., Rüdiger T. Anaplastic large cell lymphomas lack the expression of T-cell receptor molecules or molecules of proximal T-cell receptor signaling. Blood. 2004;104:3358–3360. doi: 10.1182/blood-2004-03-1037. PubMed DOI

Malcolm T.I.M., Hodson D.J., Macintyre E.A., Turner S.D. Challenging perspectives on the cellular origins of lymphoma. Open Biol. 2016;6:160232. doi: 10.1098/rsob.160232. PubMed DOI PMC

Schleussner N., Merkel O., Costanza M., Liang H.C., Hummel F., Romagnani C., Durek P., Anagnostopoulos I., Hummel M., Jöhrens K., et al. The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia. 2018;32:1994–2007. doi: 10.1038/s41375-018-0045-9. PubMed DOI PMC

Moti N., Malcolm T., Hamoudi R., Mian S., Garland G., Hook C.E., Burke G.A.A., Wasik M.A., Merkel O., Kenner L., et al. Anaplastic large cell lymphoma-propagating cells are detectable by side population analysis and possess an expression profile reflective of a primitive origin. Oncogene. 2015;34:1843–1852. doi: 10.1038/onc.2014.112. PubMed DOI

Congras A., Hoareau-Aveilla C., Caillet N., Tosolini M., Villarese P., Cieslak A., Rodriguez L., Asnafi V., Macintyre E., Egger G., et al. ALK-transformed mature T lymphocytes restore early thymus progenitor features. J. Clin. Investig. 2020;130:6395–6408. doi: 10.1172/JCI134990. PubMed DOI PMC

Kasprzycka M., Marzec M., Liu X., Zhang Q., Wasik M.A. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc. Natl. Acad. Sci. USA. 2006;103:9964–9969. doi: 10.1073/pnas.0603507103. PubMed DOI PMC

Zhang Q., Wei F., Wang H.Y., Liu X., Roy D., Xiong Q.B., Jiang S., Medvec A., Danet-Desnoyers G., Watt C., et al. The potent oncogene NPM-ALK mediates malignant transformation of normal human CD4(+) T lymphocytes. Am. J. Pathol. 2013;183:1971–1980. doi: 10.1016/j.ajpath.2013.08.030. PubMed DOI PMC

Marzec M., Halasa K., Liu X., Wang H.Y., Cheng M., Baldwin D., Tobias J.W., Schuster S.J., Woetmann A., Zhang Q., et al. Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2–induced cell signaling and gene expression reprogramming. J. Immunol. 2013;191:6200. doi: 10.4049/jimmunol.1300744. PubMed DOI PMC

Brugières L., Le Deley M.-C., Rosolen A., Williams D., Horibe K., Wrobel G., Mann G., Zsiros J., Uyttebroeck A., Marky I., et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: Results of a randomized trial of the EICNHL group. J. Clin. Oncol. 2009;27:897–903. doi: 10.1200/JCO.2008.18.1487. PubMed DOI

Mussolin L., Pillon M., d’Amore E.S., Santoro N., Lombardi A., Fagioli F., Zanesco L., Rosolen A. Prevalence and clinical implications of bone marrow involvement in pediatric anaplastic large cell lymphoma. Leukemia. 2005;19:1643–1647. doi: 10.1038/sj.leu.2403888. PubMed DOI

Williams D., Mori T., Reiter A., Woessman W., Rosolen A., Wrobel G., Zsiros J., Uyttebroeck A., Marky I., Le Deley M.C., et al. Central nervous system involvement in anaplastic large cell lymphoma in childhood: Results from a multicentre European and Japanese study. Pediatr. Blood Cancer. 2013;60:E118–E121. doi: 10.1002/pbc.24591. PubMed DOI

Mussolin L., Le Deley M.C., Carraro E., Damm-Welk C., Attarbaschi A., Williams D., Burke A., Horibe K., Nakazawa A., Wrobel G., et al. Prognostic factors in childhood anaplastic large cell lymphoma: Long term results of the international ALCL99 trial. Cancers. 2020;12:2747. doi: 10.3390/cancers12102747. PubMed DOI PMC

Wrobel G., Mauguen A., Rosolen A., Reiter A., Williams D., Horibe K., Brugières L., Le Deley M.C. Safety assessment of intensive induction therapy in childhood anaplastic large cell lymphoma: Report of the ALCL99 randomised trial. Pediatr. Blood Cancer. 2011;56:1071–1077. doi: 10.1002/pbc.22940. PubMed DOI

Ruf R., Brugieres L., Pillon M., Zimmermann M., Attarbaschi A., Melgrenn K., Williams D., Uyttebroeck A., Wrobel G., Reiter A., et al. Risk-adapted therapy for patients with relapsed or refractory ALCL—Final report of the prospective ALCL-relapse trial of the EICNHL. Br. J. Haematol. 2015;171:35.

EMC Vinblastine Sulphate 1 mg/mL Injection. [(accessed on 15 May 2021)]. Published December 2020. Available online: https://www.medicines.org.uk/emc/product/1422/smpc#gref.

Brugieres L., Pacquement H., Le Deley M.C., Leverger G., Lutz P., Paillard C., Baruchel A., Frappaz D., Nelken B., Lamant L., et al. Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: A report from the French Society of Pediatric Oncology. J. Clin. Oncol. 2009;27:5056–5061. doi: 10.1200/JCO.2008.20.1764. PubMed DOI

Le Deley M.C., Rosolen A., Williams D.M., Horibe K., Wrobel G., Attarbaschi A., Zsiros J., Uyttebroeck A., Marky I.M., Lamant L., et al. Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: Results of the randomized ALCL99-vinblastine trial. J. Clin. Oncol. 2010;28:3987–3993. doi: 10.1200/JCO.2010.28.5999. PubMed DOI

Alexander S., Kraveka J.M., Weitzman S., Lowe E., Smith L., Lynch J.C., Chang M., Kinney M.C., Perkins S.L., Laver J., et al. Advanced stage anaplastic large cell lymphoma in children and adolescents: Results of ANHL0131, a randomized phase III trial of APO versus a modified regimen with vinblastine: A report from the children’s oncology group. Pediatr. Blood Cancer. 2014;61:2236–2242. doi: 10.1002/pbc.25187. PubMed DOI PMC

Li S., Yang J., Wang J., Gao W., Ding Y., Jia Z. Down-regulation of miR-210-3p encourages chemotherapy resistance of renal cell carcinoma via modulating ABCC1. Cell Biosci. 2018;8:1–10. doi: 10.1186/s13578-018-0209-3. PubMed DOI PMC

Mickisch G.H., Roehrich K., Koessig J., Forster S., Tschada R.K., Alken P.M. Mechanisms and modulation of multidrug resistance in primary human renal cell carcinoma. J. Urol. 1990;144:755–759. doi: 10.1016/S0022-5347(17)39586-1. PubMed DOI

Struski S., Cornillet-Lefebvre P., Doco-Fenzy M., Dufer J., Ulrich E., Masson L., Michel N., Gruson N., Potron G. Cytogenetic characterization of chromosomal rearrangement in a human vinblastine-resistant CEM cell line: Use of comparative genomic hybridization and fluorescence in situ hybridization. Cancer Genet. Cytogenet. 2002;132:51–54. doi: 10.1016/S0165-4608(01)00519-2. PubMed DOI

Holmes J., Jacobs A., Carter G., Janowska-Wieczorek A., Padua R.A. Multidrug resistance in haemopoietic cell lines, myelodysplastic syndromes and acute myeloblastic leukaemia. Br. J. Haematol. 1989;72:40–44. doi: 10.1111/j.1365-2141.1989.tb07649.x. PubMed DOI

Zamora J.M., Beck W.T. Chloroquine enhancement of anticancer drug cytotoxicity in multiple drug resistant human leukemic cells. Biochem. Pharmacol. 1986;35:4303–4310. doi: 10.1016/0006-2952(86)90710-0. PubMed DOI

Syed S.K., Christopherson R.I., Roufogalis B.D. Reversal of vinblastine transport by chlorpromazine in membrane vesicles from multidrug-resistant human CCRF-CEM leukaemia cells. Br. J. Cancer. 1998;78:321–327. doi: 10.1038/bjc.1998.493. PubMed DOI PMC

Nanayakkara A.K., Follit C.A., Chen G., Williams N.S., Vogel P.D., Wise J.G. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci. Rep. 2018;8:967. doi: 10.1038/s41598-018-19325-x. PubMed DOI PMC

Kathawala R.J., Gupta P., Ashby C.R., Chen Z.S., Jr. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updat. 2015;18:1–17. doi: 10.1016/j.drup.2014.11.002. PubMed DOI

Obey T.B., Lyle C.S., Chambers T.C. Role of c-Jun in cellular sensitivity to the microtubule inhibitor vinblastine. Biochem. Biophys. Res. Commun. 2005;335:1179–1184. doi: 10.1016/j.bbrc.2005.07.194. PubMed DOI

Dumontet C., Jaffrezou J.P., Tsuchiya E., Duran G.E., Chen K.G., Derry W.B., Wilson L., Jordan M.A., Sikic B.I. Resistance to microtubule-targeted cytotoxins in a K562 leukemia cell variant associated with altered tubulin expression and polymerization. Bull. Cancer. 2004;91:E81–E112. PubMed

Balis F.M., Thompson P.A., Mosse Y.P., Blaney S.M., Minard C.G., Weigel B.J., Fox E. First-dose and steady-state pharmacokinetics of orally administered crizotinib in children with solid tumors: A report on ADVL0912 from the Children’s Oncology Group Phase 1/Pilot Consortium. Cancer Chemother. Pharmacol. 2017;79:181–187. doi: 10.1007/s00280-016-3220-6. PubMed DOI PMC

Morris S.W., Naeve C., Mathew P., James P.L., Kirstein M.N., Cui X., Witte D.P. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK) Oncogene. 1997;14:2175–2188. doi: 10.1038/sj.onc.1201062. PubMed DOI

Orthofer M., Valsesia A., Mägi R., Wang Q.P., Kaczanowska J., Kozieradzki I., Leopoldi A., Cikes D., Zopf L.M., Tretiakov E.O., et al. Identification of ALK in Thinness. Cell. 2020;181:1246–1262.e22. doi: 10.1016/j.cell.2020.04.034. PubMed DOI

Bilsland J.G., Wheeldon A., Mead A., Znamenskiy P., Almond S., Waters K.A., Thakur M., Beaumont V., Bonnert T.P., Heavens R., et al. Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology. 2008;33:685–700. doi: 10.1038/sj.npp.1301446. PubMed DOI

Soda M., Choi Y.L., Enomoto M., Takada S., Yamashita Y., Ishikawa S., Fujiwara S.I., Watanabe H., Kurashina K., Hatanaka H., et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–566. doi: 10.1038/nature05945. PubMed DOI

FDA FDA Approves Crizotinib for Children and Young Adults with Relapsed or Refractory, Systemic Anaplastic Large Cell Lymphoma. [(accessed on 15 May 2021)]; Published January 2021. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-crizotinib-children-and-young-adults-relapsed-or-refractory-systemic-anaplastic-large.

Mossé Y.P., Voss S.D., Lim M.S., Rolland D., Minard C.G., Fox E., Adamson P., Wilner K., Blaney S.M., Weigel B.J. Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: A Children’s Oncology Group study. J. Clin. Oncol. 2017;35:3215–3221. doi: 10.1200/JCO.2017.73.4830. PubMed DOI PMC

Brugières L., Houot R., Cozic N., De La Fouchardière C., Morschhauser F., Brice P., Laboure N.A., Auvrignon A., Aladjidi N., Kolb B., et al. Crizotinib in advanced ALK+ anaplastic large cell lymphoma in children and adults: Results of the Acs© phase II trial. Blood. 2017;130((Suppl. 1)):2831.

Fukano R., Mori T., Sekimizu M., Choi I., Kada A., Saito A.M., Asada R., Takeuchi K., Terauchi T., Tateishi U., et al. Alectinib for relapsed or refractory anaplastic lymphoma kinase-positive anaplastic large cell lymphoma: An open-label phase II trial. Cancer Sci. 2020;111:4540–4547. doi: 10.1111/cas.14671. PubMed DOI PMC

Greengard E., Mosse Y.P., Liu X., Minard C.G., Reid J.M., Voss S., Wilner K., Fox E., Balis F., Blaney S.M., et al. Safety, tolerability and pharmacokinetics of crizotinib in combination with cytotoxic chemotherapy for pediatric patients with refractory solid tumors or anaplastic large cell lymphoma (ALCL): A Children’s Oncology Group phase 1 consortium study (ADVL1212) Cancer Chemother. Pharmacol. 2020;86:829–840. doi: 10.1007/s00280-020-04171-4. PubMed DOI PMC

EU Clinical Trials Register A phase 1B of Crizotinib Either in Combination or as Single Agent in Pediatric Patients with ALK, ROS1 or MET Positive Malignancies. [(accessed on 31 May 2021)]. Published May 2016. Available online: https://www.clinicaltrialsregister.eu/ctr-search/trial/2015-005437-53/NL.

ClinicalTrials.gov Brentuximab Vedotin or Crizotinib and Combination Chemotherapy in Treating Patients with Newly Diagnosed Stage II-IV Anaplastic Large Cell Lymphoma. [(accessed on 31 May 2021)]; Published May 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT01979536.

Huber R.M., Hansen K.H., Paz-Ares Rodríguez L., West H.L., Reckamp K.L., Leighl N.B., Tiseo M., Smit E.F., Kim D.W., Gettinger S.N., et al. Brigatinib in crizotinib-refractory ALK+ NSCLC: 2-year follow-up on systemic and intracranial outcomes in the phase 2 ALTA trial. J. Thorac. Oncol. 2020;15:404–415. doi: 10.1016/j.jtho.2019.11.004. PubMed DOI

Lowe E.J., Reilly A.F., Lim M.S., Gross T.G., Saguilig L., Barkauskas D.A., Wu R., Alexander S., Bollard C.M. Brentuximab vedotin in combination with chemotherapy for pediatric patients with ALK+ ALCL: Results of COG trial ANHL12P1. Blood. 2021;137:3595–3603. doi: 10.1182/blood.2020009806. PubMed DOI PMC

Chihara D., Miljkovic M., Iyer S.P., Vega F. Targeted based therapy in nodal T-cell lymphomas. Leukemia. 2021;35:956–967. doi: 10.1038/s41375-021-01191-8. PubMed DOI

Forero-Torres A., Leonard J.P., Younes A., Rosenblatt J.D., Brice P., Bartlett N.L., Bosly A., Pinter-Brown L., Kennedy D., Sievers E.L., et al. A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br. J. Haematol. 2009;146:171–179. doi: 10.1111/j.1365-2141.2009.07740.x. PubMed DOI

Pro B., Advani R., Brice P., Bartlett N.L., Rosenblatt J.D., Illidge T., Matous J., Ramchandren R., Fanale M., Connors J.M., et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: Results of a phase II study. J. Clin. Oncol. 2012;30:2190–2196. doi: 10.1200/JCO.2011.38.0402. PubMed DOI

Pro B., Advani R., Brice P., Bartlett N.L., Rosenblatt J.D., Illidge T., Matous J., Ramchandren R., Fanale M., Connors J.M., et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood. 2017;130:2709–2717. doi: 10.1182/blood-2017-05-780049. PubMed DOI PMC

Horwitz S., O’Connor O.A., Pro B., Illidge T., Fanale M., Advani R., Bartlett N.L., Christensen J.H., Morschhauser F., Domingo-Domenech E., et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global, double-blind, randomised, phase 3 trial. Lancet. 2019;393:229–240. doi: 10.1016/S0140-6736(18)32984-2. PubMed DOI PMC

Locatelli F., Mauz-Koerholz C., Neville K., Llort A., Beishuizen A., Daw S., Pillon M., Aladjidi N., Klingebiel T., Landman-Parker J., et al. Brentuximab vedotin for paediatric relapsed or refractory Hodgkin’s lymphoma and anaplastic large-cell lymphoma: A multicentre, open-label, phase 1/2 study. Lancet Haematol. 2018;5:e450–e461. doi: 10.1016/S2352-3026(18)30153-4. PubMed DOI

Burke G.A.A. Brentuximab vedotin: Frontline help in ALCL. Blood. 2021;137:3581–3582. doi: 10.1182/blood.2021011572. PubMed DOI

Strauss L., Mahmoud M.A.A., Weaver J.D., Tijaro-Ovalle N.M., Christofides A., Wang Q., Pal R., Yuan M., Asara J., Patsoukis N., et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci. Immunol. 2020;5:eaay1863. doi: 10.1126/sciimmunol.aay1863. PubMed DOI PMC

Patsoukis N., Wang Q., Strauss L., Boussiotis V.A. Revisiting the PD-1 pathway. Sci. Adv. 2020;6:eabd2712. doi: 10.1126/sciadv.abd2712. PubMed DOI PMC

Hebart H., Lang P., Woessmann W. Nivolumab for refractory anaplastic large cell lymphoma: A case report. Ann. Intern. Med. 2016;165:607–608. doi: 10.7326/L16-0037. PubMed DOI

Rigaud C., Abbou S., Minard-Colin V., Geoerger B., Scoazec J.Y., Vassal G., Jaff N., Heuberger L., Valteau-Couanet D., Brugieres L. Efficacy of nivolumab in a patient with systemic refractory ALK+ anaplastic large cell lymphoma. Pediatr. Blood Cancer. 2018;65:e26902. doi: 10.1002/pbc.26902. PubMed DOI

Gambacorti-Passerini C., Mussolin L., Brugieres L. Abrupt relapse of ALK-positive lymphoma after discontinuation of crizotinib. N. Engl. J. Med. 2016;374:95–96. doi: 10.1056/NEJMc1511045. PubMed DOI

Zdzalik D., Dymek B., Grygielewicz P., Gunerka P., Bujak A., Lamparska-Przybysz M., Wieczorek M., Dzwonek K. Activating mutations in ALK kinase domain confer resistance to structurally unrelated ALK inhibitors in NPM-ALK-positive anaplastic large-cell lymphoma. J. Cancer Res. Clin. Oncol. 2014;140:589–598. doi: 10.1007/s00432-014-1589-3. PubMed DOI PMC

Andraos E., Dignac J., Meggetto F. NPM-ALK: A driver of lymphoma pathogenesis and a therapeutic target. Cancers. 2021;13:144. doi: 10.3390/cancers13010144. PubMed DOI PMC

Katayama R., Shaw A.T., Khan T.M., Mino-Kenudson M., Solomon B.J., Halmos B., Jessop N.A., Wain J.C., Yeo A.T., Benes C., et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci. Transl. Med. 2012;4:120ra17. doi: 10.1126/scitranslmed.3003316. PubMed DOI PMC

Gainor J.F., Dardaei L., Yoda S., Friboulet L., Leshchiner I., Katayama R., Dagogo-Jack I., Gadgeel S., Schultz K., Singh M., et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 2016;6:1118–1133. doi: 10.1158/2159-8290.CD-16-0596. PubMed DOI PMC

Katayama R., Khan T.M., Benes C., Lifshits E., Ebi H., Rivera V.M., Shakespeare W.C., Iafrate A.J., Engelman J.A., Shaw A.T. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc. Natl. Acad. Sci. USA. 2011;108:7535–7540. doi: 10.1073/pnas.1019559108. PubMed DOI PMC

Sasaki T., Koivunen J., Ogino A., Yanagita M., Nikiforow S., Zheng W., Lathan C., Marcoux J.P., Du J., Okuda K., et al. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 2011;71:6051–6060. doi: 10.1158/0008-5472.CAN-11-1340. PubMed DOI PMC

Doebele R.C., Pilling A.B., Aisner D.L., Kutateladze T.G., Le A.T., Weickhardt A.J., Kondo K.L., Linderman D., Heasley L.E., Franklin W.A., et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res. 2012;18:1472–4782. doi: 10.1158/1078-0432.CCR-11-2906. PubMed DOI PMC

Jamme P., Descarpentries C., Gervais R., Dansin E., Wislez M., Grégoire V., Richard N., Baldacci S., Rabbe N., Kyheng M., et al. Relevance of detection of mechanisms of resistance to ALK inhibitors in ALK-rearranged NSCLC in routine practice. Clin. Lung Cancer. 2019;20:297–304.e1. doi: 10.1016/j.cllc.2019.02.013. PubMed DOI

Ceccon M., Mologni L., Giudici G., Piazza R., Pirola A., Fontana D., Gambacorti-Passerini C. Treatment efficacy and resistance mechanisms using the second-generation ALK inhibitor AP26113 in human NPM-ALK-positive anaplastic large cell lymphoma. Mol. Cancer Res. 2015;13:775–783. doi: 10.1158/1541-7786.MCR-14-0157. PubMed DOI

Amin A.D., Rajan S.S., Liang W.S., Pongtornpipat P., Groysman M.J., Tapia E.O., Peters T.L., Cuyugan L., Adkins J., Rimsza L.M., et al. Evidence suggesting that discontinuous dosing of ALK kinase inhibitors may prolong control of ALK+ tumors. Cancer Res. 2015;75:2916–2927. doi: 10.1158/0008-5472.CAN-14-3437. PubMed DOI PMC

Ceccon M., Merlo M.E.B., Mologni L., Poggio T., Varesio L.M., Menotti M., Bombelli S., Rigolio R., Manazza A.D., Di Giacomo F., et al. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency. Oncogene. 2016;35:3854–6865. doi: 10.1038/onc.2015.456. PubMed DOI PMC

Rajan S.S., Amin A.D., Li L., Rolland D.C., Li H., Kwon D., Kweh M.F., Arumov A., Roberts E.R., Yan A., et al. The mechanism of cancer drug addiction in ALK-positive T-cell lymphoma. Oncogene. 2020;39:2103–2117. doi: 10.1038/s41388-019-1136-4. PubMed DOI PMC

Singh A., Chen H. Optimal care for patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer: A review on the role and utility of ALK inhibitors. Cancer Manag. Res. 2020;12:6615–6628. doi: 10.2147/CMAR.S260274. PubMed DOI PMC

Bui K.T., Cooper W.A., Kao S., Boyer M. Targeted molecular treatments in non-small cell lung cancer: A clinical guide for oncologists. J. Clin. Med. 2018;7:192. doi: 10.3390/jcm7080192. PubMed DOI PMC

Lin J.J., Riely G.J., Shaw A.T. Targeting ALK: Precision medicine takes on drug resistance. Cancer Discov. 2017;7:137–155. doi: 10.1158/2159-8290.CD-16-1123. PubMed DOI PMC

Okada K., Araki M., Sakashita T., Ma B., Kanada R., Yanagitani N., Horiike A., Koike S., Oh-Hara T., Watanabe K., et al. Prediction of ALK mutations mediating ALK-TKIs resistance and drug re-purposing to overcome the resistance. EBioMedicine. 2019;41:105–119. doi: 10.1016/j.ebiom.2019.01.019. PubMed DOI PMC

Yanagitani N., Uchibori K., Koike S., Tsukahara M., Kitazono S., Yoshizawa T., Horiike A., Ohyanagi F., Tambo Y., Nishikawa S., et al. Drug resistance mechanisms in Japanese anaplastic lymphoma kinase-positive non-small cell lung cancer and the clinical responses based on the resistant mechanisms. Cancer Sci. 2020;111:932–939. doi: 10.1111/cas.14314. PubMed DOI PMC

Choi Y.L., Soda M., Yamashita Y., Ueno T., Takashima J., Nakajima T., Yatabe Y., Takeuchi K., Hamada T., Haruta H., et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 2010;363:1734–1749. doi: 10.1056/NEJMoa1007478. PubMed DOI

Fontana D., Ceccon M., Gambacorti-Passerini C., Mologni L. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK. Cancer Med. 2015;4:953–965. doi: 10.1002/cam4.413. PubMed DOI PMC

Chen J., Wang W., Sun H., Pang L., Yin B. Mutation-mediated influences on binding of anaplastic lymphoma kinase to crizotinib decoded by multiple replica Gaussian accelerated molecular dynamics. J. Comput. Aided. Mol. Des. 2020;34:1289–1305. doi: 10.1007/s10822-020-00355-5. PubMed DOI

McCoy M.D., Madhavan S. A Computational approach for prioritizing selection of therapies targeting drug resistant variation in anaplastic lymphoma kinase. AMIA Summits Transl. Sci. Proc. 2018;2017:160–167. PubMed PMC

Heuckmann J.M., Hölzel M., Sos M.L., Heynck S., Balke-Want H., Koker M., Peifer M., Weiss J., Lovly C.M., Grütter C., et al. ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin. Cancer Res. 2011;17:7394–7401. doi: 10.1158/1078-0432.CCR-11-1648. PubMed DOI PMC

Lin Y.T., Chiang C.L., Hung J.Y., Lee M.H., Su W.C., Wu S.Y., Wei Y.F., Lee K.Y., Tseng Y.H., Su J., et al. Resistance profiles of anaplastic lymphoma kinase tyrosine kinase inhibitors in advanced non-small-cell lung cancer: A multicenter study using targeted next-generation sequencing. Eur. J. Cancer. 2021;156:1–11. doi: 10.1016/j.ejca.2021.06.043. PubMed DOI

McCoach C.E., Le A.T., Gowan K., Jones K., Schubert L., Doak A., Estrada-Bernal A., Davies K.D., Merrick D.T., Bunn P.A., Jr., et al. Resistance mechanisms to targeted therapies in ROS1(+) and ALK(+) non-small cell lung cancer. Clin. Cancer Res. 2018;24:3334–3347. doi: 10.1158/1078-0432.CCR-17-2452. PubMed DOI PMC

Sasaki T., Okuda K., Zheng W., Butrynski J., Capelletti M., Wang L., Gray N.S., Wilner K., Christensen J.G., Demetri G., et al. The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res. 2010;70:10038–10043. doi: 10.1158/0008-5472.CAN-10-2956. PubMed DOI PMC

Liu T., Merguerian M.D., Rowe S.P., Pratilas C.A., Chen A.R., Ladle B.H. Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma. Mol. Case Stud. 2021;7:a006064. doi: 10.1101/mcs.a006064. PubMed DOI PMC

Ai X., Niu X., Chang L., Chen R., Ou S.I., Lu S. Next generation sequencing reveals a novel ALK G1128A mutation resistant to crizotinib in an ALK-Rearranged NSCLC patient. Lung Cancer. 2018;123:83–86. doi: 10.1016/j.lungcan.2018.07.004. PubMed DOI

Gristina V., La Mantia M., Iacono F., Galvano A., Russo A., Bazan V. The emerging therapeutic landscape of ALK inhibitors in non-small cell lung cancer. Pharmaceuticals. 2020;13:474. doi: 10.3390/ph13120474. PubMed DOI PMC

Ceccon M., Mologni L., Bisson W., Scapozza L., Gambacorti-Passerini C. Crizotinib-resistant NPM-ALK mutants confer differential sensitivity to unrelated Alk inhibitors. Mol. Cancer Res. 2013;11:122–132. doi: 10.1158/1541-7786.MCR-12-0569. PubMed DOI

Gambacorti Passerini C., Farina F., Stasia A., Redaelli S., Ceccon M., Mologni L., Messa C., Guerra L., Giudici G., Sala E., et al. Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J. Natl. Cancer Inst. 2014;106:djt378. doi: 10.1093/jnci/djt378. PubMed DOI

Sehgal K., Peters M.L.B., VanderLaan P.A., Rangachari D., Kobayashi S.S., Costa D.B. Activity of brigatinib in the setting of alectinib resistance mediated by ALK I1171S in ALK-rearranged lung cancer. J. Thorac. Oncol. 2019;14:e1–e3. doi: 10.1016/j.jtho.2018.06.020. PubMed DOI PMC

Golding B., Luu A., Jones R., Viloria-Petit A.M. The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC) Mol. Cancer. 2018;17:52. doi: 10.1186/s12943-018-0810-4. PubMed DOI PMC

Amin A.D., Li L., Rajan S.S., Gokhale V., Groysman M.J., Pongtornpipat P., Tapia E.O., Wang M., Schatz J.H. TKI sensitivity patterns of novel kinase-domain mutations suggest therapeutic opportunities for patients with resistant ALK+ tumors. Oncotarget. 2016;7:23715–23729. doi: 10.18632/oncotarget.8173. PubMed DOI PMC

Zhu V.W., Cui J.J., Fernandez-Rocha M., Schrock A.B., Ali S.M., Ou S.I. Identification of a novel T1151K ALK mutation in a patient with ALK-rearranged NSCLC with prior exposure to crizotinib and ceritinib. Lung Cancer. 2017;110:32–34. doi: 10.1016/j.lungcan.2017.05.018. PubMed DOI

Zhu V.W., Schrock A.B., Bosemani T., Benn B.S., Ali S.M., Ou S.I. Dramatic response to alectinib in a lung cancer patient with a novel VKORC1L1-ALK fusion and an acquired ALK T1151K mutation. Lung Cancer. 2018;9:111–116. doi: 10.2147/LCTT.S186804. PubMed DOI PMC

Suryavanshi M., Chaudhari K., Nathany S., Talwar V. Identification of a novel resistance ALK p.(Q1188_L1190del) deletion in a patient with ALK-rearranged non–small-cell lung cancer. Cancer Genet. 2021;256:48–50. doi: 10.1016/j.cancergen.2021.03.006. PubMed DOI

Ferrara M.G., Di Noia V., D’Argento E., Vita E., Damiano P., Cannella A., Ribelli M., Pilotto S., Milella M., Tortora G., et al. Oncogene-addicted non-small-cell lung cancer: Treatment opportunities and future perspectives. Cancers. 2020;12:1196. doi: 10.3390/cancers12051196. PubMed DOI PMC

Kodityal S., Elvin J.A., Squillace R., Agarwal N., Miller V.A., Ali S.M., Klempner S.J., Ou S.H.I. A novel acquired ALK F1245C mutation confers resistance to crizotinib in ALK-positive NSCLC but is sensitive to ceritinib. Lung Cancer. 2016;92:19–21. doi: 10.1016/j.lungcan.2015.11.023. PubMed DOI

Toyokawa G., Inamasu E., Shimamatsu S., Yoshida T., Nosaki K., Hirai F., Yamaguchi M., Seto T., Takenoyama M., Ichinose Y. Identification of a novel ALK G1123S mutation in a patient with ALK-rearranged non-small-cell lung cancer exhibiting resistance to ceritinib. J. Thorac. Oncol. 2015;10:e55–e57. doi: 10.1097/JTO.0000000000000509. PubMed DOI

Ceccon M. Ceritinib as a promising therapy for ALK related diseases. Transl. Lung Cancer Res. 2014;3:376–378. PubMed PMC

Takahashi K., Seto Y., Okada K., Uematsu S., Uchibori K., Tsukahara M., Oh-Hara T., Fujita N., Yanagitani N., Nishio M., et al. Overcoming resistance by ALK compound mutation (I1171S + G1269A) after sequential treatment of multiple ALK inhibitors in non-small cell lung cancer. Thorac. Cancer. 2020;11:581–587. doi: 10.1111/1759-7714.13299. PubMed DOI PMC

Guo J., Guo L., Sun L., Wu Z., Ye J., Liu J., Zuo Q. Capture-based ultra-deep sequencing in plasma ctDNA reveals the resistance mechanism of ALK inhibitors in a patient with advanced ALK-positive NSCLC. Cancer Biol. Ther. 2018;19:359–363. doi: 10.1080/15384047.2018.1433496. PubMed DOI PMC

Kodama T., Tsukaguchi T., Yoshida M., Kondoh O., Sakamoto H. Selective ALK inhibitor alectinib with potent antitumor activity in models of crizotinib resistance. Cancer Lett. 2014;351:215–221. doi: 10.1016/j.canlet.2014.05.020. PubMed DOI

Katayama R., Friboulet L., Koike S., Lockerman E.L., Khan T.M., Gainor J.F., Iafrate A.J., Takeuchi K., Taiji M., Okuno Y., et al. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin. Cancer Res. 2014;20:5686–5696. doi: 10.1158/1078-0432.CCR-14-1511. PubMed DOI PMC

Yang P., Cao R., Bao H., Wu X., Yang L., Zhu D., Zhang L., Peng L., Cai Y., Zhang W., et al. Identification of novel Alectinib-resistant ALK mutation G1202K with sensitization to lorlatinib: A case report and in silico structural modelling. Onco Targets Ther. 2021;14:2131–2138. doi: 10.2147/OTT.S293901. PubMed DOI PMC

Meng Z., Li T., Wang P., Lizaso A., Huang D. The efficacy of lorlatinib in a lung adenocarcinoma patient with a novel ALK G1202L mutation: A case report. Cancer Biol. Ther. 2021;22:1–4. doi: 10.1080/15384047.2020.1836947. PubMed DOI PMC

Sharma G.G., Cortinovis D., Agustoni F., Arosio G., Villa M., Cordani N., Bidoli P., Bisson W.H., Pagni F., Piazza R., et al. A compound L1196M/G1202R ALK mutation in a patient with ALK-positive lung cancer with acquired resistance to brigatinib also confers primary resistance to lorlatinib. J. Thorac. Oncol. 2019;14:e257–e259. doi: 10.1016/j.jtho.2019.06.028. PubMed DOI

Mologni L., Ceccon M., Pirola A., Chiriano G., Piazza R., Scapozza L., Gambacorti-Passerini C. NPM/ALK mutants resistant to ASP3026 display variable sensitivity to alternative ALK inhibitors but succumb to the novel compound PF-06463922. Oncotarget. 2015;6:5720–5734. doi: 10.18632/oncotarget.3122. PubMed DOI PMC

Redaelli S., Ceccon M., Zappa M., Sharma G.G., Mastini C., Mauri M., Nigoghossian M., Massimino L., Cordani N., Farina F., et al. Lorlatinib treatment elicits multiple on- and off-target mechanisms of resistance in ALK-driven cancer. Cancer Res. 2018;78:6866–6880. doi: 10.1158/0008-5472.CAN-18-1867. PubMed DOI

Yoda S., Lin J.J., Lawrence M.S., Burke B.J., Friboulet L., Langenbucher A., Dardaei L., Prutisto-Chang K., Dagogo-Jack I., Timofeevski S., et al. Sequential ALK inhibitors can select for lorlatinib-resistant compound ALK mutations in ALK-positive lung cancer. Cancer Discov. 2018;8:714–729. doi: 10.1158/2159-8290.CD-17-1256. PubMed DOI PMC

Pastor E.R., Mousa S.A. Current management of neuroblastoma and future direction. Crit. Rev. Oncol. Hematol. 2019;138:38–43. doi: 10.1016/j.critrevonc.2019.03.013. PubMed DOI

Recondo G., Mezquita L., Facchinetti F., Planchard D., Gazzah A., Bigot L., Rizvi A.Z., Frias R.L., Thiery J.P., Scoazec J.Y., et al. Diverse resistance mechanisms to the third-generation ALK inhibitor lorlatinib in ALK-rearranged lung cancer. Clin. Cancer Res. 2020;26:242–255. doi: 10.1158/1078-0432.CCR-19-1104. PubMed DOI PMC

Shaw A.T., Felip E., Bauer T.M., Besse B., Navarro A., Postel-Vinay S., Gainor J.F., Johnson M., Dietrich J., James L.P., et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: An international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017;18:1590–1599. doi: 10.1016/S1470-2045(17)30680-0. PubMed DOI PMC

Lovly C.M., McDonald N.T., Chen H., Ortiz-Cuaran S., Heukamp L.C., Yan Y., Florin A., Ozretić L., Lim D., Wang L., et al. Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer. Nat. Med. 2014;20:1027–1034. doi: 10.1038/nm.3667. PubMed DOI PMC

Shi P., Lai R., Lin Q., Iqbal A.S., Young L.C., Kwak L.W., Ford R.J., Amin H.M. IGF-IR tyrosine kinase interacts with NPM-ALK oncogene to induce survival of T-cell ALK+ anaplastic large-cell lymphoma cells. Blood. 2009;114:360–370. doi: 10.1182/blood-2007-11-125658. PubMed DOI PMC

Rossing H.H., Grauslund M., Urbanska E.M., Melchior L.C., Rask C.K., Costa J.C., Skov B.G., Sørensen J.B., Santoni-Rugiu E. Concomitant occurrence of EGFR (epidermal growth factor receptor) and KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) mutations in an ALK (anaplastic lymphoma kinase)-positive lung adenocarcinoma patient with acquired resistance to crizotinib: A case report. BMC Res. Notes. 2013;6:489. PubMed PMC

Sánchez-Herrero E., Serna-Blasco R., Ivanchuk V., García-Campelo R., Dómine Gómez M., Sánchez J.M., Massutí B., Reguart N., Camps C., Sanz-Moreno S., et al. NGS-based liquid biopsy profiling identifies mechanisms of resistance to ALK inhibitors: A step toward personalized NSCLC treatment. Mol. Oncol. 2021;15:2363–2376. doi: 10.1002/1878-0261.13033. PubMed DOI PMC

Miyawaki M., Yasuda H., Tani T., Hamamoto J., Arai D., Ishioka K., Ohgino K., Nukaga S., Hirano T., Kawada I., et al. Overcoming EGFR bypass signal-induced acquired resistance to ALK tyrosine kinase inhibitors in ALK-translocated lung cancer. Mol. Cancer Res. 2017;15:106–114. doi: 10.1158/1541-7786.MCR-16-0211. PubMed DOI

Tanimoto A., Yamada T., Nanjo S., Takeuchi S., Ebi H., Kita K., Matsumoto K., Seiji Y. Receptor ligand-triggered resistance to alectinib and its circumvention by Hsp90 inhibition in EML4-ALK lung cancer cells. Oncotarget. 2014;5:4920–4928. doi: 10.18632/oncotarget.2055. PubMed DOI PMC

Minari R., Gnetti L., Lagrasta C.A., Squadrilli A., Bordi P., Azzoni C., Bottarelli L., Cosenza A., Ferri L., Caruso G., et al. Emergence of a HER2-amplified clone during disease progression in an ALK-rearranged NSCLC patient treated with ALK-inhibitors: A case report. Transl. Lung Cancer Res. 2020;9:787–792. doi: 10.21037/tlcr.2020.04.03. PubMed DOI PMC

Dong X., Fernandez-Salas E., Li E., Wang S. Elucidation of resistance mechanisms to second-generation ALK inhibitors alectinib and ceritinib in non-small cell lung cancer cells. Neoplasia. 2016;18:162–171. doi: 10.1016/j.neo.2016.02.001. PubMed DOI PMC

Kogita A., Togashi Y., Hayashi H., Banno E., Terashima M., De Velasco M.A., Sakai K., Fujita Y., Tomida S., Takeyama Y., et al. Activated MET acts as a salvage signal after treatment with alectinib, a selective ALK inhibitor, in ALK-positive non-small cell lung cancer. Int. J. Oncol. 2015;46:1025–1030. doi: 10.3892/ijo.2014.2797. PubMed DOI

Tsuji T., Ozasa H., Aoki W., Aburaya S., Funazo T., Furugaki K., Yoshimura Y., Ajimizu H., Okutani R., Yasuda Y., et al. Alectinib resistance in ALK-rearranged lung cancer by dual salvage signaling in a clinically paired resistance model. Mol. Cancer Res. 2019;17:212–224. doi: 10.1158/1541-7786.MCR-18-0325. PubMed DOI

Chen H., Lin C., Peng T., Hu C., Lu C., Li L., Wang Y., Han R., Feng M., Sun F., et al. Metformin reduces HGF-induced resistance to alectinib via the inhibition of Gab1. Cell Death Dis. 2020;11:111. doi: 10.1038/s41419-020-2307-5. PubMed DOI PMC

Shi R., Filho S.N.M., Li M., Fares A., Weiss J., Pham N.A., Ludkovski O., Raghavan V., Li Q., Ravi D., et al. BRAF V600E mutation and MET amplification as resistance pathways of the second-generation anaplastic lymphoma kinase (ALK) inhibitor alectinib in lung cancer. Lung Cancer. 2020;146:78–85. doi: 10.1016/j.lungcan.2020.05.018. PubMed DOI

Fan P.D., Narzisi G., Jayaprakash A.D., Venturini E., Robine N., Smibert P., Germer S., Yu H.A., Jordan E.J., Paik P.K., et al. YES1 amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics. Proc. Natl. Acad. Sci. USA. 2018;115:E6030–E6038. doi: 10.1073/pnas.1717782115. PubMed DOI PMC

Prokoph N., Probst N.A., Lee L.C., Monahan J.M., Matthews J.D., Liang H.C., Bahnsen K., Montes-Mojarro I.A., Karaca-Atabay E., Sharma G.G., et al. IL10RA modulates crizotinib sensitivity in NPM1-ALK+ anaplastic large cell lymphoma. Blood. 2020;136:1657–1669. doi: 10.1182/blood.2019003793. PubMed DOI PMC

Karaca-Atabay E., Mecca C., Wang Q., Ambrogio C., Mota I., Prokoph N., Mura G., Martinengo C., Patrucco E., Leonardi G., et al. Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma. Blood. 2021 doi: 10.1182/blood.2020008136. in press. PubMed DOI PMC

Hrustanovic G., Olivas V., Pazarentzos E., Tulpule A., Asthana S., Blakely C.M., Okimoto R.A., Lin L., Neel D.S., Sabnis A., et al. RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer. Nat. Med. 2015;21:1038–1047. doi: 10.1038/nm.3930. PubMed DOI PMC

Mengoli M.C., Barbieri F., Bertolini F., Tiseo M., Rossi G. K-RAS mutations indicating primary resistance to crizotinib in ALK-rearranged adenocarcinomas of the lung: Report of two cases and review of the literature. Lung Cancer. 2016;93:55–58. doi: 10.1016/j.lungcan.2016.01.002. PubMed DOI

Crystal A.S., Shaw A.T., Sequist L.V., Friboulet L., Niederst M.J., Lockerman E.L., Frias R.L., Gainor J.F., Amzallag A., Greninger P., et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science. 2014;346:1480–1486. doi: 10.1126/science.1254721. PubMed DOI PMC

Debruyne D.N., Bhatnagar N., Sharma B., Luther W., Moore N.F., Cheung N.K., Gray N.S., George R.E. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681–3691. doi: 10.1038/onc.2015.434. PubMed DOI PMC

Larose H., Prokoph N., Matthews J.D., Schlederer M., Högler S., Alsulami A.F., Ducray S.P., Nuglozeh E., Fazaludeen F.M.S., Elmouna A., et al. Whole exome sequencing reveals NOTCH1 mutations in anaplastic large cell lymphoma and points to Notch both as a key pathway and a potential therapeutic target. Haematologica. 2021;106:1693–1704. doi: 10.3324/haematol.2019.238766. PubMed DOI PMC

Trigg R.M., Lee L.C., Prokoph N., Jahangiri L., Reynolds C.P., Amos Burke G.A., Probst N.A., Han M., Matthews J.D., Lim H.K., et al. The targetable kinase PIM1 drives ALK inhibitor resistance in high-risk neuroblastoma independent of MYCN status. Nat. Commun. 2019;10:5428. doi: 10.1038/s41467-019-13315-x. PubMed DOI PMC

Kogita A., Togashi Y., Hayashi H., Sogabe S., Terashima M., De Velasco M.A., Sakai K., Fujita Y., Tomida S., Takeyama Y., et al. Hypoxia induces resistance to ALK inhibitors in the H3122 non-small cell lung cancer cell line with an ALK rearrangement via epithelial-mesenchymal transition. Int. J. Oncol. 2014;45:1430–1436. doi: 10.3892/ijo.2014.2574. PubMed DOI PMC

Urbanska E.M., Sørensen J.B., Melchior L.C., Costa J.C., Santoni-Rugiu E. Changing ALK-TKI-resistance mechanisms in rebiopsies of ALK-rearranged NSCLC: ALK- and BRAF-mutations followed by epithelial-mesenchymal transition. Int. J. Mol. Sci. 2020;21:2847. doi: 10.3390/ijms21082847. PubMed DOI PMC

Cha Y.J., Cho B.C., Kim H.R., Lee H.J., Shim H.S. A case of ALK-rearranged adenocarcinoma with small cell carcinoma-like transformation and resistance to crizotinib. J. Thorac. Oncol. 2016;11:e55–e58. doi: 10.1016/j.jtho.2015.12.097. PubMed DOI

Fujita S., Masago K., Katakami N., Yatabe Y. Transformation to SCLC after treatment with the ALK inhibitor alectinib. J. Thorac. Oncol. 2016;11:e67–e72. doi: 10.1016/j.jtho.2015.12.105. PubMed DOI

Levacq D., D’Haene N., de Wind R., Remmelink M., Berghmans T. Histological transformation of ALK rearranged adenocarcinoma into small cell lung cancer: A new mechanism of resistance to ALK inhibitors. Lung Cancer. 2016;102:38–41. doi: 10.1016/j.lungcan.2016.10.012. PubMed DOI

Coleman N., Wotherspoon A., Yousaf N., Popat S. Transformation to neuroendocrine carcinoma as a resistance mechanism to lorlatinib. Lung Cancer. 2019;134:117–120. doi: 10.1016/j.lungcan.2019.05.025. PubMed DOI

Debruyne D.N., Dries R., Sengupta S., Seruggia D., Gao Y., Sharma B., Huang H., Moreau L., McLane M., Day D.S., et al. BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature. 2019;572:676–680. doi: 10.1038/s41586-019-1472-0. PubMed DOI PMC

Berko E.R., Mossé Y.P. Thrown for a loop: Awakening BORIS to evade ALK inhibition therapy. Cancer Cell. 2019;36:345–347. doi: 10.1016/j.ccell.2019.09.009. PubMed DOI PMC

Cai C., Long Y., Li Y., Huang M. Coexisting of COX7A2L-ALK, LINC01210-ALK, ATP13A4-ALK and acquired SLCO2A1-ALK in a lung adenocarcinoma with rearrangements loss during the treatment of crizotinib and ceritinib: A case report. Onco Targets Ther. 2020;13:8313–8316. doi: 10.2147/OTT.S258067. PubMed DOI PMC

Mitou G., Frentzel J., Desquesnes A., Le Gonidec S., AlSaati T., Beau I., Lamant L., Meggetto F., Espinos E., Codogno P., et al. Targeting autophagy enhances the anti-tumoral action of crizotinib in ALK-positive anaplastic large cell lymphoma. Oncotarget. 2015;6:30149–30164. doi: 10.18632/oncotarget.4999. PubMed DOI PMC

Ji C., Zhang L., Cheng Y., Patel R., Wu H., Zhang Y., Wang M., Ji S., Belani C.P., Yang J.M., et al. Induction of autophagy contributes to crizotinib resistance in ALK-positive lung cancer. Cancer Biol. Ther. 2014;15:570–577. doi: 10.4161/cbt.28162. PubMed DOI PMC

Moia R., Boggione P., Mahmoud A.M., Kodipad A.A., Adhinaveni R., Sagiraju S., Patriarca A., Gaidano G. Targeting p53 in chronic lymphocytic leukemia. Expert Opin. Ther. Targets. 2020;24:1239–1250. doi: 10.1080/14728222.2020.1832465. PubMed DOI

Moia R., Patriarca A., Schipani M., Ferri V., Favini C., Sagiraju S., Al Essa W., Gaidano G. Precision medicine management of chronic lymphocytic leukemia. Cancers. 2020;12:642. doi: 10.3390/cancers12030642. PubMed DOI PMC

Miyazaki M., Otomo R., Matsushima-Hibiya Y., Suzuki H., Nakajima A., Abe N., Tomiyama A., Ichimura K., Matsuda K., Watanabe T., et al. The p53 activator overcomes resistance to ALK inhibitors by regulating p53-target selectivity in ALK-driven neuroblastomas. Cell Death Discov. 2018;4:56. doi: 10.1038/s41420-018-0059-0. PubMed DOI PMC

Rassidakis G.Z., Thomaides A., Wang S., Jiang Y., Fourtouna A., Lai R., Medeiros L.J. p53 gene mutations are uncommon but p53 is commonly expressed in anaplastic large-cell lymphoma. Leukemia. 2005;19:1663–1669. doi: 10.1038/sj.leu.2403840. PubMed DOI

Cui Y.-X., Kerby A., McDuff F.K.E., Ye H., Turner S.D. NPM-ALK inhibits the p53 tumor suppressor pathway in an MDM2 and JNK-dependent manner. Blood. 2009;113:5217–5227. doi: 10.1182/blood-2008-06-160168. PubMed DOI

Drakos E., Atsaves V., Schlette E., Li J., Papanastasi I., Rassidakis G.Z., Medeiros L.J. The therapeutic potential of p53 reactivation by nutlin-3a in ALK+ anaplastic large cell lymphoma with wild-type or mutated p53. Leukemia. 2009;23:2290–2299. doi: 10.1038/leu.2009.180. PubMed DOI

Redaelli S., Ceccon M., Antolini L., Rigolio R., Pirola A., Peronaci M., Gambacorti-Passerini C., Mologni L. Synergistic activity of ALK and mTOR inhibitors for the treatment of NPM-ALK positive lymphoma. Oncotarget. 2016;7:72886–72897. doi: 10.18632/oncotarget.12128. PubMed DOI PMC

Dagogo-Jack I., Yoda S., Lennerz J.K., Langenbucher A., Lin J.J., Rooney M.M., Prutisto-Chang K., Oh A., Adams N.A., Yeap B.Y., et al. MET alterations are a recurring and actionable resistance mechanism in ALK-positive lung cancer. Clin. Cancer Res. 2020;26:2535–2545. doi: 10.1158/1078-0432.CCR-19-3906. PubMed DOI PMC

Chihara D., Wong S., Feldman T., Fanale M.A., Sanchez L., Connors J.M., Savage K.J., Oki Y. Outcome of patients with relapsed or refractory anaplastic large cell lymphoma who have failed brentuximab vedotin. Hematol. Oncol. 2019;37:35–38. doi: 10.1002/hon.2560. PubMed DOI

Arai H., Furuichi S., Nakamura Y., Ichikawa M., Mitani K. ALK-negative anaplastic large cell lymphoma with loss of CD30 expression during treatment with brentuximab vedotin. Rinsho Ketsueki. 2016;57:634–637. PubMed

Fordham A.M., Xie J., Gifford A.J., Wadham C., Morgan L.T., Mould E.V.A., Fadia M., Zhai L., Massudi H., Ali Z.S., et al. CD30 and ALK combination therapy has high therapeutic potency in RANBP2-ALK-rearranged epithelioid inflammatory myofibroblastic sarcoma. Br. J. Cancer. 2020;123:1101–1113. doi: 10.1038/s41416-020-0996-2. PubMed DOI PMC

Chen R., Hou J., Newman E., Kim Y., Donohue C., Liu X., Thomas S.H., Forman S.J., Kane S.E. CD30 Downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol. Cancer Ther. 2015;14:1376–1384. doi: 10.1158/1535-7163.MCT-15-0036. PubMed DOI PMC

Wei W., Lin Y., Song Z., Xiao W., Chen L., Yin J., Zhou Y., Barta S.K., Petrus M., Waldmann T.A., et al. A20 and RBX1 regulate brentuximab vedotin sensitivity in hodgkin lymphoma models. Clin. Cancer Res. 2020;26:4093–4106. doi: 10.1158/1078-0432.CCR-19-4137. PubMed DOI PMC

Chen R., Herrera A.F., Hou J., Chen L., Wu J., Guo Y., Synold T.W., Ngo V.N., Puverel S., Mei M., et al. Inhibition of MDR1 overcomes resistance to brentuximab vedotin in hodgkin lymphoma. Clin. Cancer Res. 2020;26:1034–1044. doi: 10.1158/1078-0432.CCR-19-1768. PubMed DOI PMC

Chae Y.K., Oh M.S., Giles F.J. Molecular biomarkers of primary and acquired resistance to T-cell-mediated immunotherapy in cancer: Landscape, clinical implications, and future directions. Oncologist. 2018;23:410–421. doi: 10.1634/theoncologist.2017-0354. PubMed DOI PMC

Gao L., Wu Z.X., Assaraf Y.G., Chen Z.S., Wang L. Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist. Updat. 2021;57:100770. doi: 10.1016/j.drup.2021.100770. PubMed DOI

Cretella D., Digiacomo G., Giovannetti E., Cavazzoni A. PTEN alterations as a potential mechanism for tumor cell escape from PD-1/PD-L1 inhibition. Cancers. 2019;11:1318. doi: 10.3390/cancers11091318. PubMed DOI PMC

Wang B., Zhou Y., Zhang J., Jin X., Wu H., Huang H. Fructose-1,6-bisphosphatase loss modulates STAT3-dependent expression of PD-L1 and cancer immunity. Theranostics. 2020;10:1033–1045. doi: 10.7150/thno.38137. PubMed DOI PMC

Shin D.S., Zaretsky J.M., Escuin-Ordinas H., Garcia-Diaz A., Hu-Lieskovan S., Kalbasi A., Grasso C.S., Hugo W., Sandoval S., Torrejon D.Y., et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7:188–201. doi: 10.1158/2159-8290.CD-16-1223. PubMed DOI PMC

De Souza A. Finding the hot spot: Identifying immune sensitive gastrointestinal tumors. Transl. Gastroenterol. Hepatol. 2020;5:48. doi: 10.21037/tgh.2019.12.11. PubMed DOI PMC

Ross-Macdonald P., Walsh A.M., Chasalow S.D., Ammar R., Papillon-Cavanagh S., Szabo P.M., Choueiri T.K., Sznol M., Wind-Rotolo M. Molecular correlates of response to nivolumab at baseline and on treatment in patients with RCC. J. Immunother. Cancer. 2021;9:e001506. doi: 10.1136/jitc-2020-001506. PubMed DOI PMC

Quezada S.A., Peggs K.S., Curran M.A., Allison J.P. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J. Clin. Investig. 2006;116:1935–1945. doi: 10.1172/JCI27745. PubMed DOI PMC

Restifo N.P., Marincola F.M., Kawakami Y., Taubenberger J., Yannelli J.R., Rosenberg S.A. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl. Cancer Inst. 1996;88:100–108. doi: 10.1093/jnci/88.2.100. PubMed DOI PMC

Kim Y., Vagia E., Viveiros P., Kang C.Y., Lee J.Y., Gim G., Cho S., Choi H., Kim L., Park I., et al. Overcoming acquired resistance to PD-1 inhibitor with the addition of metformin in small cell lung cancer (SCLC) Cancer Immunol. Immunother. 2021;70:961–965. doi: 10.1007/s00262-020-02703-8. PubMed DOI PMC

De Wispelaere W., Annibali D., Tuyaerts S., Lambrechts D., Amant F. Resistance to immune checkpoint blockade in uterine leiomyosarcoma: What can we learn from other cancer types? Cancers. 2021;13:2040. doi: 10.3390/cancers13092040. PubMed DOI PMC

Yamaguchi K., Tsuchihashi K., Tsuji K., Kito Y., Tanoue K., Ohmura H., Ito M., Isobe T., Ariyama H., Kusaba H., et al. Prominent PD-L1-positive M2 macrophage infiltration in gastric cancer with hyper-progression after anti-PD-1 therapy: A case report. Medicine. 2021;100:e25773. doi: 10.1097/MD.0000000000025773. PubMed DOI PMC

Viveiros P., Burns M., Davis A., Oh M., Park K., Jain S., Chae Y.K. EP1.04-12 Response to combination of metformin and nivolumab in a NSCLC patient whose disease previously progressed on nivolumab. J. Thorac. Oncol. 2019;14:S976. doi: 10.1016/j.jtho.2019.08.2141. DOI

Cabrera C.M., Jiménez P., Cabrera T., Esparza C., Ruiz-Cabello F., Garrido F. Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: Beta2-microglobulin inactivation in MSI-positive tumors and LMP7/TAP2 downregulation in MSI-negative tumors. Tissue Antigens. 2003;61:211–219. doi: 10.1034/j.1399-0039.2003.00020.x. PubMed DOI

Koyama S., Akbay E.A., Li Y.Y., Herter-Sprie G.S., Buczkowski K.A., Richards W.G., Gandhi L., Redig A.J., Rodig S.J., Asahina H., et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 2016;7:10501. doi: 10.1038/ncomms10501. PubMed DOI PMC

Das M., Zhu C., Kuchroo V.K. Tim-3 and its role in regulating anti-tumor immunity. Immunol. Rev. 2017;276:97–111. doi: 10.1111/imr.12520. PubMed DOI PMC

Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S., et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128. doi: 10.1126/science.aaa1348. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Anti-Cancer Potential of a new Derivative of Caffeic Acid Phenethyl Ester targeting the Centrosome

. 2025 Apr ; 81 () : 103582. [epub] 20250305

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...