• This record comes from PubMed

Anti-Cancer Potential of a new Derivative of Caffeic Acid Phenethyl Ester targeting the Centrosome

. 2025 Apr ; 81 () : 103582. [epub] 20250305

Language English Country Netherlands Media print-electronic

Document type Journal Article

Links

PubMed 40073758
PubMed Central PMC11951030
DOI 10.1016/j.redox.2025.103582
PII: S2213-2317(25)00095-3
Knihovny.cz E-resources

Anaplastic Large Cell Lymphoma (ALCL) is an aggressive T-cell lymphoma affecting children and young adults. About 30% of patients develop therapy resistance therefore new precision medicine drugs are highly warranted. Multiple rounds of structure-activity optimization of Caffeic Acid Phenethyl Ester have resulted in CM14. CM14 causes upregulation of genes involved in oxidative stress response and downregulation of DNA replication genes leading to G2/M arrest and subsequent apoptosis induction. In accordance with this, an unbiased proteomics approach, confocal microscopy and molecular modeling showed that TUBGCP2, member of the centrosomal γ-TuRC complex, is a direct interaction partner of CM14. CM14 overcomes ALK inhibitor resistance in ALCL and is also active in T-cell Acute Lymphoblastic Leukemia and Acute Myeloid Leukemia. Interestingly, CM14 also induced cell death in docetaxel-resistant prostate cancer cells thus suggesting an unexpected role in solid cancers. Thus, we synthesized and thoroughly characterized a novel TUBGCP2 targeting drug that is active in ALCL but has also potential for other malignancies.

See more in PubMed

Montes-Mojarro I.A., Steinhilber J., Bonzheim I., Quintanilla-Martinez L., Fend F. The pathological spectrum of systemic anaplastic large cell lymphoma (ALCL) Cancers. 2018;10 doi: 10.3390/cancers10040107. PubMed DOI PMC

Chiarle R., Simmons W.J., Cai H., Dhall G., Zamo A., Raz R., et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat. Med. 2005;11:623–629. doi: 10.1038/nm1249. PubMed DOI

Garces de los Fayos Alonso I., Zujo L., Wiest I., Kodajova P., Timelthaler G., Edtmayer S., et al. PDGFRβ promotes oncogenic progression via STAT3/STAT5 hyperactivation in anaplastic large cell lymphoma. Mol. Cancer. 2022;21:1–19. doi: 10.1186/S12943-022-01640-7/FIGURES/6. PubMed DOI PMC

Liang H.C., Costanza M., Prutsch N., Zimmerman M.W., Gurnhofer E., Montes-Mojarro I.A., et al. Super-enhancer-based identification of a BATF3/IL-2R−module reveals vulnerabilities in anaplastic large cell lymphoma. Nat. Commun. 2021;12:21. doi: 10.1038/S41467-021-25379-9. PubMed DOI PMC

Weilemann A., Grau M., Erdmann T., Merkel O., Sobhiafshar U., Anagnostopoulos I., et al. Essential role of IRF4 and MYC signaling for survival of anaplastic large cell lymphoma. Blood. 2015;125:124–132. doi: 10.1182/BLOOD-2014-08-594507. PubMed DOI

Andraos E., Dignac J., Meggetto F. NPM-ALK: a driver of lymphoma pathogenesis and a therapeutic target. Cancers. 2021;13:144. doi: 10.3390/CANCERS13010144. 2021;13:144. PubMed DOI PMC

Prutsch N., Gurnhofer E., Suske T., Liang H.C., Schlederer M., Roos S., et al. Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia. 2019;33:696. doi: 10.1038/S41375-018-0239-1. PubMed DOI PMC

Mussolin L., Le Deley M.C., Carraro E., Damm-Welk C., Attarbaschi A., Williams D., et al. Prognostic factors in childhood anaplastic large cell lymphoma: long term results of the international ALCL99 trial. Cancers. 2020;12:1–16. doi: 10.3390/CANCERS12102747. PubMed DOI PMC

Zhang X.R., Chien P.N., Nam S.Y., Heo C.Y. Anaplastic large cell lymphoma: molecular pathogenesis and treatment. Cancers. 2022;14 doi: 10.3390/cancers14071650. PubMed DOI PMC

Horwitz S., O'Connor O.A., Pro B., Illidge T., Fanale M., Advani R., et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet. 2019;393:229–240. doi: 10.1016/S0140-6736(18)32984-2. PubMed DOI PMC

Lowe E.J., Reilly A.F., Lim M.S., Gross T.G., Saguilig L., Barkauskas D.A., et al. Crizotinib in combination with chemotherapy for pediatric patients with ALK+ anaplastic large-cell lymphoma: the results of children's oncology group trial ANHL12P1. J. Clin. Oncol. 2023;41:2043–2053. doi: 10.1200/JCO.22.00272/SUPPL_FILE/PROTOCOL_JCO.22.00272.PDF. PubMed DOI PMC

Hare L., Burke G.A.A., Turner S.D. Resistance to targeted agents used to treat paediatric ALK-positive ALCL. Cancers. 2021;13 doi: 10.3390/cancers13236003. PubMed DOI PMC

Shustov A., Cabrera M.E., Civallero M., Bellei M., Ko Y.H., Manni M., et al. ALK-negative anaplastic large cell lymphoma: features and outcomes of 235 patients from the International T-Cell Project. Blood Adv. 2021;5 doi: 10.1182/bloodadvances.2020001581. PubMed DOI PMC

Zullkiflee N., Taha H., Usman A. Propolis: its role and efficacy in human health and diseases. Molecules. 2022;27 doi: 10.3390/MOLECULES27186120. PubMed DOI PMC

Sanderson J.T., Clabault H., Patton C., Lassalle-Claux G., Jean-François J., Paré F., et al. Antiproliferative, antiandrogenic and cytotoxic effects of novel caffeic acid derivatives in LNCaP human androgen-dependent prostate cancer cells. 2013. PubMed DOI

Tolba M.F., Azab S.S., Khalifa A.E., Abdel-Rahman S.Z., Abdel-Naim A.B. Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: a review on its anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective effects. IUBMB Life. 2013;65:699–709. doi: 10.1002/IUB.1189. PubMed DOI

Park J.H., Lee J.K., Kim H.S., Chung S.T., Eom J.H., Kim K.A., et al. Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. Int. Immunopharmacol. 2004;4:429–436. doi: 10.1016/J.INTIMP.2004.01.013. PubMed DOI

Kim J.K., Jang H.D. Nrf2-mediated HO-1 induction coupled with the ERK signaling pathway contributes to indirect antioxidant capacity of caffeic acid phenethyl ester in HepG2 cells. Int. J. Mol. Sci. 2014;15:12149–12165. doi: 10.3390/IJMS150712149. PubMed DOI PMC

Morroni F., Sita G., Graziosi A., Turrini E., Fimognari C., Tarozzi A., et al. Neuroprotective effect of caffeic acid phenethyl ester in a mouse model of alzheimer's disease involves Nrf2/HO-1 pathway. Aging Dis. 2018;9:605–622. doi: 10.14336/AD.2017.0903. PubMed DOI PMC

Natarajan K., Singh S., Burke T.R., Grunbergert D., Aggarwal B.B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-KB (tumor necrosis factor/okadaic acid/ceramide/phorbol ester/hydrogen peroxide) Immunology. 1996;93:9090–9095. PubMed PMC

Hirsch B., Hummel M., Bentink S., Fouladi F., Spang R., Zollinger R., et al. CD30-Induced signaling is absent in hodgkin's cells but present in anaplastic large cell lymphoma cells. Am. J. Pathol. 2008;172:510. doi: 10.2353/AJPATH.2008.070858. PubMed DOI PMC

Liang L.C., Zhao L., Yu B., Hu H.X., He X.H., Zhang Y.M. Caffeic acid phenethyl ester reverses doxorubicin resistance in breast cancer cells via lipid metabolism regulation at least partly by suppressing the Akt/mTOR/SREBP1 pathway. Kaohsiung J. Med. Sci. 2023;39:605–615. doi: 10.1002/kjm2.12675. PubMed DOI PMC

Marin E.H., Paek H., Li M., Ban Y., Karaga M.K., Shashidharamurthy R., et al. Caffeic acid phenethyl ester exerts apoptotic and oxidative stress on human multiple myeloma cells. Invest. N. Drugs. 2019;37:837–848. doi: 10.1007/S10637-018-0701-Y. PubMed DOI

Murugesan A., Lassalle-Claux G., Hogan L., Vaillancourt E., Selka A., Luiker K., et al. Antimyeloma potential of caffeic acid phenethyl ester and its analogues through Sp1 mediated downregulation of IKZF1-IRF4-MYC Axis. J. Nat. Prod. 2020;83:3526–3535. doi: 10.1021/ACS.JNATPROD.0C00350. PubMed DOI

Selka A., Doiron J.A., Lyons P., Dastous S., Chiasson A., Cormier M., et al. Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells. Eur. J. Med. Chem. 2019;179:347–357. doi: 10.1016/J.EJMECH.2019.06.060. PubMed DOI

Sanderson J.T., Clabault H., Patton C., Lassalle-Claux G., Jean-François J., Paré F., et al. Antiproliferative, antiandrogenic and cytotoxic effects of novel caffeic acid derivatives in LNCaP human androgen-dependent prostate cancer cells. 2013. PubMed DOI

Touaibia M., Hébert M.J.G., Levesque N.A., Doiron J.A., Doucet M.S., Jean-François J., et al. Sinapic acid phenethyl ester as a potent selective 5-lipoxygenase inhibitor: synthesis and structure–activity relationship. Chem. Biol. Drug Des. 2018;92:1876–1887. doi: 10.1111/cbdd.13360. PubMed DOI

Pan Y., Deng C., Qiu Z., Cao C., Wu F. The resistance mechanisms and treatment strategies for ALK-rearranged non-small cell lung cancer. Front. Oncol. 2021;11 doi: 10.3389/fonc.2021.713530. PubMed DOI PMC

Jackson P.A., Widen J.C., Harki D.A., Brummond K.M. Covalent modifiers: a chemical perspective on the reactivity of α,β-unsaturated carbonyls with thiols via hetero-michael addition reactions. J. Med. Chem. 2017;60:839–885. doi: 10.1021/acs.jmedchem.6b00788. PubMed DOI PMC

Vitale I., Galluzzi L., Castedo M., Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. 2011. PubMed DOI

Parker C.G., Pratt M.R. Click chemistry in proteomic investigations. Cell. 2020;180:605. doi: 10.1016/J.CELL.2020.01.025. PubMed DOI PMC

Oreopoulos J., Berman R., Browne M. In: Waters J.C., Wittman T., editors. vol. 123. Academic Press; 2014. Chapter 9 - spinning-disk confocal microscopy: present technology and future trends; pp. 153–175. (Methods Cell Biol). PubMed DOI

Zhu Z., Becam I., Tovey C.A., Elfarkouchi A., Yen E.C., Bernard F., et al. Multifaceted modes of γ-tubulin complex recruitment and microtubule nucleation at mitotic centrosomes. J. Cell Biol. 2023;222 doi: 10.1083/JCB.202212043. PubMed DOI PMC

’toole O., Greenan E., Lange G.I., Srayko K.I., Mü Ller-Reichert M. The role of c-tubulin in centrosomal microtubule organization. PLoS One. 2012;7 doi: 10.1371/journal.pone.0029795. PubMed DOI PMC

Zou M., Zhou H., Gu L., Zhang J., Fang L. Therapeutic target identification and drug discovery driven by chemical proteomics. Biology. 2024;13 doi: 10.3390/biology13080555. PubMed DOI PMC

Thul P.J., Akesson L., Wiking M., Mahdessian D., Geladaki A., Ait Blal H., et al. A subcellular map of the human proteome. Science. 1979;2017:356. doi: 10.1126/SCIENCE.AAL3321. PubMed DOI

Dráberová E., D'Agostino L., Caracciolo V., Sládková V., Sulimenko T., Sulimenko V., et al. Overexpression and nucleolar localization of γ-tubulin Small complex proteins GCP2 and GCP3 in glioblastoma. J. Neuropathol. Exp. Neurol. 2015;74:723–742. doi: 10.1097/NEN.0000000000000212. PubMed DOI

Ventura R.A., Martin-Subero J.I., Knippschild U., Gascoyne R.D., Delsol G., Mason D.Y., et al. Centrosome abnormalities in ALK-positive anaplastic large-cell lymphoma. Leukemia. 2004;18(18):1910–1911. doi: 10.1038/sj.leu.2403470. 11 2004. PubMed DOI

Krämer A., Neben K., Ho A.D. Centrosome aberrations in hematological malignancies. Cell Biol. Int. 2005;29:375–383. doi: 10.1016/J.CELLBI.2005.03.004. PubMed DOI

Giehl M., Fabarius A., Frank O., Hochhaus A., Hafner M., Hehlmann R., et al. Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia. 2005;19(19):1192–1197. doi: 10.1038/sj.leu.2403779. 7 2005. PubMed DOI

Hsu L.C., Kapali M., DeLoia J.A., Gallion H.H. Centrosome abnormalities in ovarian cancer. Int. J. Cancer. 2005;113:746–751. doi: 10.1002/IJC.20633. PubMed DOI

Sato N., Mizumoto K., Nakamura M., Ueno H., Minamishima Y.A., Farber J.L., et al. A possible role for centrosome overduplication in radiation-induced cell death. Oncogene. 2000;19(19):5281–5290. doi: 10.1038/sj.onc.1203902. 46 2000. PubMed DOI

Pihan G.A., Purohit A., Wallace J., Knecht H., Woda B., Quesenberry P., et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 1998:3974–3985. PubMed

Lingle W.L., Lutz W.H., Ingle J.N., Maihle N.J., Salisbury J.L. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc. Natl. Acad. Sci. U. S. A. 1998;95:2950. doi: 10.1073/PNAS.95.6.2950. PubMed DOI PMC

Chan J.Y. A clinical overview of centrosome amplification in human cancers. Int. J. Biol. Sci. 2011;7:1122–1144. doi: 10.7150/ijbs.7.1122. PubMed DOI PMC

Ouyang X., Wang X., Xu K., Jin D.Y., Cheung A.L.M., Tsao S.W., et al. Effect of p53 on centrosome amplification in prostate cancer cells. Biochim. Biophys. Acta Mol. Cell Res. 2001;1541:212–220. doi: 10.1016/S0167-4889(01)00157-4. PubMed DOI

Würtz M., Zupa E., Atorino E.S., Neuner A., Böhler A., Rahadian A.S., et al. Modular assembly of the principal microtubule nucleator γ-TuRC. Nat. Commun. 2022;13 doi: 10.1038/s41467-022-28079-0. PubMed DOI PMC

Liu P., Zupa E., Neuner A., Böhler A., Loerke J., Flemming D., et al. Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Nature. 2020;578:467–471. doi: 10.1038/S41586-019-1896-6. PubMed DOI

Calabrese V., Cornelius C., Maiolino L., Luca M., Chiaramonte R., Toscano M.A., et al. Oxidative stress, redox homeostasis and cellular stress response in Ménière’s disease: role of vitagenes. Neurochem. Res. 2010;35:2208–2217. doi: 10.1007/s11064-010-0304-2. PubMed DOI

Calabrese V., Colombrita C., Guagliano E., Sapienza M., Ravagna A., Cardile V., et al. Protective effect of carnosine during nitrosative stress in astroglial cell cultures. Neurochem. Res. 2005;30:797–807. doi: 10.1007/s11064-005-6874-8. PubMed DOI

Hassan W., Noreen H., Rehman S., Kamal M.A., da Rocha J.B.T. Association of oxidative stress with neurological disorders. Curr. Neuropharmacol. 2021;20:1046–1072. doi: 10.2174/1570159x19666211111141246. PubMed DOI PMC

Arrigo G., Scaldaferri M., Audisio E., Boscaro E., Catania F., Cattel F., et al. Arsenic trioxide neurotoxicity in acute promyelocytic leukemia patients: a single center experience. Leuk. Lymphoma. 2024 doi: 10.1080/10428194.2024.2427266. PubMed DOI

Prayuenyong P., Taylor J.A., Pearson S.E., Gomez R., Patel P.M., Hall D.A., et al. Vestibulotoxicity associated with platinum-based chemotherapy in survivors of cancer: a scoping review. Front. Oncol. 2018;8 doi: 10.3389/fonc.2018.00363. PubMed DOI PMC

Stankovic J.S.K., Selakovic D., Mihailovic V., Rosic G. Antioxidant supplementation in the treatment of neurotoxicity induced by platinum-based chemotherapeutics—a review. Int. J. Mol. Sci. 2020;21:1–28. doi: 10.3390/ijms21207753. PubMed DOI PMC

Calabrese V., Wenzel U., Piccoli T., Jacob U.M., Nicolosi L., Fazzolari G., et al. Investigating hormesis, aging, and neurodegeneration: from bench to clinics. Open Med. 2024;19 doi: 10.1515/med-2024-0986. PubMed DOI PMC

Nitti M., Marengo B., Furfaro A.L., Pronzato M.A., Marinari U.M., Domenicotti C., et al. Hormesis and oxidative distress: pathophysiology of reactive oxygen species and the open question of antioxidant modulation and supplementation. Antioxidants. 2022;11 doi: 10.3390/antiox11081613. PubMed DOI PMC

Jordan M.A., Wilson L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer. 2004;4(4):253–265. doi: 10.1038/nrc1317. 4 2004. PubMed DOI

Bai R., Paull K.D., Herald C.L., Malspeis L., Pettit G.R., Hamel E. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin: discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J. Biol. Chem. 1991;266:15882–15889. doi: 10.1016/s0021-9258(18)98491-7. PubMed DOI

Brugières L., Pacquement H., Le Deley M.C., Leverger G., Lutz P., Paillard C., et al. Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J. Clin. Oncol. 2009;27:5056–5061. doi: 10.1200/JCO.2008.20.1764. PubMed DOI

Whitehurst A.W., Bodemann B.O., Cardenas J., Ferguson D., Girard L., Peyton M., et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature. 2007;446:815–819. doi: 10.1038/NATURE05697. PubMed DOI

Fava L.L., Schuler F., Sladky V., Haschka M.D., Soratroi C., Eiterer L., et al. The PIDDosome activates p53 in response to supernumerary centrosomes. 2017. PubMed DOI PMC

Puhr M., Hoefer J., Schäfer G., Erb H.H.H., Oh S.J., Klocker H., et al. Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am. J. Pathol. 2012;181:2188–2201. doi: 10.1016/J.AJPATH.2012.08.011. PubMed DOI

Stejskal K., Pote D. Suppression of peptide sample losses in autosampler vials. 2013. PubMed DOI

Yeung Y.-G., Nieves E., Angeletti R.H., Stanley E.R. Removal of detergents from protein digests for mass spectrometry analysis. 2008. PubMed DOI PMC

Perez-Riverol Y., Bandla C., Kundu D.J., Kamatchinathan S., Bai J., Hewapathirana S., et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 2025;53:D543–D553. doi: 10.1093/nar/gkae1011. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...