Anti-Cancer Potential of a new Derivative of Caffeic Acid Phenethyl Ester targeting the Centrosome
Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
40073758
PubMed Central
PMC11951030
DOI
10.1016/j.redox.2025.103582
PII: S2213-2317(25)00095-3
Knihovny.cz E-resources
- MeSH
- Apoptosis * drug effects MeSH
- Centrosome * drug effects metabolism MeSH
- Phenylethyl Alcohol * analogs & derivatives pharmacology chemistry MeSH
- Caffeic Acids * pharmacology chemistry MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents * pharmacology chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- caffeic acid phenethyl ester MeSH Browser
- Phenylethyl Alcohol * MeSH
- Caffeic Acids * MeSH
- Antineoplastic Agents * MeSH
Anaplastic Large Cell Lymphoma (ALCL) is an aggressive T-cell lymphoma affecting children and young adults. About 30% of patients develop therapy resistance therefore new precision medicine drugs are highly warranted. Multiple rounds of structure-activity optimization of Caffeic Acid Phenethyl Ester have resulted in CM14. CM14 causes upregulation of genes involved in oxidative stress response and downregulation of DNA replication genes leading to G2/M arrest and subsequent apoptosis induction. In accordance with this, an unbiased proteomics approach, confocal microscopy and molecular modeling showed that TUBGCP2, member of the centrosomal γ-TuRC complex, is a direct interaction partner of CM14. CM14 overcomes ALK inhibitor resistance in ALCL and is also active in T-cell Acute Lymphoblastic Leukemia and Acute Myeloid Leukemia. Interestingly, CM14 also induced cell death in docetaxel-resistant prostate cancer cells thus suggesting an unexpected role in solid cancers. Thus, we synthesized and thoroughly characterized a novel TUBGCP2 targeting drug that is active in ALCL but has also potential for other malignancies.
Center for Cancer Research Medical University of Vienna Vienna Austria
Chemistry and Biochemistry Department Université de Moncton Moncton New Brunswick Canada
Department of Biosciences and Medical Biology Paris Lodron University of Salzburg Salzburg Austria
Department of Pathology Medical University of Vienna Vienna Austria
Department of Physical Chemistry University of Debrecen Debrecen Hungary
See more in PubMed
Montes-Mojarro I.A., Steinhilber J., Bonzheim I., Quintanilla-Martinez L., Fend F. The pathological spectrum of systemic anaplastic large cell lymphoma (ALCL) Cancers. 2018;10 doi: 10.3390/cancers10040107. PubMed DOI PMC
Chiarle R., Simmons W.J., Cai H., Dhall G., Zamo A., Raz R., et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat. Med. 2005;11:623–629. doi: 10.1038/nm1249. PubMed DOI
Garces de los Fayos Alonso I., Zujo L., Wiest I., Kodajova P., Timelthaler G., Edtmayer S., et al. PDGFRβ promotes oncogenic progression via STAT3/STAT5 hyperactivation in anaplastic large cell lymphoma. Mol. Cancer. 2022;21:1–19. doi: 10.1186/S12943-022-01640-7/FIGURES/6. PubMed DOI PMC
Liang H.C., Costanza M., Prutsch N., Zimmerman M.W., Gurnhofer E., Montes-Mojarro I.A., et al. Super-enhancer-based identification of a BATF3/IL-2R−module reveals vulnerabilities in anaplastic large cell lymphoma. Nat. Commun. 2021;12:21. doi: 10.1038/S41467-021-25379-9. PubMed DOI PMC
Weilemann A., Grau M., Erdmann T., Merkel O., Sobhiafshar U., Anagnostopoulos I., et al. Essential role of IRF4 and MYC signaling for survival of anaplastic large cell lymphoma. Blood. 2015;125:124–132. doi: 10.1182/BLOOD-2014-08-594507. PubMed DOI
Andraos E., Dignac J., Meggetto F. NPM-ALK: a driver of lymphoma pathogenesis and a therapeutic target. Cancers. 2021;13:144. doi: 10.3390/CANCERS13010144. 2021;13:144. PubMed DOI PMC
Prutsch N., Gurnhofer E., Suske T., Liang H.C., Schlederer M., Roos S., et al. Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia. 2019;33:696. doi: 10.1038/S41375-018-0239-1. PubMed DOI PMC
Mussolin L., Le Deley M.C., Carraro E., Damm-Welk C., Attarbaschi A., Williams D., et al. Prognostic factors in childhood anaplastic large cell lymphoma: long term results of the international ALCL99 trial. Cancers. 2020;12:1–16. doi: 10.3390/CANCERS12102747. PubMed DOI PMC
Zhang X.R., Chien P.N., Nam S.Y., Heo C.Y. Anaplastic large cell lymphoma: molecular pathogenesis and treatment. Cancers. 2022;14 doi: 10.3390/cancers14071650. PubMed DOI PMC
Horwitz S., O'Connor O.A., Pro B., Illidge T., Fanale M., Advani R., et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet. 2019;393:229–240. doi: 10.1016/S0140-6736(18)32984-2. PubMed DOI PMC
Lowe E.J., Reilly A.F., Lim M.S., Gross T.G., Saguilig L., Barkauskas D.A., et al. Crizotinib in combination with chemotherapy for pediatric patients with ALK+ anaplastic large-cell lymphoma: the results of children's oncology group trial ANHL12P1. J. Clin. Oncol. 2023;41:2043–2053. doi: 10.1200/JCO.22.00272/SUPPL_FILE/PROTOCOL_JCO.22.00272.PDF. PubMed DOI PMC
Hare L., Burke G.A.A., Turner S.D. Resistance to targeted agents used to treat paediatric ALK-positive ALCL. Cancers. 2021;13 doi: 10.3390/cancers13236003. PubMed DOI PMC
Shustov A., Cabrera M.E., Civallero M., Bellei M., Ko Y.H., Manni M., et al. ALK-negative anaplastic large cell lymphoma: features and outcomes of 235 patients from the International T-Cell Project. Blood Adv. 2021;5 doi: 10.1182/bloodadvances.2020001581. PubMed DOI PMC
Zullkiflee N., Taha H., Usman A. Propolis: its role and efficacy in human health and diseases. Molecules. 2022;27 doi: 10.3390/MOLECULES27186120. PubMed DOI PMC
Sanderson J.T., Clabault H., Patton C., Lassalle-Claux G., Jean-François J., Paré F., et al. Antiproliferative, antiandrogenic and cytotoxic effects of novel caffeic acid derivatives in LNCaP human androgen-dependent prostate cancer cells. 2013. PubMed DOI
Tolba M.F., Azab S.S., Khalifa A.E., Abdel-Rahman S.Z., Abdel-Naim A.B. Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: a review on its anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective effects. IUBMB Life. 2013;65:699–709. doi: 10.1002/IUB.1189. PubMed DOI
Park J.H., Lee J.K., Kim H.S., Chung S.T., Eom J.H., Kim K.A., et al. Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. Int. Immunopharmacol. 2004;4:429–436. doi: 10.1016/J.INTIMP.2004.01.013. PubMed DOI
Kim J.K., Jang H.D. Nrf2-mediated HO-1 induction coupled with the ERK signaling pathway contributes to indirect antioxidant capacity of caffeic acid phenethyl ester in HepG2 cells. Int. J. Mol. Sci. 2014;15:12149–12165. doi: 10.3390/IJMS150712149. PubMed DOI PMC
Morroni F., Sita G., Graziosi A., Turrini E., Fimognari C., Tarozzi A., et al. Neuroprotective effect of caffeic acid phenethyl ester in a mouse model of alzheimer's disease involves Nrf2/HO-1 pathway. Aging Dis. 2018;9:605–622. doi: 10.14336/AD.2017.0903. PubMed DOI PMC
Natarajan K., Singh S., Burke T.R., Grunbergert D., Aggarwal B.B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-KB (tumor necrosis factor/okadaic acid/ceramide/phorbol ester/hydrogen peroxide) Immunology. 1996;93:9090–9095. PubMed PMC
Hirsch B., Hummel M., Bentink S., Fouladi F., Spang R., Zollinger R., et al. CD30-Induced signaling is absent in hodgkin's cells but present in anaplastic large cell lymphoma cells. Am. J. Pathol. 2008;172:510. doi: 10.2353/AJPATH.2008.070858. PubMed DOI PMC
Liang L.C., Zhao L., Yu B., Hu H.X., He X.H., Zhang Y.M. Caffeic acid phenethyl ester reverses doxorubicin resistance in breast cancer cells via lipid metabolism regulation at least partly by suppressing the Akt/mTOR/SREBP1 pathway. Kaohsiung J. Med. Sci. 2023;39:605–615. doi: 10.1002/kjm2.12675. PubMed DOI PMC
Marin E.H., Paek H., Li M., Ban Y., Karaga M.K., Shashidharamurthy R., et al. Caffeic acid phenethyl ester exerts apoptotic and oxidative stress on human multiple myeloma cells. Invest. N. Drugs. 2019;37:837–848. doi: 10.1007/S10637-018-0701-Y. PubMed DOI
Murugesan A., Lassalle-Claux G., Hogan L., Vaillancourt E., Selka A., Luiker K., et al. Antimyeloma potential of caffeic acid phenethyl ester and its analogues through Sp1 mediated downregulation of IKZF1-IRF4-MYC Axis. J. Nat. Prod. 2020;83:3526–3535. doi: 10.1021/ACS.JNATPROD.0C00350. PubMed DOI
Selka A., Doiron J.A., Lyons P., Dastous S., Chiasson A., Cormier M., et al. Discovery of a novel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells. Eur. J. Med. Chem. 2019;179:347–357. doi: 10.1016/J.EJMECH.2019.06.060. PubMed DOI
Sanderson J.T., Clabault H., Patton C., Lassalle-Claux G., Jean-François J., Paré F., et al. Antiproliferative, antiandrogenic and cytotoxic effects of novel caffeic acid derivatives in LNCaP human androgen-dependent prostate cancer cells. 2013. PubMed DOI
Touaibia M., Hébert M.J.G., Levesque N.A., Doiron J.A., Doucet M.S., Jean-François J., et al. Sinapic acid phenethyl ester as a potent selective 5-lipoxygenase inhibitor: synthesis and structure–activity relationship. Chem. Biol. Drug Des. 2018;92:1876–1887. doi: 10.1111/cbdd.13360. PubMed DOI
Pan Y., Deng C., Qiu Z., Cao C., Wu F. The resistance mechanisms and treatment strategies for ALK-rearranged non-small cell lung cancer. Front. Oncol. 2021;11 doi: 10.3389/fonc.2021.713530. PubMed DOI PMC
Jackson P.A., Widen J.C., Harki D.A., Brummond K.M. Covalent modifiers: a chemical perspective on the reactivity of α,β-unsaturated carbonyls with thiols via hetero-michael addition reactions. J. Med. Chem. 2017;60:839–885. doi: 10.1021/acs.jmedchem.6b00788. PubMed DOI PMC
Vitale I., Galluzzi L., Castedo M., Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. 2011. PubMed DOI
Parker C.G., Pratt M.R. Click chemistry in proteomic investigations. Cell. 2020;180:605. doi: 10.1016/J.CELL.2020.01.025. PubMed DOI PMC
Oreopoulos J., Berman R., Browne M. In: Waters J.C., Wittman T., editors. vol. 123. Academic Press; 2014. Chapter 9 - spinning-disk confocal microscopy: present technology and future trends; pp. 153–175. (Methods Cell Biol). PubMed DOI
Zhu Z., Becam I., Tovey C.A., Elfarkouchi A., Yen E.C., Bernard F., et al. Multifaceted modes of γ-tubulin complex recruitment and microtubule nucleation at mitotic centrosomes. J. Cell Biol. 2023;222 doi: 10.1083/JCB.202212043. PubMed DOI PMC
’toole O., Greenan E., Lange G.I., Srayko K.I., Mü Ller-Reichert M. The role of c-tubulin in centrosomal microtubule organization. PLoS One. 2012;7 doi: 10.1371/journal.pone.0029795. PubMed DOI PMC
Zou M., Zhou H., Gu L., Zhang J., Fang L. Therapeutic target identification and drug discovery driven by chemical proteomics. Biology. 2024;13 doi: 10.3390/biology13080555. PubMed DOI PMC
Thul P.J., Akesson L., Wiking M., Mahdessian D., Geladaki A., Ait Blal H., et al. A subcellular map of the human proteome. Science. 1979;2017:356. doi: 10.1126/SCIENCE.AAL3321. PubMed DOI
Dráberová E., D'Agostino L., Caracciolo V., Sládková V., Sulimenko T., Sulimenko V., et al. Overexpression and nucleolar localization of γ-tubulin Small complex proteins GCP2 and GCP3 in glioblastoma. J. Neuropathol. Exp. Neurol. 2015;74:723–742. doi: 10.1097/NEN.0000000000000212. PubMed DOI
Ventura R.A., Martin-Subero J.I., Knippschild U., Gascoyne R.D., Delsol G., Mason D.Y., et al. Centrosome abnormalities in ALK-positive anaplastic large-cell lymphoma. Leukemia. 2004;18(18):1910–1911. doi: 10.1038/sj.leu.2403470. 11 2004. PubMed DOI
Krämer A., Neben K., Ho A.D. Centrosome aberrations in hematological malignancies. Cell Biol. Int. 2005;29:375–383. doi: 10.1016/J.CELLBI.2005.03.004. PubMed DOI
Giehl M., Fabarius A., Frank O., Hochhaus A., Hafner M., Hehlmann R., et al. Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia. 2005;19(19):1192–1197. doi: 10.1038/sj.leu.2403779. 7 2005. PubMed DOI
Hsu L.C., Kapali M., DeLoia J.A., Gallion H.H. Centrosome abnormalities in ovarian cancer. Int. J. Cancer. 2005;113:746–751. doi: 10.1002/IJC.20633. PubMed DOI
Sato N., Mizumoto K., Nakamura M., Ueno H., Minamishima Y.A., Farber J.L., et al. A possible role for centrosome overduplication in radiation-induced cell death. Oncogene. 2000;19(19):5281–5290. doi: 10.1038/sj.onc.1203902. 46 2000. PubMed DOI
Pihan G.A., Purohit A., Wallace J., Knecht H., Woda B., Quesenberry P., et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 1998:3974–3985. PubMed
Lingle W.L., Lutz W.H., Ingle J.N., Maihle N.J., Salisbury J.L. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc. Natl. Acad. Sci. U. S. A. 1998;95:2950. doi: 10.1073/PNAS.95.6.2950. PubMed DOI PMC
Chan J.Y. A clinical overview of centrosome amplification in human cancers. Int. J. Biol. Sci. 2011;7:1122–1144. doi: 10.7150/ijbs.7.1122. PubMed DOI PMC
Ouyang X., Wang X., Xu K., Jin D.Y., Cheung A.L.M., Tsao S.W., et al. Effect of p53 on centrosome amplification in prostate cancer cells. Biochim. Biophys. Acta Mol. Cell Res. 2001;1541:212–220. doi: 10.1016/S0167-4889(01)00157-4. PubMed DOI
Würtz M., Zupa E., Atorino E.S., Neuner A., Böhler A., Rahadian A.S., et al. Modular assembly of the principal microtubule nucleator γ-TuRC. Nat. Commun. 2022;13 doi: 10.1038/s41467-022-28079-0. PubMed DOI PMC
Liu P., Zupa E., Neuner A., Böhler A., Loerke J., Flemming D., et al. Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Nature. 2020;578:467–471. doi: 10.1038/S41586-019-1896-6. PubMed DOI
Calabrese V., Cornelius C., Maiolino L., Luca M., Chiaramonte R., Toscano M.A., et al. Oxidative stress, redox homeostasis and cellular stress response in Ménière’s disease: role of vitagenes. Neurochem. Res. 2010;35:2208–2217. doi: 10.1007/s11064-010-0304-2. PubMed DOI
Calabrese V., Colombrita C., Guagliano E., Sapienza M., Ravagna A., Cardile V., et al. Protective effect of carnosine during nitrosative stress in astroglial cell cultures. Neurochem. Res. 2005;30:797–807. doi: 10.1007/s11064-005-6874-8. PubMed DOI
Hassan W., Noreen H., Rehman S., Kamal M.A., da Rocha J.B.T. Association of oxidative stress with neurological disorders. Curr. Neuropharmacol. 2021;20:1046–1072. doi: 10.2174/1570159x19666211111141246. PubMed DOI PMC
Arrigo G., Scaldaferri M., Audisio E., Boscaro E., Catania F., Cattel F., et al. Arsenic trioxide neurotoxicity in acute promyelocytic leukemia patients: a single center experience. Leuk. Lymphoma. 2024 doi: 10.1080/10428194.2024.2427266. PubMed DOI
Prayuenyong P., Taylor J.A., Pearson S.E., Gomez R., Patel P.M., Hall D.A., et al. Vestibulotoxicity associated with platinum-based chemotherapy in survivors of cancer: a scoping review. Front. Oncol. 2018;8 doi: 10.3389/fonc.2018.00363. PubMed DOI PMC
Stankovic J.S.K., Selakovic D., Mihailovic V., Rosic G. Antioxidant supplementation in the treatment of neurotoxicity induced by platinum-based chemotherapeutics—a review. Int. J. Mol. Sci. 2020;21:1–28. doi: 10.3390/ijms21207753. PubMed DOI PMC
Calabrese V., Wenzel U., Piccoli T., Jacob U.M., Nicolosi L., Fazzolari G., et al. Investigating hormesis, aging, and neurodegeneration: from bench to clinics. Open Med. 2024;19 doi: 10.1515/med-2024-0986. PubMed DOI PMC
Nitti M., Marengo B., Furfaro A.L., Pronzato M.A., Marinari U.M., Domenicotti C., et al. Hormesis and oxidative distress: pathophysiology of reactive oxygen species and the open question of antioxidant modulation and supplementation. Antioxidants. 2022;11 doi: 10.3390/antiox11081613. PubMed DOI PMC
Jordan M.A., Wilson L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer. 2004;4(4):253–265. doi: 10.1038/nrc1317. 4 2004. PubMed DOI
Bai R., Paull K.D., Herald C.L., Malspeis L., Pettit G.R., Hamel E. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin: discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J. Biol. Chem. 1991;266:15882–15889. doi: 10.1016/s0021-9258(18)98491-7. PubMed DOI
Brugières L., Pacquement H., Le Deley M.C., Leverger G., Lutz P., Paillard C., et al. Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J. Clin. Oncol. 2009;27:5056–5061. doi: 10.1200/JCO.2008.20.1764. PubMed DOI
Whitehurst A.W., Bodemann B.O., Cardenas J., Ferguson D., Girard L., Peyton M., et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature. 2007;446:815–819. doi: 10.1038/NATURE05697. PubMed DOI
Fava L.L., Schuler F., Sladky V., Haschka M.D., Soratroi C., Eiterer L., et al. The PIDDosome activates p53 in response to supernumerary centrosomes. 2017. PubMed DOI PMC
Puhr M., Hoefer J., Schäfer G., Erb H.H.H., Oh S.J., Klocker H., et al. Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am. J. Pathol. 2012;181:2188–2201. doi: 10.1016/J.AJPATH.2012.08.011. PubMed DOI
Stejskal K., Pote D. Suppression of peptide sample losses in autosampler vials. 2013. PubMed DOI
Yeung Y.-G., Nieves E., Angeletti R.H., Stanley E.R. Removal of detergents from protein digests for mass spectrometry analysis. 2008. PubMed DOI PMC
Perez-Riverol Y., Bandla C., Kundu D.J., Kamatchinathan S., Bai J., Hewapathirana S., et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 2025;53:D543–D553. doi: 10.1093/nar/gkae1011. PubMed DOI PMC