Super-enhancer-based identification of a BATF3/IL-2R-module reveals vulnerabilities in anaplastic large cell lymphoma
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R35 CA210064
NCI NIH HHS - United States
PubMed
34552066
PubMed Central
PMC8458384
DOI
10.1038/s41467-021-25379-9
PII: 10.1038/s41467-021-25379-9
Knihovny.cz E-zdroje
- MeSH
- anaplastický velkobuněčný lymfom farmakoterapie genetika metabolismus patologie MeSH
- antigen Ki-1 genetika metabolismus MeSH
- imunokonjugáty farmakologie MeSH
- interleukin-15 farmakologie MeSH
- interleukin-2 farmakologie MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- receptor interleukinu-2 - alfa-podjednotka genetika imunologie metabolismus MeSH
- receptory interleukinu-2 genetika imunologie metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- regulační oblasti nukleových kyselin MeSH
- represorové proteiny genetika metabolismus MeSH
- signální transdukce účinky léků MeSH
- transkripční faktory bZIP genetika metabolismus MeSH
- viabilita buněk účinky léků MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigen Ki-1 MeSH
- BATF3 protein, human MeSH Prohlížeč
- IL2RA protein, human MeSH Prohlížeč
- imunokonjugáty MeSH
- interleukin-15 MeSH
- interleukin-2 MeSH
- receptor interleukinu-2 - alfa-podjednotka MeSH
- receptory interleukinu-2 MeSH
- represorové proteiny MeSH
- transkripční faktory bZIP MeSH
Anaplastic large cell lymphoma (ALCL), an aggressive CD30-positive T-cell lymphoma, comprises systemic anaplastic lymphoma kinase (ALK)-positive, and ALK-negative, primary cutaneous and breast implant-associated ALCL. Prognosis of some ALCL subgroups is still unsatisfactory, and already in second line effective treatment options are lacking. To identify genes defining ALCL cell state and dependencies, we here characterize super-enhancer regions by genome-wide H3K27ac ChIP-seq. In addition to known ALCL key regulators, the AP-1-member BATF3 and IL-2 receptor (IL2R)-components are among the top hits. Specific and high-level IL2R expression in ALCL correlates with BATF3 expression. Confirming a regulatory link, IL-2R-expression decreases following BATF3 knockout, and BATF3 is recruited to IL2R regulatory regions. Functionally, IL-2, IL-15 and Neo-2/15, a hyper-stable IL-2/IL-15 mimic, accelerate ALCL growth and activate STAT1, STAT5 and ERK1/2. In line, strong IL-2Rα-expression in ALCL patients is linked to more aggressive clinical presentation. Finally, an IL-2Rα-targeting antibody-drug conjugate efficiently kills ALCL cells in vitro and in vivo. Our results highlight the importance of the BATF3/IL-2R-module for ALCL biology and identify IL-2Rα-targeting as a promising treatment strategy for ALCL.
ADC Therapeutics Limited London UK
Center for Biomarker Research in Medicine Core Lab 2 Medical University of Vienna Vienna Austria
Central European Institute of Technology Masaryk University Brno Czech Republic
Christian Doppler Laboratory for Applied Metabolomics Medical University of Vienna Vienna Austria
Department of Biochemistry University of Washington Seattle WA USA
Department of Computational Biology St Jude Children's Research Hospital Memphis TN USA
Department of Dermatology Medical University of Graz Graz Austria
Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czech Republic
Department of Pathology and Laboratory Medicine Aga Khan University Hospital Karachi Pakistan
Department of Pediatric Oncology Dana Farber Cancer Institute Harvard Medical School Boston MA USA
Division of Haematopathology European Institute of Oncology IRCCS Milan Italy
Division of Life Science The Hong Kong University of Science and Technology Kowloon Hong Kong
European Research Initiative on ALK Related Malignancies Suzanne Turner Cambridge UK
German Cancer Consortium Heidelberg Germany
Group Biology of Malignant Lymphomas Max Delbrück Center for Molecular Medicine Berlin Germany
Howard Hughes Medical Institute Chevy Chase MD USA
Institute for Protein Design University of Washington Seattle WA USA
Institute of Pathology Lausanne University Hospital and Lausanne University Lausanne Switzerland
Institute of Pathology University of Würzburg Würzburg Germany
Pediatric Hematology and Oncology University Hospital Hamburg Eppendorf Hamburg Germany
Unit of Laboratory Animal Pathology University of Veterinary Medicine Vienna Vienna Austria
Zobrazit více v PubMed
Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer. 2008;8:11–23. doi: 10.1038/nrc2291. PubMed DOI
Swerdlow SH, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–2390. doi: 10.1182/blood-2016-01-643569. PubMed DOI PMC
Brown RA, Fernandez-Pol S, Kim J. Primary cutaneous anaplastic large cell lymphoma. J. Cutan. Pathol. 2017;44:570–577. doi: 10.1111/cup.12937. PubMed DOI
Horwitz S, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet. 2019;393:229–240. doi: 10.1016/S0140-6736(18)32984-2. PubMed DOI PMC
Mussolin, L. et al. Prognostic factors in childhood anaplastic large cell lymphoma: long term results of the international ALCL99 trial. Cancers12, 2747 (2020). PubMed PMC
Knorr F, et al. Stem cell transplantation and vinblastine monotherapy for relapsed pediatric anaplastic large cell lymphoma: results of the international, prospective ALCL-relapse trial. J. Clin. Oncol. 2020;38:3999–4009. doi: 10.1200/JCO.20.00157. PubMed DOI
Parrilla Castellar ER, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124:1473–1480. doi: 10.1182/blood-2014-04-571091. PubMed DOI PMC
Laimer D, et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat. Med. 2012;18:1699–1704. doi: 10.1038/nm.2966. PubMed DOI
Mathas S, et al. Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma. Proc. Natl Acad. Sci. USA. 2009;106:5831–5836. doi: 10.1073/pnas.0900912106. PubMed DOI PMC
Mathas S, et al. Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. EMBO J. 2002;21:4104–4113. doi: 10.1093/emboj/cdf389. PubMed DOI PMC
Agnelli L, et al. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood. 2012;120:1274–1281. doi: 10.1182/blood-2012-01-405555. PubMed DOI
Schleussner, N. et al. The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia32, 1994–2007 (2018). PubMed PMC
Matsuyama H, et al. miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood. 2011;118:6881–6892. doi: 10.1182/blood-2011-05-354654. PubMed DOI
Malcolm TI, et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat. Commun. 2016;7:10087. doi: 10.1038/ncomms10087. PubMed DOI PMC
Ambrogio C, et al. NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells. Cancer Res. 2009;69:8611–8619. doi: 10.1158/0008-5472.CAN-09-2655. PubMed DOI PMC
Bonzheim I, et al. Anaplastic large cell lymphomas lack the expression of T-cell receptor molecules or molecules of proximal T-cell receptor signaling. Blood. 2004;104:3358–3360. doi: 10.1182/blood-2004-03-1037. PubMed DOI
Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity. 2010;33:153–165. doi: 10.1016/j.immuni.2010.08.004. PubMed DOI PMC
Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol. Res. 2015;3:219–227. doi: 10.1158/2326-6066.CIR-15-0009. PubMed DOI PMC
Janik JE, et al. Elevated serum-soluble interleukin-2 receptor levels in patients with anaplastic large cell lymphoma. Blood. 2004;104:3355–3357. doi: 10.1182/blood-2003-11-3922. PubMed DOI
Zhang Q, et al. IL-2R common gamma-chain is epigenetically silenced by nucleophosphin-anaplastic lymphoma kinase (NPM-ALK) and acts as a tumor suppressor by targeting NPM-ALK. Proc. Natl Acad. Sci. USA. 2011;108:11977–11982. doi: 10.1073/pnas.1100319108. PubMed DOI PMC
Hnisz D, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155:934–947. doi: 10.1016/j.cell.2013.09.053. PubMed DOI PMC
Loven J, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–334. doi: 10.1016/j.cell.2013.03.036. PubMed DOI PMC
Gryder BE, et al. PAX3-FOXO1 establishes myogenic super enhancers and confers BET bromodomain vulnerability. Cancer Discov. 2017;7:884–899. doi: 10.1158/2159-8290.CD-16-1297. PubMed DOI PMC
Whyte WA, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–319. doi: 10.1016/j.cell.2013.03.035. PubMed DOI PMC
Chiarle R, et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat. Med. 2005;11:623–629. doi: 10.1038/nm1249. PubMed DOI
Weilemann A, et al. Essential role of IRF4 and MYC signaling for survival of anaplastic large cell lymphoma. Blood. 2015;125:124–132. doi: 10.1182/blood-2014-08-594507. PubMed DOI
Lollies A, et al. An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia. 2018;32:92–101. doi: 10.1038/leu.2017.203. PubMed DOI
Prutsch N, et al. Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia. 2019;33:696–709. doi: 10.1038/s41375-018-0239-1. PubMed DOI PMC
Crescenzo R, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27:516–532. doi: 10.1016/j.ccell.2015.03.006. PubMed DOI PMC
Iqbal J, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood. 2010;115:1026–1036. doi: 10.1182/blood-2009-06-227579. PubMed DOI PMC
Lechner MG, et al. Breast implant-associated, ALK-negative, T-cell, anaplastic, large-cell lymphoma: establishment and characterization of a model cell line (TLBR-1) for this newly emerging clinical entity. Cancer. 2011;117:1478–1489. doi: 10.1002/cncr.25654. PubMed DOI PMC
Watanabe M, et al. JunB induced by constitutive CD30-extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling activates the CD30 promoter in anaplastic large cell lymphoma and reed-sternberg cells of Hodgkin lymphoma. Cancer Res. 2005;65:7628–7634. doi: 10.1158/0008-5472.CAN-05-0925. PubMed DOI
Watanabe M, et al. AP-1 mediated relief of repressive activity of the CD30 promoter microsatellite in Hodgkin and Reed-Sternberg cells. Am. J. Pathol. 2003;163:633–641. doi: 10.1016/S0002-9440(10)63690-5. PubMed DOI PMC
Pedersen MB, et al. High intratumoral macrophage content is an adverse prognostic feature in anaplastic large cell lymphoma. Histopathology. 2014;65:490–500. doi: 10.1111/his.12407. PubMed DOI
Knorr F, et al. Blood cytokine concentrations in pediatric patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2018;103:477–485. doi: 10.3324/haematol.2017.177972. PubMed DOI PMC
Silva DA, et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature. 2019;565:186–191. doi: 10.1038/s41586-018-0830-7. PubMed DOI PMC
Lamant L, et al. Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J. Clin. Oncol. 2011;29:4669–4676. doi: 10.1200/JCO.2011.36.5411. PubMed DOI
Seidemann K, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97:3699–3706. doi: 10.1182/blood.V97.12.3699. PubMed DOI
Flynn MJ, et al. ADCT-301, a pyrrolobenzodiazepine (PBD) dimer-containing antibody-drug conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol. Cancer Therapeutics. 2016;15:2709–2721. doi: 10.1158/1535-7163.MCT-16-0233. PubMed DOI
Janik JE, et al. 90Y-daclizumab, an anti-CD25 monoclonal antibody, provided responses in 50% of patients with relapsed Hodgkin’s lymphoma. Proc. Natl Acad. Sci. USA. 2015;112:13045–13050. doi: 10.1073/pnas.1516107112. PubMed DOI PMC
Mathas S, et al. Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. EMBO J. 2002;21:4104–4113. doi: 10.1093/emboj/cdf389. PubMed DOI PMC
Ghandi M, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569:503–508. doi: 10.1038/s41586-019-1186-3. PubMed DOI PMC
Feldman AL, et al. Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia. 2009;23:574–580. doi: 10.1038/leu.2008.320. PubMed DOI PMC
Chen J, et al. Cytokine receptor signaling is required for the survival of ALK- anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc. Natl Acad. Sci. USA. 2017;114:3975–3980. doi: 10.1073/pnas.1700682114. PubMed DOI PMC
de Waal Malefyt R, Yssel H, de Vries JE. Direct effects of IL-10 on subsets of human CD4+ T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation. J. Immunol. 1993;150:4754–4765. PubMed
Vasmatzis G, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120:2280–2289. doi: 10.1182/blood-2012-03-419937. PubMed DOI PMC
Hapgood G, et al. Identification of high-risk DUSP22-rearranged ALK-negative anaplastic large cell lymphoma. Br. J. Haematol. 2019;186:e28–e31. PubMed PMC
Fauconneau A, et al. Assessment of diagnostic criteria between primary cutaneous anaplastic large-cell lymphoma and CD30-rich transformed mycosis fungoides; a study of 66 cases. Br. J. Dermatol. 2015;172:1547–1554. doi: 10.1111/bjd.13690. PubMed DOI
d’Amore F, et al. Peripheral T-cell lymphomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015;26:v108–v115. doi: 10.1093/annonc/mdv201. PubMed DOI
Mosse YP, et al. Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: A Children’s Oncology Group Study. J. Clin. Oncol. 2017;35:3215–3221. doi: 10.1200/JCO.2017.73.4830. PubMed DOI PMC
Sharma, G. G. et al. Tumor resistance against ALK targeted therapy-where it comes from and where it goes. Cancers10, 62 (2018). PubMed PMC
Wang TT, et al. IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective gamma-chain cytokines, decreases leukemic T-cell viability. Leukemia. 2019;33:1243–1255. doi: 10.1038/s41375-018-0290-y. PubMed DOI PMC
Prince HM, et al. Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 2010;28:1870–1877. doi: 10.1200/JCO.2009.26.2386. PubMed DOI
Kung Sutherland MS, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122:1455–1463. doi: 10.1182/blood-2013-03-491506. PubMed DOI
Zammarchi, F. et al. CD25-targeted antibody-drug conjugate depletes regulatory T cells and eliminates established syngeneic tumors via antitumor immunity. J Immunother Cancer8, e000860 (2020). PubMed PMC
Puzanov I, et al. First-in-human study of camidanlumab tesirine (ADCT-301, Cami), an anti-CD25 targeted therapy in patients (pts) with advanced solid tumours: Pharmacokinetics (PK) and biomarker evaluation. Ann. Oncol. 2020;31:S710–S711. doi: 10.1016/j.annonc.2020.08.1150. DOI
Boni, J. et al. Pharmacokinetic and pharmacodynamic correlates from the phase 1 study of camidanlumab tesirine (Cami) in patients with relapsed or refractory Hodgkin lymphoma and non-Hodgkin lymphoma. Blood136, 35–36 (2020).
Mansour MR, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;346:1373–1377. doi: 10.1126/science.1259037. PubMed DOI PMC
Sanda T, et al. TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Cancer Discov. 2013;3:564–577. doi: 10.1158/2159-8290.CD-12-0504. PubMed DOI PMC
Kozlova V, et al. CD20 is dispensable for B-cell receptor signaling but is required for proper actin polymerization, adhesion and migration of malignant B cells. PloS ONE. 2020;15:e0229170. doi: 10.1371/journal.pone.0229170. PubMed DOI PMC
Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods. 2014;11:783–784. doi: 10.1038/nmeth.3047. PubMed DOI PMC