Myelin Pathology Beyond White Matter in Tuberous Sclerosis Complex (TSC) Cortical Tubers
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32954437
PubMed Central
PMC7559237
DOI
10.1093/jnen/nlaa090
PII: 5909353
Knihovny.cz E-zdroje
- Klíčová slova
- Cognitive dysfunction, Epilepsy, Myelin, Tuberous sclerosis complex, White matter,
- MeSH
- bílá hmota patologie MeSH
- lidé MeSH
- mozková kůra patologie MeSH
- myelinová pochva patologie MeSH
- oligodendroglie patologie MeSH
- šedá hmota patologie MeSH
- tuberózní skleróza patologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tuberous sclerosis complex (TSC) is a monogenetic disease that arises due to mutations in either the TSC1 or TSC2 gene and affects multiple organ systems. One of the hallmark manifestations of TSC are cortical malformations referred to as cortical tubers. These tubers are frequently associated with treatment-resistant epilepsy. Some of these patients are candidates for epilepsy surgery. White matter abnormalities, such as loss of myelin and oligodendroglia, have been described in a small subset of resected tubers but mechanisms underlying this phenomenon are unclear. Herein, we analyzed a variety of neuropathologic and immunohistochemical features in gray and white matter areas of resected cortical tubers from 46 TSC patients using semi-automated quantitative image analysis. We observed divergent amounts of myelin basic protein as well as numbers of oligodendroglia in both gray and white matter when compared with matched controls. Analyses of clinical data indicated that reduced numbers of oligodendroglia were associated with lower numbers on the intelligence quotient scale and that lower amounts of myelin-associated oligodendrocyte basic protein were associated with the presence of autism-spectrum disorder. In conclusion, myelin pathology in cortical tubers extends beyond the white matter and may be linked to cognitive dysfunction in TSC patients.
Brigham and Women's Hospital Harvard Medical School Boston MA
Child Neurology and Psychiatry Unit Systems Medicine Department Tor Vergata University Rome Italy
Department of Child Neurology Medical University of Warsaw Warsaw Poland
Department of Neurology and Epileptology The Children's Memorial Health Institute
Department of Neurology and Epileptology The Children's Memorial Health Institute Warsaw Poland
Department of Paediatric Neurology
Department of Pathology and Molecular Medicine
Department of Pathology University Medical Center Utrecht Utrecht The Netherlands
Department of Pediatric Neurology Brain Center University Medical Center
Pediatric Neurology Unit UZ Brussel Brussels Belgium
Stichting Epilepsie Instellingen Nederland Heemstede The Netherlands
Zobrazit více v PubMed
Kwan P, Schachter SC, Brodie MJ.. Drug-resistant epilepsy. N Engl J Med 2011;365:919–26 PubMed
Rosenow F, Luders H.. Presurgical evaluation of epilepsy. Brain 2001;124:1683–700 PubMed
Jozwiak S, Becker A, Cepeda C, et al.WONOEP appraisal: Development of epilepsy biomarkers—What we can learn from our patients? Epilepsia 2017;58:951–61 PubMed PMC
Walker LE, Janigro D, Heinemann U, et al.WONOEP appraisal: Molecular and cellular biomarkers for epilepsy. Epilepsia 2016;57:1354–62 PubMed PMC
Liang S, Zhang J, Yang Z, et al.Long-term outcomes of epilepsy surgery in tuberous sclerosis complex. J Neurol 2017;264:1146–54 PubMed
Krsek P, Jahodova A, Kyncl M, et al.Predictors of seizure-free outcome after epilepsy surgery for pediatric tuberous sclerosis complex. Epilepsia 2013;54:1913–21 PubMed
O'Callaghan FJ, Shiell AW, Osborne JP, et al.Prevalence of tuberous sclerosis estimated by capture-recapture analysis. Lancet 1998;351:1490 PubMed
Jones AC, Shyamsundar MM, Thomas MW, et al.Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am J Hum Genet 1999;64:1305–15 PubMed PMC
Chu-Shore CJ, Major P, Camposano S, et al.The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 2009;51:1236–41 PubMed PMC
Curatolo P, Moavero R, de Vries PJ.. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol 2015;14:733–45 PubMed
Jansen FE, van Huffelen AC, Algra A, et al.Epilepsy surgery in tuberous sclerosis: A systematic review. Epilepsia 2007;48:1477–84 PubMed
Jansen FE, Huiskamp G, Huffelen AC, et al.Identification of the epileptogenic tuber in patients with tuberous sclerosis: A comparison of high-resolution EEG and MEG. Epilepsia 2006;47:108–14 PubMed
Jahodova A, Krsek P, Kyncl M, et al.Distinctive MRI features of the epileptogenic zone in children with tuberous sclerosis. Eur J Radiol 2014;83:703–9 PubMed
Muhlebner A, van Scheppingen J, Hulshof HM, et al.Novel histopathological patterns in cortical tubers of epilepsy surgery patients with tuberous sclerosis complex. PLoS One 2016;11:e0157396. PubMed PMC
Muhlebner A, Coras R, Kobow K, et al.Neuropathologic measurements in focal cortical dysplasias: Validation of the ILAE 2011 classification system and diagnostic implications for MRI. Acta Neuropathol 2012;123:259–72 PubMed
Shepherd C, Liu J, Goc J, et al.A quantitative study of white matter hypomyelination and oligodendroglial maturation in focal cortical dysplasia type II. Epilepsia 2013;54:898–908 PubMed PMC
Zucca I, Milesi G, Medici V, et al.Type II focal cortical dysplasia: Ex vivo 7T magnetic resonance imaging abnormalities and histopathological comparisons. Ann Neurol 2016;79:42–58 PubMed
Figlia G, Gerber D, Suter U.. Myelination and mTOR. Glia 2018;66:693–707 PubMed PMC
Scholl T, Muhlebner A, Ricken G, et al.Impaired oligodendroglial turnover is associated with myelin pathology in focal cortical dysplasia and tuberous sclerosis complex. Brain Pathol 2017;27:770–80 PubMed PMC
Schurr J, Coras R, Rossler K, et al.Mild malformation of cortical development with oligodendroglial hyperplasia in frontal lobe epilepsy: A new clinico-pathological entity. Brain Pathol 2017;27:26–35 PubMed PMC
Graciarena M, Seiffe A, Nait-Oumesmar B, et al.Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder . Front Cell Neurosci 2018;12:517. PubMed PMC
Engel J., Jr. Update on surgical treatment of the epilepsies. Summary of the Second International Palm Desert Conference on the Surgical Treatment of the Epilepsies (1992). Neurology 1993;43:1612–7 PubMed
de Vries PJ, Franz DN, Curatolo P, et al.Measuring health-related quality of life in tuberous sclerosis complex—Psychometric evaluation of three instruments in individuals with refractory epilepsy. Front Pharmacol 2018;9:964. PubMed PMC
Baxendale S, McGrath K, Thompson PJ.. Epilepsy & IQ: The clinical utility of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) indices in the neuropsychological assessment of people with epilepsy. J Clin Exp Neuropsychol 2014;36:137–43 PubMed
MacAllister WS, Maiman M, Vasserman M, et al.The WISC-V in children and adolescents with epilepsy. Child Neuropsychol 2019;25:992–1002 PubMed
Jiang X, Nardelli J.. Cellular and molecular introduction to brain development. Neurobiol Dis 2016;92:3–17 PubMed PMC
Ffrench-Constant C, Raff MC.. The oligodendrocyte-type-2 astrocyte cell lineage is specialized for myelination. Nature 1986;323:335–8 PubMed
Orentas DM, Miller RH.. Regulation of oligodendrocyte development. Mol Neurobiol 1998;18:247–59 PubMed
Grier MD, West KL, Kelm ND, et al.Loss of mTORC2 signaling in oligodendrocyte precursor cells delays myelination. PLoS One 2017;12:e0188417. PubMed PMC
Lebrun-Julien F, Bachmann L, Norrmen C, et al.Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination. J Neurosci 2014;34:8432–48 PubMed PMC
Ruppe V, Dilsiz P, Reiss CS, et al.Developmental brain abnormalities in tuberous sclerosis complex: A comparative tissue analysis of cortical tubers and perituberal cortex. Epilepsia 2014;55:539–50 PubMed
Pilipow K, Basso V, Migone N, et al.Monoallelic germline TSC1 mutations are permissive for T lymphocyte development and homeostasis in tuberous sclerosis complex individuals. PLoS One 2014;9:e91952. PubMed PMC
Franklin RJM, Ffrench-Constant C.. Regenerating CNS myelin—From mechanisms to experimental medicines. Nat Rev Neurosci 2017;18:753–69 PubMed
Stefanits H, Czech T, Pataraia E, et al.Prominent oligodendroglial response in surgical specimens of patients with temporal lobe epilepsy. Clin Neutopathol 2012;31:409–17 PubMed
Muhlebner A, Bongaarts A, Sarnat HB, et al.New insights into a spectrum of developmental malformations related to mTOR dysregulations: Challenges and perspectives. J Anat 2019;235:521–42 PubMed PMC
Falcao AM, van Bruggen D, Marques S, et al.Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 2018;24:1837–44 PubMed PMC
Broekaart DWM, Anink JJ, Baayen JC, et al.Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia 2018;59:1931–44 PubMed
Bugiani M, van der Knaap MS.. Childhood white matter disorders: Much more than just diseases of myelin. Acta Neuropathol 2017;134:329–30 PubMed
Hughes EG, Orthmann-Murphy JL, Langseth AJ, et al.Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci 2018;21:696–706 PubMed PMC
Swire M, Ffrench-Constant C.. Seeing is believing: Myelin dynamics in the adult CNS. Neuron 2018;98:684–6 PubMed
Bechler ME, Swire M, Ffrench-Constant C.. Intrinsic and adaptive myelination-A sequential mechanism for smart wiring in the brain. Dev Neurobiol 2018;78:68–79 PubMed PMC
Yeung MS, Zdunek S, Bergmann O, et al.Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 2014;159:766–74 PubMed
Dimou L, Simons M.. Diversity of oligodendrocytes and their progenitors. Curr Opin Neurobiol 2017;47:73–9 PubMed
Jakel S, Agirre E, Mendanha FA, et al.Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 2019;566:543–7 PubMed PMC
Timmler S, Simons M.. Grey matter myelination. Glia 2019;67:2063–70 PubMed
Donkels C, Peters M, Farina Nunez MT, et al.Oligodendrocyte lineage and myelination are compromised in the gray matter of focal cortical dysplasia type IIa. Epilepsia 2020;61:171–84 PubMed
Reyes A, Kaestner E, Bahrami N, et al.Cognitive phenotypes in temporal lobe epilepsy are associated with distinct patterns of white matter network abnormalities. Neurology 2019;92:e1957–e68 PubMed PMC
Baumer FM, Peters JM, Clancy S, et al.Corpus callosum white matter diffusivity reflects cumulative neurological comorbidity in tuberous sclerosis complex. Cereb Cortex 2018;28:3665–72 PubMed PMC
Bells S, Lefebvre J, Longoni G, et al.White matter plasticity and maturation in human cognition. Glia 2019;67:2020–37 PubMed
Moavero R, Benvenuto A, Emberti Gialloreti L, et al.Early clinical predictors of autism spectrum disorder in infants with tuberous sclerosis complex: Results from the EPISTOP study. J Clin Med 2019;8. PubMed PMC
Gould RM, Freund CM, Palmer F, et al.Messenger RNAs located in myelin sheath assembly sites. J Neurochem 2002;75:1834–44 PubMed
Schafer I, Muller C, Luhmann HJ, et al.MOBP levels are regulated by Fyn kinase and affect the morphological differentiation of oligodendrocytes. J Cell Sci 2016;129:930–42 PubMed
Richetto J, Chesters R, Cattaneo A, et al.Genome-wide transcriptional profiling and structural magnetic resonance imaging in the maternal immune activation model of neurodevelopmental disorders. Cereb Cortex 2017;27:3397–413 PubMed
Prohl AK, Scherrer B, Tomas-Fernandez X, et al.Early white matter development is abnormal in tuberous sclerosis complex patients who develop autism spectrum disorder. J Neurodev Disord 2019;11:36. PubMed PMC