Extramedullary disease (EMD) is a high-risk feature of multiple myeloma (MM) and remains a poor prognostic factor, even in the era of novel immunotherapies. Here, we applied spatial transcriptomics (RNA tomography for spatially resolved transcriptomics [tomo-seq] [n = 2] and 10x Visium [n = 12]) and single-cell RNA sequencing (n = 3) to a set of 14 EMD biopsies to dissect the 3-dimensional architecture of tumor cells and their microenvironment. Overall, infiltrating immune and stromal cells showed both intrapatient and interpatient variations, with no uniform distribution over the lesion. We observed substantial heterogeneity at the copy number level within plasma cells, including the emergence of new subclones in circumscribed areas of the tumor, which is consistent with genomic instability. We further identified the spatial expression differences between GPRC5D and TNFRSF17, 2 important antigens for bispecific antibody therapy. EMD masses were infiltrated by various immune cells, including T cells. Notably, exhausted TIM3+/PD-1+ T cells diffusely colocalized with MM cells, whereas functional and activated CD8+ T cells showed a focal infiltration pattern along with M1 macrophages in tumor-free regions. This segregation of fit and exhausted T cells was resolved in the case of response to T-cell-engaging bispecific antibodies. MM and microenvironment cells were embedded in a complex network that influenced immune activation and angiogenesis, and oxidative phosphorylation represented the major metabolic program within EMD lesions. In summary, spatial transcriptomics has revealed a multicellular ecosystem in EMD with checkpoint inhibition and dual targeting as potential new therapeutic avenues.
PURPOSE: Proteasome inhibitors (PI) are the backbone of various treatment regimens in multiple myeloma. We recently described the first in-patient point mutations affecting the 20S subunit PSMB5 underlying PI resistance. Notably, in vivo, the incidence of mutations in PSMB5 and other proteasome encoding genes is too low to explain the development of resistance in most of the affected patients. Thus, additional genetic and epigenetic alterations need to be explored. EXPERIMENTAL DESIGN: We performed DNA methylation profiling by Deep Bisulfite Sequencing in PSMB5, PSMC2, PSMC5, PSMC6, PSMD1, and PSMD5, a subset of proteasome subunits that have hitherto been associated with PI resistance, recruited from our own previous research, the literature, or a meta-analysis on the frequency of somatic mutations. Methylation was followed up on gene expression level and by dual-luciferase reporter assay. The KMS11 cell line served as a model to functionally test the impact of demethylating agents. RESULTS: We identified PSMD5 promoter hypermethylation and subsequent epigenetic gene silencing in 24% of PI refractory patients. Hypermethylation correlated with decreased expression and the regulatory impact of this region was functionally confirmed. In contrast, patients with newly diagnosed multiple myeloma, along with peripheral blood mononuclear cells and CD138+ plasma cells from healthy donors, generally show unmethylated profiles. CONCLUSIONS: Under the selective pressure of PI treatment, multiple myeloma cells acquire methylation of the PSMD5 promoter silencing the PSMD5 gene expression. PSMD5 acts as a key orchestrator of proteasome assembly and its downregulation was described to increase the cell's proteolytic capacity. PSMD5 hypermethylation, therefore, represents a novel mechanism of PI tolerance in multiple myeloma.
- MeSH
- bortezomib MeSH
- chemorezistence genetika MeSH
- inhibitory proteasomu farmakologie MeSH
- leukocyty mononukleární metabolismus MeSH
- lidé MeSH
- mnohočetný myelom * farmakoterapie genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nukleotidy MeSH
- proteasomový endopeptidasový komplex genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
Anaplastic large cell lymphoma (ALCL), an aggressive CD30-positive T-cell lymphoma, comprises systemic anaplastic lymphoma kinase (ALK)-positive, and ALK-negative, primary cutaneous and breast implant-associated ALCL. Prognosis of some ALCL subgroups is still unsatisfactory, and already in second line effective treatment options are lacking. To identify genes defining ALCL cell state and dependencies, we here characterize super-enhancer regions by genome-wide H3K27ac ChIP-seq. In addition to known ALCL key regulators, the AP-1-member BATF3 and IL-2 receptor (IL2R)-components are among the top hits. Specific and high-level IL2R expression in ALCL correlates with BATF3 expression. Confirming a regulatory link, IL-2R-expression decreases following BATF3 knockout, and BATF3 is recruited to IL2R regulatory regions. Functionally, IL-2, IL-15 and Neo-2/15, a hyper-stable IL-2/IL-15 mimic, accelerate ALCL growth and activate STAT1, STAT5 and ERK1/2. In line, strong IL-2Rα-expression in ALCL patients is linked to more aggressive clinical presentation. Finally, an IL-2Rα-targeting antibody-drug conjugate efficiently kills ALCL cells in vitro and in vivo. Our results highlight the importance of the BATF3/IL-2R-module for ALCL biology and identify IL-2Rα-targeting as a promising treatment strategy for ALCL.
- MeSH
- anaplastický velkobuněčný lymfom farmakoterapie genetika metabolismus patologie MeSH
- antigen Ki-1 genetika metabolismus MeSH
- imunokonjugáty farmakologie MeSH
- interleukin-15 farmakologie MeSH
- interleukin-2 farmakologie MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- receptor interleukinu-2 - alfa-podjednotka genetika imunologie metabolismus MeSH
- receptory interleukinu-2 genetika imunologie metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- regulační oblasti nukleových kyselin MeSH
- represorové proteiny genetika metabolismus MeSH
- signální transdukce účinky léků MeSH
- transkripční faktory bZIP genetika metabolismus MeSH
- viabilita buněk účinky léků MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tafasitamab (MOR208), an Fc-modified, humanized, anti-CD19 monoclonal antibody, combined with the immunomodulatory drug lenalidomide was clinically active with a good tolerability profile in the open-label, single-arm, phase II L-MIND study of patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) ineligible for autologous stem-cell transplantation. To assess long-term outcomes, we report an updated analysis with ≥35 months' follow-up. Patients were aged >18 years, had received one to three prior systemic therapies (including ≥1 CD20-targeting regimen) and Eastern Cooperative Oncology Group performance status 0-2. Patients received 28-day cycles of tafasitamab (12 mg/kg intravenously), once weekly during cycles 1-3, then every 2 weeks during cycles 4-12. Lenalidomide (25 mg orally) was administered on days 1-21 of cycles 1-12. After cycle 12, progression-free patients received tafasitamab every 2 weeks until disease progression. The primary endpoint was best objective response rate. After ≥35 months' follow-up (data cut-off: October 30, 2020), the objective response rate was 57.5% (n=46/80), including a complete response in 40.0% of patients (n=32/80) and a partial response in 17.5% of patients (n=14/80). The median duration of response was 43.9 months (95% confidence interval [95% CI]: 26.1-not reached), the median overall survival was 33.5 months (95% CI: 18.3-not reached) and the median progression-free survival was 11.6 months (95% CI: 6.3-45.7). There were no unexpected toxicities. Subgroup analyses revealed consistent long-term efficacy results across most subgroups of patients. This extended follow-up of L-MIND confirms the long duration of response, meaningful overall survival, and well-defined safety profile of tafasitamab plus lenalidomide followed by tafasitamab monotherapy in patients with relapsed/refractory diffuse large B-cell lymphoma ineligible for autologous stem cell transplantation. ClinicalTrials.gov identifier: NCT02399085.
- MeSH
- autologní transplantace MeSH
- difúzní velkobuněčný B-lymfom * diagnóza farmakoterapie MeSH
- humanizované monoklonální protilátky MeSH
- lenalidomid terapeutické užití MeSH
- lidé MeSH
- protokoly antitumorózní kombinované chemoterapie škodlivé účinky MeSH
- transplantace hematopoetických kmenových buněk * MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze II MeSH
- práce podpořená grantem MeSH