STAT3 couples activated tyrosine kinase signaling to the oncogenic core transcriptional regulatory circuitry of anaplastic large cell lymphoma
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
K08 CA245251
NCI NIH HHS - United States
PubMed
38508140
PubMed Central
PMC10983107
DOI
10.1016/j.xcrm.2024.101472
PII: S2666-3791(24)00118-6
Knihovny.cz E-zdroje
- MeSH
- anaplastická lymfomová kináza genetika metabolismus MeSH
- anaplastický velkobuněčný lymfom * genetika metabolismus patologie MeSH
- dítě MeSH
- dospělí MeSH
- Janus kinasy metabolismus MeSH
- karcinogeneze genetika MeSH
- lidé MeSH
- nádorová transformace buněk MeSH
- signální transdukce * genetika MeSH
- transkripční faktor STAT3 genetika MeSH
- transkripční faktory STAT metabolismus MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anaplastická lymfomová kináza MeSH
- Janus kinasy MeSH
- STAT3 protein, human MeSH Prohlížeč
- transkripční faktor STAT3 MeSH
- transkripční faktory STAT MeSH
Anaplastic large cell lymphoma (ALCL) is an aggressive, CD30+ T cell lymphoma of children and adults. ALK fusion transcripts or mutations in the JAK-STAT pathway are observed in most ALCL tumors, but the mechanisms underlying tumorigenesis are not fully understood. Here, we show that dysregulated STAT3 in ALCL cooccupies enhancers with master transcription factors BATF3, IRF4, and IKZF1 to form a core regulatory circuit that establishes and maintains the malignant cell state in ALCL. Critical downstream targets of this network in ALCL cells include the protooncogene MYC, which requires active STAT3 to facilitate high levels of MYC transcription. The core autoregulatory transcriptional circuitry activity is reinforced by MYC binding to the enhancer regions associated with STAT3 and each of the core regulatory transcription factors. Thus, activation of STAT3 provides the crucial link between aberrant tyrosine kinase signaling and the core transcriptional machinery that drives tumorigenesis and creates therapeutic vulnerabilities in ALCL.
Department of Computational Biology St Jude Children's Research Hospital Memphis TN 38105 USA
Division of Molecular Oncology St Jude Children's Research Hospital Memphis TN 38105 USA
Zobrazit více v PubMed
Morris S.W., Kirstein M.N., Valentine M.B., Dittmer K.G., Shapiro D.N., Saltman D.L., Look A.T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263:1281–1284. PubMed
Le Beau M.M., Bitter M.A., Larson R.A., Doane L.A., Ellis E.D., Franklin W.A., Rubin C.M., Kadin M.E., Vardiman J.W. The t(2;5)(p23;q35): a recurring chromosomal abnormality in Ki-1-positive anaplastic large cell lymphoma. Leukemia. 1989;3:866–870. PubMed
Kaneko Y., Frizzera G., Edamura S., Maseki N., Sakurai M., Komada Y., Sakurai M., Tanaka H., Sasaki M., Suchi T. A novel translocation, t(2;5)(p23;q35), in childhood phagocytic large T-cell lymphoma mimicking malignant histiocytosis. Blood. 1989;73:806–813. PubMed
Rimokh R., Magaud J.P., Berger F., Samarut J., Coiffier B., Germain D., Mason D.Y. A translocation involving a specific breakpoint (q35) on chromosome 5 is characteristic of anaplastic large cell lymphoma ('Ki-1 lymphoma’) Br. J. Haematol. 1989;71:31–36. PubMed
Leventaki V., Bhattacharyya S., Lim M.S. Pathology and genetics of anaplastic large cell lymphoma. Semin. Diagn. Pathol. 2020;37:57–71. PubMed
Stein H., Mason D.Y., Gerdes J., O'Connor N., Wainscoat J., Pallesen G., Gatter K., Falini B., Delsol G., Lemke H. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985;66:848–858. PubMed
Laimer D., Dolznig H., Kollmann K., Vesely P.W., Schlederer M., Merkel O., Schiefer A.I., Hassler M.R., Heider S., Amenitsch L., et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat. Med. 2012;18:1699–1704. PubMed
Iqbal J., Wilcox R., Naushad H., Rohr J., Heavican T.B., Wang C., Bouska A., Fu K., Chan W.C., Vose J.M. Genomic signatures in T-cell lymphoma: How can these improve precision in diagnosis and inform prognosis? Blood Rev. 2016;30:89–100. PubMed
Cairo M.S., Beishuizen A. Childhood, adolescent and young adult non-Hodgkin lymphoma: current perspectives. Br. J. Haematol. 2019;185:1021–1042. PubMed PMC
Prokoph N., Larose H., Lim M.S., Burke G.A.A., Turner S.D. Treatment Options for Paediatric Anaplastic Large Cell Lymphoma (ALCL): Current Standard and beyond. Cancers. 2018;10:E99. PubMed PMC
Gambacorti-Passerini C., Orlov S., Zhang L., Braiteh F., Huang H., Esaki T., Horibe K., Ahn J.S., Beck J.T., Edenfield W.J., et al. Long-term effects of crizotinib in ALK-positive tumors (excluding NSCLC): A phase 1b open-label study. Am. J. Hematol. 2018;93:607–614. PubMed PMC
Crescenzo R., Abate F., Lasorsa E., Tabbo' F., Gaudiano M., Chiesa N., Di Giacomo F., Spaccarotella E., Barbarossa L., Ercole E., et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27:516–532. PubMed PMC
Prutsch N., Gurnhofer E., Suske T., Liang H.C., Schlederer M., Roos S., Wu L.C., Simonitsch-Klupp I., Alvarez-Hernandez A., Kornauth C., et al. Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia. 2019;33:696–709. PubMed PMC
Chen J., Zhang Y., Petrus M.N., Xiao W., Nicolae A., Raffeld M., Pittaluga S., Bamford R.N., Nakagawa M., Ouyang S.T., et al. Cytokine receptor signaling is required for the survival of ALK- anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc. Natl. Acad. Sci. USA. 2017;114:3975–3980. PubMed PMC
Hapgood G., Savage K.J. The biology and management of systemic anaplastic large cell lymphoma. Blood. 2015;126:17–25. PubMed
Stark G.R., Darnell J.E. The JAK-STAT pathway at twenty. Immunity. 2012;36:503–514. PubMed PMC
Levy D.E., Darnell J.E., Jr. transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 2002;3:651–662. PubMed
Saint-André V., Federation A.J., Lin C.Y., Abraham B.J., Reddy J., Lee T.I., Bradner J.E., Young R.A. Models of human core transcriptional regulatory circuitries. Genome Res. 2016;26:385–396. PubMed PMC
Whyte W.A., Orlando D.A., Hnisz D., Abraham B.J., Lin C.Y., Kagey M.H., Rahl P.B., Lee T.I., Young R.A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–319. PubMed PMC
Parker S.C.J., Stitzel M.L., Taylor D.L., Orozco J.M., Erdos M.R., Akiyama J.A., van Bueren K.L., Chines P.S., Narisu N., NISC Comparative Sequencing Program Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl. Acad. Sci. USA. 2013;110:17921–17926. PubMed PMC
Zamo A., Chiarle R., Piva R., Howes J., Fan Y., Chilosi M., Levy D.E., Inghirami G. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene. 2002;21:1038–1047. PubMed
Sanda T., Lawton L.N., Barrasa M.I., Fan Z.P., Kohlhammer H., Gutierrez A., Ma W., Tatarek J., Ahn Y., Kelliher M.A., et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell. 2012;22:209–221. PubMed PMC
Durbin A.D., Zimmerman M.W., Dharia N.V., Abraham B.J., Iniguez A.B., Weichert-Leahey N., He S., Krill-Burger J.M., Root D.E., Vazquez F., et al. Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nat. Genet. 2018;50:1240–1246. PubMed PMC
Hnisz D., Schuijers J., Lin C.Y., Weintraub A.S., Abraham B.J., Lee T.I., Bradner J.E., Young R.A. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol. Cell. 2015;58:362–370. PubMed PMC
Ghandi M., Huang F.W., Jané-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R., 3rd, Barretina J., Gelfand E.T., Bielski C.M., Li H., et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569:503–508. PubMed PMC
Jahangiri L., Tsaprouni L., Trigg R.M., Williams J.A., Gkoutos G.V., Turner S.D., Pereira J. Core regulatory circuitries in defining cancer cell identity across the malignant spectrum. Open Biol. 2020;10 PubMed PMC
Ng S.Y., Yoshida N., Christie A.L., Ghandi M., Dharia N.V., Dempster J., Murakami M., Shigemori K., Morrow S.N., Van Scoyk A., et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat. Commun. 2018;9:2024. PubMed PMC
Dharia N.V., Kugener G., Guenther L.M., Malone C.F., Durbin A.D., Hong A.L., Howard T.P., Bandopadhayay P., Wechsler C.S., Fung I., et al. A first-generation pediatric cancer dependency map. Nat. Genet. 2021;53:529–538. PubMed PMC
Meyers R.M., Bryan J.G., McFarland J.M., Weir B.A., Sizemore A.E., Xu H., Dharia N.V., Montgomery P.G., Cowley G.S., Pantel S., et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 2017;49:1779–1784. PubMed PMC
Bai L., Zhou H., Xu R., Zhao Y., Chinnaswamy K., McEachern D., Chen J., Yang C.Y., Liu Z., Wang M., et al. A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. Cancer Cell. 2019;36:498–511.e17. PubMed PMC
Yamamoto T., Sekine Y., Kashima K., Kubota A., Sato N., Aoki N., Matsuda T. The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem. Biophys. Res. Commun. 2002;297:811–817. PubMed
Shields B.J., Wiede F., Gurzov E.N., Wee K., Hauser C., Zhu H.J., Molloy T.J., O'Toole S.A., Daly R.J., Sutherland R.L., et al. TCPTP regulates SFK and STAT3 signaling and is lost in triple-negative breast cancers. Mol. Cell Biol. 2013;33:557–570. PubMed PMC
Kleppe M., Soulier J., Asnafi V., Mentens N., Hornakova T., Knoops L., Constantinescu S., Sigaux F., Meijerink J.P., Vandenberghe P., et al. PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia. Blood. 2011;117:7090–7098. PubMed
Karaca Atabay E., Mecca C., Wang Q., Ambrogio C., Mota I., Prokoph N., Mura G., Martinengo C., Patrucco E., Leonardi G., et al. Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma. Blood. 2022;139:717–731. PubMed PMC
El Kasmi K.C., Smith A.M., Williams L., Neale G., Panopoulos A.D., Watowich S.S., Häcker H., Foxwell B.M.J., Murray P.J. Cutting edge: A transcriptional repressor and corepressor induced by the STAT3-regulated anti-inflammatory signaling pathway. J. Immunol. 2007;179:7215–7219. PubMed
Prokoph N., Probst N.A., Lee L.C., Monahan J.M., Matthews J.D., Liang H.C., Bahnsen K., Montes-Mojarro I.A., Karaca-Atabay E., Sharma G.G., et al. IL10RA modulates crizotinib sensitivity in NPM1-ALK+ anaplastic large cell lymphoma. Blood. 2020;136:1657–1669. PubMed PMC
Darnell J.E., Kerr I.M., Stark G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–1421. PubMed
Chiarle R., Simmons W.J., Cai H., Dhall G., Zamo A., Raz R., Karras J.G., Levy D.E., Inghirami G. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat. Med. 2005;11:623–629. PubMed
Zhang Q., Raghunath P.N., Xue L., Majewski M., Carpentieri D.F., Odum N., Morris S., Skorski T., Wasik M.A. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J. Immunol. 2002;168:466–474. PubMed
Nie Z., Hu G., Wei G., Cui K., Yamane A., Resch W., Wang R., Green D.R., Tessarollo L., Casellas R., et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012;151:68–79. PubMed PMC
Lin C.Y., Lovén J., Rahl P.B., Paranal R.M., Burge C.B., Bradner J.E., Lee T.I., Young R.A. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012;151:56–67. PubMed PMC
Zeid R., Lawlor M.A., Poon E., Reyes J.M., Fulciniti M., Lopez M.A., Scott T.G., Nabet B., Erb M.A., Winter G.E., et al. Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma. Nat. Genet. 2018;50:515–523. PubMed PMC
See Y.X., Chen K., Fullwood M.J. MYC overexpression leads to increased chromatin interactions at super-enhancers and MYC binding sites. Genome Res. 2022;32:629–642. PubMed PMC
Harrison D.A. The Jak/STAT pathway. Cold Spring Harbor Perspect. Biol. 2012;4:a011205. PubMed PMC
Sever R., Brugge J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 2015;5:a006098. PubMed PMC
Brooks A.J., Putoczki T. JAK-STAT Signalling Pathway in Cancer. Cancers. 2020;12:E1971. PubMed PMC
Ohgami R.S., Ma L., Merker J.D., Martinez B., Zehnder J.L., Arber D.A. STAT3 mutations are frequent in CD30+ T-cell lymphomas and T-cell large granular lymphocytic leukemia. Leukemia. 2013;27:2244–2247. PubMed
Chiarle R., Voena C., Ambrogio C., Piva R., Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer. 2008;8:11–23. PubMed
Chapuy B., McKeown M.R., Lin C.Y., Monti S., Roemer M.G.M., Qi J., Rahl P.B., Sun H.H., Yeda K.T., Doench J.G., et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell. 2013;24:777–790. PubMed PMC
Wong R.W.J., Ngoc P.C.T., Leong W.Z., Yam A.W.Y., Zhang T., Asamitsu K., Iida S., Okamoto T., Ueda R., Gray N.S., et al. Enhancer profiling identifies critical cancer genes and characterizes cell identity in adult T-cell leukemia. Blood. 2017;130:2326–2338. PubMed PMC
Mack S.C., Pajtler K.W., Chavez L., Okonechnikov K., Bertrand K.C., Wang X., Erkek S., Federation A., Song A., Lee C., et al. Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature. 2018;553:101–105. PubMed PMC
Liu Q., Guo L., Lou Z., Xiang X., Shao J. J. Super-enhancers and novel therapeutic targets in colorectal cancer. Cell Death Dis. 2022;13:228. PubMed PMC
Liang H.-C., Costanza M., Prutsch N., Zimmerman M.W., Gurnhofer E., Montes-Mojarro I.A., Abraham B.J., Prokoph N., Stoiber S., Tangermann S., et al. Super-enhancer-based identification of a BATF3/IL-2R-module reveals vulnerabilities in anaplastic large cell lymphoma. Nat. Commun. 2021;12:5577. PubMed PMC
Bandini C., Pupuleku A., Spaccarotella E., Pellegrino E., Wang R., Vitale N., Duval C., Cantarella D., Rinaldi A., Provero P., et al. IRF4 Mediates the Oncogenic Effects of STAT3 in Anaplastic Large Cell Lymphomas. Cancers. 2018;10:E21. PubMed PMC
Schleussner N., Merkel O., Costanza M., Liang H.C., Hummel F., Romagnani C., Durek P., Anagnostopoulos I., Hummel M., Jöhrens K., et al. The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia. 2018;32:1994–2007. PubMed PMC
Gryder B.E., Pomella S., Sayers C., Wu X.S., Song Y., Chiarella A.M., Bagchi S., Chou H.C., Sinniah R.S., Walton A., et al. Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma. Nat. Genet. 2019;51:1714–1722. PubMed PMC
Zamudio A.V., Dall'Agnese A., Henninger J.E., Manteiga J.C., Afeyan L.K., Hannett N.M., Coffey E.L., Li C.H., Oksuz O., Sabari B.R., et al. Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes. Mol. Cell. 2019;76:753–766.e6. PubMed PMC
Mullen A.C., Orlando D.A., Newman J.J., Lovén J., Kumar R.M., Bilodeau S., Reddy J., Guenther M.G., DeKoter R.P., Young R.A. Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell. 2011;147:565–576. PubMed PMC
Alitalo K., Schwab M., Lin C.C., Varmus H.E., Bishop J.M. Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc. Natl. Acad. Sci. USA. 1983;80:1707–1711. PubMed PMC
Nowell P., Finan J., Dalla-Favera R., Gallo R.C., ar-Rushdi A., Romanczuk H., Selden J.R., Emanuel B.S., Rovera G., Croce C.M. Association of amplified oncogene c-myc with an abnormally banded chromosome 8 in a human leukaemia cell line. Nature. 1983;306:494–497. PubMed
Affer M., Chesi M., Chen W.D.G., Keats J.J., Demchenko Y.N., Roschke A.V., Van Wier S., Fonseca R., Bergsagel P.L., Kuehl W.M. Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia. 2014;28:1725–1735. PubMed PMC
Zimmerman M.W., Liu Y., He S., Durbin A.D., Abraham B.J., Easton J., Shao Y., Xu B., Zhu S., Zhang X., et al. MYC Drives a Subset of High-Risk Pediatric Neuroblastomas and Is Activated through Mechanisms Including Enhancer Hijacking and Focal Enhancer Amplification. Cancer Discov. 2018;8:320–335. PubMed PMC
Gill T., Wang H., Bandaru R., Lawlor M., Lu C., Nieman L.T., Tao J., Zhang Y., Anderson D.G., Ting D.T., et al. Selective targeting of MYC mRNA by stabilized antisense oligonucleotides. Oncogene. 2021;40:6527–6539. PubMed PMC
Thorvaldsdóttir H., Robinson J.T., Mesirov J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings Bioinf. 2013;14:178–192. PubMed PMC
Lovén J., Hoke H.A., Lin C.Y., Lau A., Orlando D.A., Vakoc C.R., Bradner J.E., Lee T.I., Young R.A. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–334. PubMed PMC
Zhang Y., Liu T., Meyer C.A., Eeckhoute J., Johnson D.S., Bernstein B.E., Nusbaum C., Myers R.M., Brown M., Li W., Liu X.S. Model-based analysis of ChIP-Seq (MACS) Genome Biol. 2008;9:R137. PubMed PMC
Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
Quinlan A.R., Hall I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. PubMed PMC