Whole Exome Sequencing reveals NOTCH1 mutations in anaplastic large cell lymphoma and points to Notch both as a key pathway and a potential therapeutic target

. 2021 Jun 01 ; 106 (6) : 1693-1704. [epub] 20210601

Jazyk angličtina Země Itálie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid32327503

Grantová podpora
12065 Blood Cancer UK - United Kingdom
P01 CA229100 NCI NIH HHS - United States

Odkazy

PubMed 32327503
PubMed Central PMC8168516
DOI 10.3324/haematol.2019.238766
PII: haematol.2019.238766
Knihovny.cz E-zdroje

Patients diagnosed with Anaplastic Large Cell Lymphoma (ALCL) are still treated with toxic multi-agent chemotherapy and as many as 25-50% of patients relapse. To understand disease pathology and to uncover novel targets for therapy, Whole-Exome Sequencing (WES) of Anaplastic Lymphoma Kinase (ALK)+ ALCL was performed as well as Gene-Set Enrichment Analysis. This revealed that the T-cell receptor (TCR) and Notch pathways were the most enriched in mutations. In particular, variant T349P of NOTCH1, which confers a growth advantage to cells in which it is expressed, was detected in 12% of ALK+ and ALK- ALCL patient samples. Furthermore, we demonstrate that NPM-ALK promotes NOTCH1 expression through binding of STAT3 upstream of NOTCH1. Moreover, inhibition of NOTCH1 with γ-secretase inhibitors (GSIs) or silencing by shRNA leads to apoptosis; co-treatment in vitro with the ALK inhibitor Crizotinib led to additive/synergistic anti-tumour activity suggesting this may be an appropriate combination therapy for future use in the circumvention of ALK inhibitor resistance. Indeed, Crizotinib-resistant and sensitive ALCL were equally sensitive to GSIs. In conclusion, we show a variant in the extracellular domain of NOTCH1 that provides a growth advantage to cells and confirm the suitability of the Notch pathway as a second-line druggable target in ALK+ ALCL.

A 1 Virtanen Institute for Molecular Sciences University of Eastern Finland Finland

Belarusian Centre for Paediatric Oncology Hematology and Immunology Minsk Belarus

Center of Molecular Medicine CEITEC Masaryk University Brno Czech Republic

College of Applied Medical Sciences King Abdulaziz University Jeddah Saudi Arabia

Colleges of Medicine and Applied Medical Sciences University of Hail Hail Saudi Arabia

Colleges of Medicine and Applied Medical Sciences University of Haill Haill Saudi Arabia

Department of Biochemistry University of Cambridge Tennis Court Road Cambridge UK

Department of Internal Medicine Hematology and Oncology University Hospital Brno Czech Republic

Department of Paediatric Oncology Addenbrooke Hospital Cambridge UK

Department of Pathology and Laboratory Medicine Cornell University New York NY USA

Department of Pathology Hematopathology Section UKSH Campus Kiel Kiel Germany

Department of Pathology Medical University of Vienna Vienna Austria

Department of Pathology University of Cambridge Cambridge UK

Department of Pediatric Hematology Oncology Hannover Medical School Hannover Germany

Diagnostic and Research Institute of Pathology Medical University of Graz Graz Austria

Institut Universitaire du Cancer Toulouse Oncopole et Université Paul Sabatier Toulouse France

Medical University of Vienna and Ludwig Boltzmann Institute for Cancer Research Vienna Austria

Our Lady Children Hospital Crumlin Ireland

Perelman School of Medicine Philadelphia USA

Unit of Laboratory Animal Pathology University of Veterinary Medicine Vienna Vienna Austria

University Hospital Hamburg Eppendorf Pediatric Hematology and Oncology Hamburg Germany

University of Milano Bicocca Monza Italy

Zobrazit více v PubMed

Alessandri AJ, Pritchard SL, Schultz KR, Massing BG. A population-based study of pediatric anaplastic large cell lymphoma. Cancer. 2002;94(6):1830-1835. PubMed

Lamant L, Dastugue N, Pulford K, et al. . A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 1999;93(9):3088-3095. PubMed

Morris SW, Kirstein MN, Valentine MB, et al. . Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281-1284. PubMed

Youssif C, Goldenbogen J, Hamoudi R, et al. . Genomic profiling of pediatric ALK-positive anaplastic large cell lymphoma: a Children’s Cancer and Leukaemia Group study. Genes Chromosom. Cancer. 2009;48(11):1018-1026. PubMed

Salaverria I, Beà S, Lopez-Guillermo A, et al. . Genomic profiling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Haematol. 2008;140(5): 516-526. PubMed

Boi M, Rinaldi A, Kwee I, et al. . PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma. Blood. 2013;122(15):2683-2693. PubMed

Kamstrup MRR, Biskup E, Gjerdrum LMR, et al. . The importance of Notch signaling in peripheral T-cell lymphomas. Leuk Lymphoma. 2014;55(3):639-644. PubMed

Jundt F, Anagnostopoulos I, Förster R, et al. . Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood. 2002;99(9):3398-3403. PubMed

Crescenzo R, Abate F, Lasorsa E, et al. . Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27(4):516-532. PubMed PMC

Brugières L, Pacquement H, Le Deley M-C, et al. . Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J Clin Oncol. 2009;27(30):5056-5061. PubMed

Prokoph N, Larose H, Lim MS, Burke GAA, Turner SD. Treatment options for paediatric anaplastic large cell lymphoma (ALCL): current standard and beyond. Cancers (Basel). 2018;10(4):99. PubMed PMC

Minard-Colin V, Brugières L, Reiter A, et al. . Non-Hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33(27): 2963-2974. PubMed PMC

Le Deley M-C, Rosolen A, Williams DM, et al. . Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99- vinblastine trial. J Clin Oncol. 2010;28(25): 3987-3993. PubMed

Gritti G, Boschini C, Rossi A, et al. . Primary treatment response rather than front line stem cell transplantation is crucial for long term outcome of peripheral T-cell lymphomas. PLoS One. 2015;10(3):e0121822. PubMed PMC

Gambacorti-Passerini C, Mussolin L, Brugieres L. Abrupt relapse of ALK-positive lymphoma after discontinuation of crizotinib. N Engl J Med. 2016;374(1):95-96. PubMed

Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma. N Engl J Med. 2011;364(8):775-776. PubMed

Mossé YP, Voss SD, Lim MS, et al. . Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: a Children’s Oncology Group study. J Clin Oncol. 2017;35(28):3215-3221. PubMed PMC

Abramov D, Oschlies I, Zimmermann M, et al. . Expression of CD8 is associated with non-common type morphology and outcome in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2013;98(10):1547-1553. PubMed PMC

Ait-Tahar K, Damm-Welk C, Burkhardt B, et al. . Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood. 2010;115(16):3314-3319. PubMed

Alexandrov LB, Nik-Zainal S, Wedge DC, et al. . Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415-421. PubMed PMC

Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet. 2014;15(9):585-598. PubMed PMC

https://cancer.sanger.ac.uk/cosmic/signatures.

Fabregat A, Jupe S, Matthews L, et al. . The reactome pathway knowledge base. Nucleic Acids Res. 2018;46(D1):D649-D655. PubMed PMC

Cui Y-X, Kerby A, McDuff FKE, Ye H, Turner SD. NPM-ALK inhibits the p53 tumor suppressor pathway in an MDM2 and JNK-dependent manner. Blood. 2009;113(21):5217-5227. PubMed

Malcolm TIMM, Villarese P, Fairbairn CJ, et al. . Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat Commun. 2016;7:10087. PubMed PMC

Adzhubei IA, Schmidt S, Peshkin L, et al. . A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-249. PubMed PMC

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073-1082. PubMed

Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009;19(9):1553-1561. PubMed PMC

Schwarz JM, Cooper DN, Schuelke M, Seelow D. Mutationtaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361-362. PubMed

Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012;7(10):e46688. PubMed PMC

Mason CC, Khorashad JS, Tantravahi SK, et al. . Age-related mutations and chronic myelomonocytic leukemia. Leukemia. 2016;30(4):906-913. PubMed PMC

Ljungström V, Cortese D, Young E, et al. . Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood. 2016;127(8):1007-1016. PubMed PMC

Neumann M, Vosberg S, Schlee C, et al. . Mutational spectrum of adult T-ALL. Oncotarget. 2015;6(5):2754-2766. PubMed PMC

Kohsaka S, Shukla N, Ameur N, et al. . A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet. 2014;46(6):595-600. PubMed PMC

Martin D, Abba MC, Molinolo AA, et al. . The head and neck cancer cell oncogenome: a platform for the development of precision molecular therapies. Oncotarget. 2014;5(19):8906-8923. PubMed PMC

Luca VC, Kim BC, Ge C, et al. . Notch- Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science. 2017;355(6331):1320-1324. PubMed PMC

Menotti M, Ambrogio C, Cheong T-C, et al. . Wiskott-Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat Med. 2019;25(1):130-140. PubMed PMC

Choi SH, Severson E, Pear WS, et al. . The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia. PLoS One. 2017;12(10):e0185762. PubMed PMC

Sanchez-Martin M, Ambesi-Impiombato A, Qin Y, et al. . Synergistic antileukemic therapies in NOTCH1-induced T-ALL. Proc Natl Acad Sci U S A. 2017;114(8):2006-2011. PubMed PMC

Wang H, Zou J, Zhao B, et al. . Genomewide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci U S A. 2011;108(36):14908-14913. PubMed PMC

Locatelli MA, Aftimos P, Dees EC, et al. . Phase I study of the gamma secretase inhibitor PF-03084014 in combination with docetaxel in patients with advanced triplenegative breast cancer. Oncotarget. 2017;8(2):2320-2328. PubMed PMC

Turturro F, Frist AY, Arnold MD, Seth P, Pulford K. Biochemical differences between SUDHL-1 and KARPAS 299 cells derived from t(2;5)-positive anaplastic large cell lymphoma are responsible for the different sensitivity to the antiproliferative effect of p27(Kip1). Oncogene. 2001;20(33):4466-4475. PubMed

Kamstrup MR, Ralfkiaer E, Skovgaard GL, Gniadecki R. Potential involvement of Notch1 signalling in the pathogenesis of primary cutaneous CD30-positive lymphoproliferative disorders. Br. J. Dermatol. 2008;158(4):747-753. PubMed

Meeks HD, Song H, Michailidou K, et al. . BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers. J Natl Cancer Inst. 2015;108(2): djv315. PubMed PMC

Pfeifer GP. Mutagenesis at methylated CpG sequences. Curr Top Microbiol Immunol. 2006;301:259-281. PubMed

Turner SD, Yeung D, Hadfield K, Cook SJ, Alexander DR. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms. Cell Signal. 2007;19(4):740-747. PubMed

Aster JC, Blacklow SC, Pear WS. Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. J Pathol. 2011;223(2): 262-273. PubMed PMC

Breit S, Stanulla M, Flohr T, et al. . Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood. 2006;108(4):1151-1157. PubMed

Wang NJ, Sanborn Z, Arnett KL, et al. . Lossof- function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A. 2011;108(43):17761-17766. PubMed PMC

Vollbrecht C, Mairinger FD, Koitzsch U, et al. . Comprehensive analysis of disease-related genes in chronic lymphocytic leukemia by multiplex PCR-based next generation sequencing. PLoS One. 2015;10(6): e0129544. PubMed PMC

Athanasakis E, Melloni E, Rigolin GM, et al. . The p53 transcriptional pathway is preserved in ATMmutated and NOTCH1mutated chronic lymphocytic leukemias. Oncotarget. 2014;5(24):12635-12645. PubMed PMC

Rebay I, Fleming RJ, Fehon RG, et al. . Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for notch as a multifunctional receptor. Cell. 1991;67(4):687-699. PubMed

Stanley P, Okajima T. Roles of glycosylation in notch signaling. Curr Top Dev Biol. 2010;92:131-164. PubMed

Haines N, Irvine KD. Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol. 2003;4(10):786-797. PubMed

Pakkiriswami S, Couto A, Nagarajan U, Georgiou M. Glycosylated Notch and cancer. Front Oncol. 2016;6:37. PubMed PMC

Rand MD, Grimm LM, Artavanis-Tsakonas S, et al. . Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol. 2000;20(5):1825-1835. PubMed PMC

Rust R, Visser L, Van Der Leij J, et al. . High expression of calcium-binding proteins, S100A10, S100A11 and CALM2 in anaplastic large cell lymphoma. Br J Haematol. 2005;131(5):596-608. PubMed

Dang Q, Chen L, Xu M, et al. . The γ-secretase inhibitor GSI-I interacts synergistically with the proteasome inhibitor bortezomib to induce ALK+ anaplastic large cell lymphoma cell apoptosis. Cell Signal. 2019;59:76-84. PubMed

Hudson S, Wang D, Middleton F, et al. . Crizotinib induces apoptosis and gene expression changes in ALK+ anaplastic large cell lymphoma cell lines; brentuximab synergizes and doxorubicin antagonizes. Pediatr Blood Cancer. 2018;65(8):e27094. PubMed

Larose H, Burke GAA, Lowe EJ, Turner SD. From bench to bedside: the past, present and future of therapy for systemic paediatric ALCL, ALK. Br J Haematol. 2019;185(6):1043-1054. PubMed

Habets RA, de Bock CE, Serneels L, et al. . Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med. 2019;11(494): eaau6246. PubMed

Papayannidis C, DeAngelo DJ, Stock W, et al. . A phase 1 study of the novel gammasecretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Blood Cancer J. 2015;5:e350. PubMed PMC

Samon JB, Castillo-Martin M, Hadler M, et al. . Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. Mol Cancer Ther. 2012;11(7): 1565-1575. PubMed PMC

Wei P, Walls M, Qiu M, et al. . Evaluation of selective gamma-secretase inhibitor PF- 03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol Cancer Ther. 2010;9(6): 1618-1628. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...