Whole Exome Sequencing reveals NOTCH1 mutations in anaplastic large cell lymphoma and points to Notch both as a key pathway and a potential therapeutic target
Jazyk angličtina Země Itálie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
12065
Blood Cancer UK - United Kingdom
P01 CA229100
NCI NIH HHS - United States
PubMed
32327503
PubMed Central
PMC8168516
DOI
10.3324/haematol.2019.238766
PII: haematol.2019.238766
Knihovny.cz E-zdroje
- MeSH
- anaplastický velkobuněčný lymfom * farmakoterapie genetika MeSH
- lidé MeSH
- lokální recidiva nádoru MeSH
- mutace MeSH
- nádorové buněčné linie MeSH
- receptor Notch1 genetika MeSH
- sekvenování exomu MeSH
- tyrosinkinasové receptory genetika MeSH
- tyrosinkinasy genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- NOTCH1 protein, human MeSH Prohlížeč
- receptor Notch1 MeSH
- tyrosinkinasové receptory MeSH
- tyrosinkinasy MeSH
Patients diagnosed with Anaplastic Large Cell Lymphoma (ALCL) are still treated with toxic multi-agent chemotherapy and as many as 25-50% of patients relapse. To understand disease pathology and to uncover novel targets for therapy, Whole-Exome Sequencing (WES) of Anaplastic Lymphoma Kinase (ALK)+ ALCL was performed as well as Gene-Set Enrichment Analysis. This revealed that the T-cell receptor (TCR) and Notch pathways were the most enriched in mutations. In particular, variant T349P of NOTCH1, which confers a growth advantage to cells in which it is expressed, was detected in 12% of ALK+ and ALK- ALCL patient samples. Furthermore, we demonstrate that NPM-ALK promotes NOTCH1 expression through binding of STAT3 upstream of NOTCH1. Moreover, inhibition of NOTCH1 with γ-secretase inhibitors (GSIs) or silencing by shRNA leads to apoptosis; co-treatment in vitro with the ALK inhibitor Crizotinib led to additive/synergistic anti-tumour activity suggesting this may be an appropriate combination therapy for future use in the circumvention of ALK inhibitor resistance. Indeed, Crizotinib-resistant and sensitive ALCL were equally sensitive to GSIs. In conclusion, we show a variant in the extracellular domain of NOTCH1 that provides a growth advantage to cells and confirm the suitability of the Notch pathway as a second-line druggable target in ALK+ ALCL.
A 1 Virtanen Institute for Molecular Sciences University of Eastern Finland Finland
Belarusian Centre for Paediatric Oncology Hematology and Immunology Minsk Belarus
Center of Molecular Medicine CEITEC Masaryk University Brno Czech Republic
College of Applied Medical Sciences King Abdulaziz University Jeddah Saudi Arabia
Colleges of Medicine and Applied Medical Sciences University of Hail Hail Saudi Arabia
Colleges of Medicine and Applied Medical Sciences University of Haill Haill Saudi Arabia
Department of Biochemistry University of Cambridge Tennis Court Road Cambridge UK
Department of Internal Medicine Hematology and Oncology University Hospital Brno Czech Republic
Department of Paediatric Oncology Addenbrooke Hospital Cambridge UK
Department of Pathology and Laboratory Medicine Cornell University New York NY USA
Department of Pathology Hematopathology Section UKSH Campus Kiel Kiel Germany
Department of Pathology Medical University of Vienna Vienna Austria
Department of Pathology University of Cambridge Cambridge UK
Department of Pediatric Hematology Oncology Hannover Medical School Hannover Germany
Diagnostic and Research Institute of Pathology Medical University of Graz Graz Austria
Institut Universitaire du Cancer Toulouse Oncopole et Université Paul Sabatier Toulouse France
Medical University of Vienna and Ludwig Boltzmann Institute for Cancer Research Vienna Austria
Our Lady Children Hospital Crumlin Ireland
Perelman School of Medicine Philadelphia USA
Unit of Laboratory Animal Pathology University of Veterinary Medicine Vienna Vienna Austria
University Hospital Hamburg Eppendorf Pediatric Hematology and Oncology Hamburg Germany
Zobrazit více v PubMed
Alessandri AJ, Pritchard SL, Schultz KR, Massing BG. A population-based study of pediatric anaplastic large cell lymphoma. Cancer. 2002;94(6):1830-1835. PubMed
Lamant L, Dastugue N, Pulford K, et al. . A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 1999;93(9):3088-3095. PubMed
Morris SW, Kirstein MN, Valentine MB, et al. . Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281-1284. PubMed
Youssif C, Goldenbogen J, Hamoudi R, et al. . Genomic profiling of pediatric ALK-positive anaplastic large cell lymphoma: a Children’s Cancer and Leukaemia Group study. Genes Chromosom. Cancer. 2009;48(11):1018-1026. PubMed
Salaverria I, Beà S, Lopez-Guillermo A, et al. . Genomic profiling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Haematol. 2008;140(5): 516-526. PubMed
Boi M, Rinaldi A, Kwee I, et al. . PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma. Blood. 2013;122(15):2683-2693. PubMed
Kamstrup MRR, Biskup E, Gjerdrum LMR, et al. . The importance of Notch signaling in peripheral T-cell lymphomas. Leuk Lymphoma. 2014;55(3):639-644. PubMed
Jundt F, Anagnostopoulos I, Förster R, et al. . Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood. 2002;99(9):3398-3403. PubMed
Crescenzo R, Abate F, Lasorsa E, et al. . Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27(4):516-532. PubMed PMC
Brugières L, Pacquement H, Le Deley M-C, et al. . Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J Clin Oncol. 2009;27(30):5056-5061. PubMed
Prokoph N, Larose H, Lim MS, Burke GAA, Turner SD. Treatment options for paediatric anaplastic large cell lymphoma (ALCL): current standard and beyond. Cancers (Basel). 2018;10(4):99. PubMed PMC
Minard-Colin V, Brugières L, Reiter A, et al. . Non-Hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33(27): 2963-2974. PubMed PMC
Le Deley M-C, Rosolen A, Williams DM, et al. . Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99- vinblastine trial. J Clin Oncol. 2010;28(25): 3987-3993. PubMed
Gritti G, Boschini C, Rossi A, et al. . Primary treatment response rather than front line stem cell transplantation is crucial for long term outcome of peripheral T-cell lymphomas. PLoS One. 2015;10(3):e0121822. PubMed PMC
Gambacorti-Passerini C, Mussolin L, Brugieres L. Abrupt relapse of ALK-positive lymphoma after discontinuation of crizotinib. N Engl J Med. 2016;374(1):95-96. PubMed
Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma. N Engl J Med. 2011;364(8):775-776. PubMed
Mossé YP, Voss SD, Lim MS, et al. . Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: a Children’s Oncology Group study. J Clin Oncol. 2017;35(28):3215-3221. PubMed PMC
Abramov D, Oschlies I, Zimmermann M, et al. . Expression of CD8 is associated with non-common type morphology and outcome in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2013;98(10):1547-1553. PubMed PMC
Ait-Tahar K, Damm-Welk C, Burkhardt B, et al. . Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood. 2010;115(16):3314-3319. PubMed
Alexandrov LB, Nik-Zainal S, Wedge DC, et al. . Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415-421. PubMed PMC
Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet. 2014;15(9):585-598. PubMed PMC
https://cancer.sanger.ac.uk/cosmic/signatures.
Fabregat A, Jupe S, Matthews L, et al. . The reactome pathway knowledge base. Nucleic Acids Res. 2018;46(D1):D649-D655. PubMed PMC
Cui Y-X, Kerby A, McDuff FKE, Ye H, Turner SD. NPM-ALK inhibits the p53 tumor suppressor pathway in an MDM2 and JNK-dependent manner. Blood. 2009;113(21):5217-5227. PubMed
Malcolm TIMM, Villarese P, Fairbairn CJ, et al. . Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat Commun. 2016;7:10087. PubMed PMC
Adzhubei IA, Schmidt S, Peshkin L, et al. . A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-249. PubMed PMC
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073-1082. PubMed
Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009;19(9):1553-1561. PubMed PMC
Schwarz JM, Cooper DN, Schuelke M, Seelow D. Mutationtaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361-362. PubMed
Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012;7(10):e46688. PubMed PMC
Mason CC, Khorashad JS, Tantravahi SK, et al. . Age-related mutations and chronic myelomonocytic leukemia. Leukemia. 2016;30(4):906-913. PubMed PMC
Ljungström V, Cortese D, Young E, et al. . Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood. 2016;127(8):1007-1016. PubMed PMC
Neumann M, Vosberg S, Schlee C, et al. . Mutational spectrum of adult T-ALL. Oncotarget. 2015;6(5):2754-2766. PubMed PMC
Kohsaka S, Shukla N, Ameur N, et al. . A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet. 2014;46(6):595-600. PubMed PMC
Martin D, Abba MC, Molinolo AA, et al. . The head and neck cancer cell oncogenome: a platform for the development of precision molecular therapies. Oncotarget. 2014;5(19):8906-8923. PubMed PMC
Luca VC, Kim BC, Ge C, et al. . Notch- Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science. 2017;355(6331):1320-1324. PubMed PMC
Menotti M, Ambrogio C, Cheong T-C, et al. . Wiskott-Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat Med. 2019;25(1):130-140. PubMed PMC
Choi SH, Severson E, Pear WS, et al. . The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia. PLoS One. 2017;12(10):e0185762. PubMed PMC
Sanchez-Martin M, Ambesi-Impiombato A, Qin Y, et al. . Synergistic antileukemic therapies in NOTCH1-induced T-ALL. Proc Natl Acad Sci U S A. 2017;114(8):2006-2011. PubMed PMC
Wang H, Zou J, Zhao B, et al. . Genomewide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci U S A. 2011;108(36):14908-14913. PubMed PMC
Locatelli MA, Aftimos P, Dees EC, et al. . Phase I study of the gamma secretase inhibitor PF-03084014 in combination with docetaxel in patients with advanced triplenegative breast cancer. Oncotarget. 2017;8(2):2320-2328. PubMed PMC
Turturro F, Frist AY, Arnold MD, Seth P, Pulford K. Biochemical differences between SUDHL-1 and KARPAS 299 cells derived from t(2;5)-positive anaplastic large cell lymphoma are responsible for the different sensitivity to the antiproliferative effect of p27(Kip1). Oncogene. 2001;20(33):4466-4475. PubMed
Kamstrup MR, Ralfkiaer E, Skovgaard GL, Gniadecki R. Potential involvement of Notch1 signalling in the pathogenesis of primary cutaneous CD30-positive lymphoproliferative disorders. Br. J. Dermatol. 2008;158(4):747-753. PubMed
Meeks HD, Song H, Michailidou K, et al. . BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers. J Natl Cancer Inst. 2015;108(2): djv315. PubMed PMC
Pfeifer GP. Mutagenesis at methylated CpG sequences. Curr Top Microbiol Immunol. 2006;301:259-281. PubMed
Turner SD, Yeung D, Hadfield K, Cook SJ, Alexander DR. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms. Cell Signal. 2007;19(4):740-747. PubMed
Aster JC, Blacklow SC, Pear WS. Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. J Pathol. 2011;223(2): 262-273. PubMed PMC
Breit S, Stanulla M, Flohr T, et al. . Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood. 2006;108(4):1151-1157. PubMed
Wang NJ, Sanborn Z, Arnett KL, et al. . Lossof- function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A. 2011;108(43):17761-17766. PubMed PMC
Vollbrecht C, Mairinger FD, Koitzsch U, et al. . Comprehensive analysis of disease-related genes in chronic lymphocytic leukemia by multiplex PCR-based next generation sequencing. PLoS One. 2015;10(6): e0129544. PubMed PMC
Athanasakis E, Melloni E, Rigolin GM, et al. . The p53 transcriptional pathway is preserved in ATMmutated and NOTCH1mutated chronic lymphocytic leukemias. Oncotarget. 2014;5(24):12635-12645. PubMed PMC
Rebay I, Fleming RJ, Fehon RG, et al. . Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for notch as a multifunctional receptor. Cell. 1991;67(4):687-699. PubMed
Stanley P, Okajima T. Roles of glycosylation in notch signaling. Curr Top Dev Biol. 2010;92:131-164. PubMed
Haines N, Irvine KD. Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol. 2003;4(10):786-797. PubMed
Pakkiriswami S, Couto A, Nagarajan U, Georgiou M. Glycosylated Notch and cancer. Front Oncol. 2016;6:37. PubMed PMC
Rand MD, Grimm LM, Artavanis-Tsakonas S, et al. . Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol. 2000;20(5):1825-1835. PubMed PMC
Rust R, Visser L, Van Der Leij J, et al. . High expression of calcium-binding proteins, S100A10, S100A11 and CALM2 in anaplastic large cell lymphoma. Br J Haematol. 2005;131(5):596-608. PubMed
Dang Q, Chen L, Xu M, et al. . The γ-secretase inhibitor GSI-I interacts synergistically with the proteasome inhibitor bortezomib to induce ALK+ anaplastic large cell lymphoma cell apoptosis. Cell Signal. 2019;59:76-84. PubMed
Hudson S, Wang D, Middleton F, et al. . Crizotinib induces apoptosis and gene expression changes in ALK+ anaplastic large cell lymphoma cell lines; brentuximab synergizes and doxorubicin antagonizes. Pediatr Blood Cancer. 2018;65(8):e27094. PubMed
Larose H, Burke GAA, Lowe EJ, Turner SD. From bench to bedside: the past, present and future of therapy for systemic paediatric ALCL, ALK. Br J Haematol. 2019;185(6):1043-1054. PubMed
Habets RA, de Bock CE, Serneels L, et al. . Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med. 2019;11(494): eaau6246. PubMed
Papayannidis C, DeAngelo DJ, Stock W, et al. . A phase 1 study of the novel gammasecretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Blood Cancer J. 2015;5:e350. PubMed PMC
Samon JB, Castillo-Martin M, Hadler M, et al. . Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. Mol Cancer Ther. 2012;11(7): 1565-1575. PubMed PMC
Wei P, Walls M, Qiu M, et al. . Evaluation of selective gamma-secretase inhibitor PF- 03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol Cancer Ther. 2010;9(6): 1618-1628. PubMed
Patient-derived xenograft models of ALK+ ALCL reveal preclinical promise for therapy with brigatinib
Complex genetic and histopathological study of 15 patient-derived xenografts of aggressive lymphomas
Resistance to Targeted Agents Used to Treat Paediatric ALK-Positive ALCL
STAT3 and TP53 mutations associate with poor prognosis in anaplastic large cell lymphoma