Simplification of gold nanoparticle synthesis with low cytotoxicity using a greener approach: opening up new possibilities
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35424300
PubMed Central
PMC8694009
DOI
10.1039/d0ra08822f
PII: d0ra08822f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Gold nanoparticles (AuNPs) have diverse applications in the diagnosis and treatment of ailments. This study describes an extremely simplified synthesis of AuNPs using antioxidant-rich pollen extract as a local natural source. Ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) were used to characterize the synthesized AuNPs; strong UV-vis absorption at 534 nm confirmed their formation, the XRD pattern showed the presence of a crystalline structure, and TEM images showed them to be spherical nanoparticles with an average size of 9.3 ± 2.9 nm. As synthesized AuNPs remained stable for up to two months under laboratory conditions without any sedimentation or change in the absorption value, presumably due to the protection afforded by the capping agents from pollen. AuNPs revealed low toxicity effects on MCF-7 and HUVECs cell lines (with an IC50 value of ∼400 μg mL-1 for both the cell lines). The proposed method did not use any hazardous materials or high-energy consuming devices; thus this efficient protocol may be adapted for large-scale production using local resources.
Medical Ethics and Law Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
Noncommunicable Diseases Research Center Bam University of Medical Sciences Bam Iran
Zobrazit více v PubMed
Khatami M. Alijani H. Q. Fakheri B. Mobasseri M. M. Heydarpour M. Farahani Z. K. Khan A. U. J. Cleaner Prod. 2019;208:1171–1177. doi: 10.1016/j.jclepro.2018.10.182. DOI
Sargazi G. Afzali D. Mostafavi A. Shadman A. Rezaee B. Zarrintaj P. Saeb M. R. Ramakrishna S. Mozafari M. Heliyon. 2019;5:e01527. doi: 10.1016/j.heliyon.2019.e01527. PubMed DOI PMC
Safaei M. Foroughi M. M. Ebrahimpoor N. Jahani S. Omidi A. Khatami M. TrAC, Trends Anal. Chem. 2019;118:401–425. doi: 10.1016/j.trac.2019.06.007. DOI
Nazari-Vanani R. Sattarahmady N. Yadegari H. Khatami M. Heli H. Biosens. Bioelectron. 2019;142:111541. doi: 10.1016/j.bios.2019.111541. PubMed DOI
Khan Z. U. H. Khan A. Chen Y. Shah N. S. Muhammad N. Khan A. U. Tahir K. Khan F. U. Murtaza B. Hassan S. U. Qaisrani S. A. Wan P. J. Photochem. Photobiol., B. 2017;173:150–164. doi: 10.1016/j.jphotobiol.2017.05.034. PubMed DOI
Salazar-González J. A. González-Ortega O. Rosales-Mendoza S. Expert Rev. Vaccines. 2015;14:1197–1211. doi: 10.1586/14760584.2015.1064772. PubMed DOI
Iravani S. Korbekandi H. Mirmohammadi S. V. Zolfaghari B. Res. Pharm. Sci. 2014;9:385–406. PubMed PMC
Miri A. Khatami M. Sarani M. J. Inorg. Organomet. Polym. Mater. 2020;30:767–774. doi: 10.1007/s10904-019-01245-6. DOI
Miri J. Darroudi S. Sarani S. Appl. Organomet. Chem. 2020;34:5308–5309. doi: 10.1002/aoc.5308. DOI
Ghazal S. Akbari A. Hosseini H. A. Sabouri Z. Khatami M. Darroudi M. Inorg. Chem. Res. 2021;5:37–49.
Scaramuzza S. Zerbetto M. Amendola V. J. Phys. Chem. C. 2016;120:9453–9463. doi: 10.1021/acs.jpcc.6b00161. DOI
Maroušek J. Hašková S. Maroušková A. Myšková K. Vaníčková R. Váchal J. Vochozka M. Zeman R. Žák J. Energy Sources, Part A. 2015;37:1723–1728. doi: 10.1080/15567036.2015.1048391. DOI
Karthik K. Dhanuskodi S. Gobinath C. Prabukumar S. Sivaramakrishnan S. Mater. Res. Innovations. 2018;23(5):1–9.
Maroušek J. Stehel V. Vochozka M. Maroušková A. Kolář L. J. Cleaner Prod. 2018;199:173–176. doi: 10.1016/j.jclepro.2018.07.183. DOI
Khatami M. Sharifi I. Nobre M. A. L. Zafarnia N. Aflatoonian M. R. Green Chem. Lett. Rev. 2018;11:125–134. doi: 10.1080/17518253.2018.1444797. DOI
Azhdari S. Sarabi R. E. Rezaeizade N. Mosazade F. Heidari M. Borhani F. Abdollahpour-Alitappeh M. Khatami M. RSC Adv. 2020;10:29737–29744. doi: 10.1039/D0RA04071A. PubMed DOI PMC
Alinaghi Langari A. Soltaninezhad S. Zafarnia N. Heidari M. Varma R. S. Ebrahimi Z. Azhdari S. Borhani F. Khatami M. Bioprocess Biosyst. Eng. 2020;43:1–7. doi: 10.1007/s00449-019-02195-6. PubMed DOI
Chandran S. P. Chaudhary M. Pasricha R. Ahmad A. Sastry M. Biotechnol. Prog. 2006;22:577–583. doi: 10.1021/bp0501423. PubMed DOI
Montes M. O. Mayoral A. Deepak F. L. Parsons J. G. Jose-Yacamán M. Peralta-Videa J. R. Gardea-Torresdey J. L. J. Nanopart. Res. 2011;13:3113–3121. doi: 10.1007/s11051-011-0230-5. DOI
Sattarahmady N. Firoozabadi V. Nazari-Vanani R. Azarpira N. Int. J. Biol. Macromol. 2018;112:703–711. doi: 10.1016/j.ijbiomac.2018.02.025. PubMed DOI
Schulte F. Lingott J. Panne U. Kneipp J. Anal. Chem. 2008;80:9551–9556. doi: 10.1021/ac801791a. PubMed DOI
Wang X. Teng Z. Wang H. Wang C. Liu Y. Tang Y. Wu J. Sun J. Wang H. Wang J. Lu G. Int. J. Clin. Exp. Pathol. 2014;7:1337–1347. PubMed PMC
El-Naggar M. E. Shaheen T. I. Fouda M. M. G. Hebeish A. A. Carbohydr. Polym. 2016;136:1128–1136. doi: 10.1016/j.carbpol.2015.10.003. PubMed DOI
Ravindra P. Mater. Sci. Eng., B. 2009;163:93–98. doi: 10.1016/j.mseb.2009.05.013. DOI
Filippo E. Serra A. Buccolieri A. Manno D. J. Non-Cryst. Solids. 2010;356:344–350. doi: 10.1016/j.jnoncrysol.2009.11.021. DOI
Egorova E. Revina A. Colloids Surf., A. 2000;168:87–96. doi: 10.1016/S0927-7757(99)00513-0. DOI
Engelbrekt C. Sorensen K. H. Zhang J. Welinder A. C. Jensen P. S. Ulstrup J. J. Mater. Chem. 2009;19:7839–7847. doi: 10.1039/B911111E. DOI
Narayanan K. B. Sakthivel N. Mater. Lett. 2008;62:4588–4590. doi: 10.1016/j.matlet.2008.08.044. DOI
Shi C. Zhu N. Cao Y. Wu P. Nanoscale Res. Lett. 2015;10:147. doi: 10.1186/s11671-015-0856-9. PubMed DOI PMC
Vijayakumar S. J. Saudi Chem. Soc. 2019;23:753–761. doi: 10.1016/j.jscs.2018.12.002. DOI
Barai A. C. Paul K. Dey A. Manna S. Roy S. Bag B. G. Mukhopadhyay C. Nano Convergence. 2018;5:10. doi: 10.1186/s40580-018-0142-5. PubMed DOI PMC
Anbu P. Gopinath S. C. Jayanthi S. Nanomater. Nanotechnol. 2020;10:1847980420961697.
Khatua A. Priyadarshini E. Rajamani P. Patel A. Kumar J. Naik A. Saravanan M. Barabadi H. Prasad A. Ghosh l. Paul B. Meena R. J. Cluster Sci. 2020;31:125–131. doi: 10.1007/s10876-019-01624-6. DOI
Dorosti N. Jamshidi F. J. Appl. Biomed. 2016;14:235–245. doi: 10.1016/j.jab.2016.03.001. DOI
Kajani A. A. Bordbar A.-K. Esfahani S. H. Z. Razmjou A. RSC Adv. 2016;6:63973–63983. doi: 10.1039/C6RA09050H. DOI
Anand K. Gengan R. Phulukdaree A. Chuturgoon A. J. Ind. Eng. Chem. 2015;21:1105–1111. doi: 10.1016/j.jiec.2014.05.021. DOI
Wongyai K. Wintachai P. Maungchang R. Rattanakit P. J. Nanomater. 2020;2020:1320274. doi: 10.1155/2020/1320274. DOI
Ankamwar B. Eur. J. Chem. 2010;7:745120.
Muthukumar T. Sambandam B. Aravinthan A. Sastry T. P. Kim J.-H. Process Biochem. 2016;51:384–391. doi: 10.1016/j.procbio.2015.12.017. DOI
Balasubramanian S. Kala S. M. J. Pushparaj T. L. J. Drug Delivery Sci. Technol. 2020;57:101620. doi: 10.1016/j.jddst.2020.101620. DOI
Nejad M. S. Khatami M. Bonjar G. H. S. IET Nanobiotechnol. 2016;10:33–38. doi: 10.1049/iet-nbt.2015.0028. PubMed DOI PMC
Shabestarian H. Homayouni-Tabrizi M. Soltani M. Namvar F. Azizi S. Mohamad R. Shabestarian H. Materials Research. 2017;20:264–270. doi: 10.1590/1980-5373-mr-2015-0694. DOI
Xin Lee K. Shameli K. Miyake M. Kuwano N. Bt Ahmad Khairudin N. B. Bt Mohamad S. E. Yew Y. P. J. Nanomater. 2016;2016:7. PubMed PMC
Singh A. K. Srivastava O. N. Nanoscale Res. Lett. 2015;10:353. doi: 10.1186/s11671-015-1055-4. PubMed DOI PMC
Elia P. Zach R. Hazan S. Kolusheva S. Porat Z. e. Zeiri Y. Int. J. Nanomed. 2014;9:4007–4021. PubMed PMC
Pani A. Thanh T. D. Kim N. H. Lee J. H. Yun S.-I. IET Nanobiotechnol. 2016;10:431–437. doi: 10.1049/iet-nbt.2016.0017. PubMed DOI PMC
Li J. Li Q. Ma X. Tian B. Li T. Yu J. Dai S. Weng Y. Hua Y. Int. J. Nanomed. 2016;11:5931–5944. doi: 10.2147/IJN.S119618. PubMed DOI PMC
Wang C. Mathiyalagan R. Kim Y. J. Castro-Aceituno V. Singh P. Ahn S. Wang D. Yang D. C. Int. J. Nanomed. 2016;11:3691. doi: 10.2147/IJN.S97181. PubMed DOI PMC
Castro-Aceituno V. Abbai R. Moon S. S. Ahn S. Mathiyalagan R. Kim Y.-J. Kim Y.-J. Yang D. C. Biomed. Pharmacother. 2017;93:995–1003. doi: 10.1016/j.biopha.2017.07.040. PubMed DOI
Lee S. Y. Krishnamurthy S. Cho C.-W. Yun Y.-S. ACS Sustainable Chem. Eng. 2016;4:2651–2659. doi: 10.1021/acssuschemeng.6b00161. DOI
Bhambure R. Bule M. Shaligram N. Kamat M. Singhal R. Chem. Eng. Technol. 2009;32:1036–1041. doi: 10.1002/ceat.200800647. DOI
Priyadarshini E. Pradhan N. Sukla L. B. Panda P. K. J. Nanotechnol. 2014;2014:9.
Jha A. K. Prasad K. Int. J. Green Nanotechnol. 2011;3:92–97. doi: 10.1080/19430892.2011.574560. DOI
Castro M. E. Cottet L. Castillo A. Mater. Lett. 2014;115:42–44. doi: 10.1016/j.matlet.2013.10.020. DOI
Khalil M. M. H. Ismail E. H. El-Magdoub F. Arabian J. Chem. 2012;5:431–437. doi: 10.1016/j.arabjc.2010.11.011. DOI
Dzimitrowicz A. Jamróz P. diCenzo G. C. Sergiel I. Kozlecki T. Pohl P. Arabian J. Chem. 2019;12:4118–4130. doi: 10.1016/j.arabjc.2016.04.004. DOI
Ramakrishna M. Rajesh Babu D. Gengan R. M. Chandra S. Nageswara Rao G. J. Nanostruct. Chem. 2016;6:1–13. doi: 10.1007/s40097-015-0173-y. DOI
Fernando L. M. Merca F. E. Paterno E. S. Philipp. Agric. Scientist. 2013;96:129–136.
Gonnelli C., Giordano C., Fontani U., Salvatici M. C. and Ristori S., in Advances in Bionanomaterials: Selected Papers from the 2nd Workshop in Bionanomaterials, BIONAM 2016, October 4-7, 2016, Salerno, Italy, ed. S. Piotto, F. Rossi, S. Concilio, E. Reverchon and G. Cattaneo, Springer International Publishing, Cham, 2018, pp. 155–164, 10.1007/978-3-319-62027-5_14 DOI
Bogireddy N. Pal U. Gomez L. M. Agarwal V. RSC Adv. 2018;8:24819–24826. doi: 10.1039/C8RA04332A. PubMed DOI PMC