CeO2 foam-like nanostructure: biosynthesis and their efficient removal of hazardous dye
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33136201
DOI
10.1007/s00449-020-02464-9
PII: 10.1007/s00449-020-02464-9
Knihovny.cz E-zdroje
- Klíčová slova
- Dye, Nanostructured cerium oxide, Pinus halepensis,
- MeSH
- barvicí látky chemie izolace a purifikace MeSH
- borovice MeSH
- cer chemie MeSH
- nanostruktury chemie MeSH
- poréznost MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- barvicí látky MeSH
- cer MeSH
- ceric oxide MeSH Prohlížeč
In this study, CeO2 (cerium oxide) nanoparticles were synthesized using Pinus halepensis pollen and were characterized by field emission scanning electron microscopy (FESEM), powder X-ray diffraction (PXRD) and Raman spectroscopy. The results showed that the ensuing CeO2 nanostructures, ranging in size from 5 to 25 nm, had high porosity. Synthesized CeO2 showed the effective catalytic activity towards the photocatalytic removal of dyes. In this work, the photocatalytic activity to removal dye (methyl violet 2B), in the absence of UV radiation, using cerium dioxide nanoparticles (CeO2-NP) was determined. In this research, four main factors such as effect on color, concentration and pH were examined and maximum %R was obtained about was 97% in 75 min in presence of 50 mg of hydrogen peroxide.
Medical Ethics and Law Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
Noncommunicable Diseases Research Center Bam University of Medical Sciences Bam Iran
Regional Centre of Advanced Technologies and Materials Palacky University Olomouc Czech Republic
School of Medicine Kerman University of Medical Sciences Kerman Iran
Student Research Committee School of Public Health Bam University of Medical Sciences Bam Iran
Zobrazit více v PubMed
Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49 DOI
Berkessa YW, Yan B, Li T, Jegatheesan V, Zhang Y (2020) Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: performance and microbial dynamics. Chemosphere 238:124539 DOI
Bhatti HN, Safa Y, Yakout SM, Shair OH, Iqbal M, Nazir A (2020) Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. Int J Biol Macromol 150:861–870 DOI
Bouasla C, Samar ME-H, Ismail F (2010) Degradation of methyl violet 6B dye by the Fenton process. Desalination 254:35–41 DOI
Foong LK et al (2020) Applications of nano-materials in diverse dentistry regimes RSC. Advances 10:15430–15460. https://doi.org/10.1039/D0RA00762E DOI
Gao Z, Liu S, Wang Z, Yu S (2020) Composite NF membranes with anti-bacterial activity prepared by electrostatic self-assembly for dye recycle. J Taiwan Inst Chem Eng 106:34–50 DOI
Geier J, Lessmann H (2020) Leather industry. In: John S, Johansen J, Rustemeyer T, Elsner P, Maibach H (eds) Kanerva’s Occupational Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-68617-2_167 DOI
Heidari MR, Malakootian M (2018) Removal of cyanide from synthetic wastewater by combined coagulation and advanced oxidation process. Desalin Water Treat 133:204–211 DOI
Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S (2019) Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J Photochem Photobiol B: Biol 190:8–20. https://doi.org/10.1016/j.jphotobiol.2018.11.001 DOI
Karthik K, Vijayalakshmi S, Phuruangrat A, Revathi V, Verma U (2019) Multifunctional applications of microwave-assisted biogenic TiO2 nanoparticles. J Cluster Sci. https://doi.org/10.1007/s10876-019-01556-1 DOI
Khan AU et al (2018) An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. J Photochem Photobiol B: Biol 183:367–373. https://doi.org/10.1016/j.jphotobiol.2018.05.007 DOI
Khan FU et al (2017) Visible light inactivation of E. coli, cytotoxicity and ROS determination of biochemically capped gold nanoparticles. Microb Pathog 107:419–424. https://doi.org/10.1016/j.micpath.2017.04.024 PubMed DOI
Khatami M, Iravani S, Varma RS, Mosazade F, Darroudi M, Borhani F (2019) Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-019-02193-8 PubMed DOI
Khosravi A, Karimi M, Ebrahimi H, Fallah N (2020) Sequencing batch reactor/nanofiltration hybrid method for water recovery from textile wastewater contained phthalocyanine dye and anionic surfactant. J Environ Chem Eng 8:103701 DOI
Konstantinou I, Albanis T (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248 DOI
Leite R et al (2020) Photocatalytic degradation of dyes and microorganism inactivation using solution blow spun silver-modified titania fibers. Ceramics International 46(9):13482–13490. https://doi.org/10.1016/j.ceramint.2020.02.132 DOI
Luo X et al (2020) Efficient and stable catalysis of hollow Cu9S5 nanospheres in the Fenton-like degradation of organic dyes. J Hazard Mater 396:122735. https://doi.org/10.1016/j.jhazmat.2020.122735 PubMed DOI
Malakootian M, Gharaghani MA, Dehdarirad A, Khatami M, Ahmadian M, Heidari MR, Mahdizadeh H (2019) ZnO nanoparticles immobilized on the surface of stones to study the removal efficiency of 4-nitroaniline by the hybrid advanced oxidation process (UV/ZnO/O3). J Mol Struct 1176:766–776. https://doi.org/10.1016/j.molstruc.2018.09.033 DOI
Malakootian M, Khatami M, Mahdizadeh H, Nasiri A, Amiri Gharaghani M (2020) A study on the photocatalytic degradation of p-nitroaniline on glass plates by thermo-immobilized ZnO nanoparticle inorganic and nano-metal. Chemistry 50:124–135. https://doi.org/10.1080/24701556.2019.1662807 DOI
Miri A, Sarani M (2018) Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceram Int 44:12642–12647. https://doi.org/10.1016/j.ceramint.2018.04.063 DOI
Miri A, Sarani M, Hashemzadeh A, Mardani Z, Darroudi M (2018) Biosynthesis and cytotoxic activity of lead oxide nanoparticles. Green Chem Lett Rev 11:567–572. https://doi.org/10.1080/17518253.2018.1547926 DOI
Miri A, Sarani M, Khatami M (2020) Nickel-doped cerium oxide nanoparticles: biosynthesis, cytotoxicity and UV protection studies. RSC Advances 10:3967–3977. https://doi.org/10.1039/C9RA09076B DOI
Mittal A, Gajbe V, Mittal J (2008) Removal and recovery of hazardous triphenylmethane dye, methyl violet through adsorption over granulated waste materials. J Hazard Mater 150:364–375. https://doi.org/10.1016/j.jhazmat.2007.04.117 PubMed DOI
Mohamed WA, Ibrahem IA, El-Sayed A, Galal HR, Handal H, Mousa HA, Labib AA (2020) Zinc oxide quantum dots for textile dyes and real industrial wastewater treatment: solar photocatalytic activity, photoluminescence properties and recycling process. Adv Powder Technol 31:2555 DOI
Mortari B, Khan S, Wong A, Dutra RAF, Sotomayor MDPT (2020) Next generation of optodes coupling plastic antibody with optical fibers for selective quantification of Acid Green 16. Sens Actuators B: Chem 305:127553 DOI
Mortazavi Milani Z, Charbgoo F, Darroudi M (2017) Impact of physicochemical properties of cerium oxide nanoparticles on their toxicity effects. Ceram Int 43:14572–14581. https://doi.org/10.1016/j.ceramint.2017.08.177 DOI
Nasrollahzadeh M, Sajjadi M, Komber H, Khonakdar HA, Sajadi SM (2019) In situ green synthesis of Cu-Ni bimetallic nanoparticles supported on reduced graphene oxide as an effective and recyclable catalyst for the synthesis of N-benzyl-N-aryl-5-amino-1H-tetrazoles. Appl Organomet Chem 33:e4938 DOI
Nasrollahzadeh M, Sajjadi M, Varma RS (2019) A catalyst-free and expeditious general synthesis of N-benzyl-N-arylcyanamides under ultrasound irradiation at room temperature. Ultrason Sonochem 56:481–486. https://doi.org/10.1016/j.ultsonch.2019.04.038 PubMed DOI
Noorani B, Tabandeh F, Yazdian F, Soheili Z-S, Shakibaie M, Rahmani S (2018) Thin natural gelatin/chitosan nanofibrous scaffolds for retinal pigment epithelium cells. Int J Polymer Mater Polymer Biomater 67:754–763. https://doi.org/10.1080/00914037.2017.1362639 DOI
Nozohouri S, Salehi R, Ghanbarzadeh S, Adibkia K, Hamishehkar H (2019) A multilayer hollow nanocarrier for pulmonary co-drug delivery of methotrexate and doxorubicin in the form of dry powder inhalation formulation. Mater Sci Eng, C 99:752–761. https://doi.org/10.1016/j.msec.2019.02.009 DOI
Patra AS, Ghorai S, Ghosh S, Mandal B, Pal S (2016) Selective removal of toxic anionic dyes using a novel nanocomposite derived from cationically modified guar gum and silica nanoparticles. J Hazard Mater 301:127–136 DOI
Rajaei M, Foroughi MM, Jahani S, Shahidi Zandi M, Hassani Nadiki H (2019) Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J Mol Liq 284:462–472. https://doi.org/10.1016/j.molliq.2019.03.135 DOI
Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M (2020) Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes. Bioprocess Biosyst Eng 43:1–10 DOI
Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M (2019) A review on metal-organic frameworks: synthesis and applications. TrAC Trends Anal Chem 118:401–425. https://doi.org/10.1016/j.trac.2019.06.007 DOI
Samadi MT, Zolghadrnasab H, Godini K, Poormohammadi A, Ahmadian M, Shanesaz S (2015) Kinetic and adsorption studies of reactive black 5 removal using multi -walled carbon nanotubes from aqueous solution. Der Pharma Chemica 7:267–274
Sarkar S, Banerjee A, Chakraborty N, Soren K, Chakraborty P, Bandopadhyay R (2020) Structural-functional analyses of textile dye degrading azoreductase, laccase and peroxidase: a comparative in silico study. Electron J Biotechnol 43:48–54 DOI
Shanmugam L, Ahire M, Nikam T (2020) Bacopa monnieri (L.) Pennell, a potential plant species for degradation of textile azo dyes. Environ Sci Pollut Res 27:1–15 DOI
Taghizadeh S-M, Berenjian A, Taghizadeh S, Ghasemi Y, Taherpour A, Sarmah AK, Ebrahiminezhad A (2019) One-put green synthesis of multifunctional silver iron core-shell nanostructure with antimicrobial and catalytic properties. Ind Crops Prod 130:230–236. https://doi.org/10.1016/j.indcrop.2018.12.085 DOI
Varma RS (2012) Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng 1:123–128. https://doi.org/10.1016/j.coche.2011.12.002 DOI
Zhang Q et al (2020) Co-metabolic degradation of refractory dye: a metagenomic and metaproteomic study. Environ Pollut 256:113456 DOI