The AAA+ ATPase RavA and its binding partner ViaA modulate E. coli aminoglycoside sensitivity through interaction with the inner membrane
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36127320
PubMed Central
PMC9489729
DOI
10.1038/s41467-022-32992-9
PII: 10.1038/s41467-022-32992-9
Knihovny.cz E-resources
- MeSH
- Adenosine Triphosphatases * metabolism MeSH
- Aminoglycosides * pharmacology MeSH
- Anti-Bacterial Agents pharmacology MeSH
- ATPases Associated with Diverse Cellular Activities metabolism MeSH
- Escherichia coli * drug effects enzymology MeSH
- Phospholipids MeSH
- Fumarates MeSH
- Gentamicins MeSH
- Oxygen metabolism MeSH
- Membrane Lipids MeSH
- Escherichia coli Proteins * metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphatases * MeSH
- Aminoglycosides * MeSH
- Anti-Bacterial Agents MeSH
- ATPases Associated with Diverse Cellular Activities MeSH
- Phospholipids MeSH
- Fumarates MeSH
- Gentamicins MeSH
- Oxygen MeSH
- Membrane Lipids MeSH
- Escherichia coli Proteins * MeSH
- RavA protein, E coli MeSH Browser
- ViaA protein, E coli MeSH Browser
Enteric bacteria have to adapt to environmental stresses in the human gastrointestinal tract such as acid and nutrient stress, oxygen limitation and exposure to antibiotics. Membrane lipid composition has recently emerged as a key factor for stress adaptation. The E. coli ravA-viaA operon is essential for aminoglycoside bactericidal activity under anaerobiosis but its mechanism of action is unclear. Here we characterise the VWA domain-protein ViaA and its interaction with the AAA+ ATPase RavA, and find that both proteins localise at the inner cell membrane. We demonstrate that RavA and ViaA target specific phospholipids and subsequently identify their lipid-binding sites. We further show that mutations abolishing interaction with lipids restore induced changes in cell membrane morphology and lipid composition. Finally we reveal that these mutations render E. coli gentamicin-resistant under fumarate respiration conditions. Our work thus uncovers a ravA-viaA-based pathway which is mobilised in response to aminoglycosides under anaerobiosis and engaged in cell membrane regulation.
Division of Structural Biology The Institute of Cancer Research London UK
EMBL Grenoble 71 Avenue des martyrs Grenoble France
European Synchrotron Radiation Facility 71 Avenue des martyrs Grenoble France
Unit for Structural Biology VIB UGent Center for Inflammation Research Ghent Belgium
Univ Grenoble Alpes CEA CNRS ISBG 71 Avenue des martyrs Grenoble France
See more in PubMed
Krause, K. M., Serio, A. W., Kane, T. R. & Connolly, L. E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 6, a027029 (2016). PubMed PMC
Girgis HS, Hottes AK, Tavazoie S. Genetic architecture of intrinsic antibiotic susceptibility. PLoS One. 2009;4:e5629. doi: 10.1371/journal.pone.0005629. PubMed DOI PMC
Wong, K. S. et al. The MoxR ATPase RavA and its cofactor ViaA interact with the NADH: Ubiquinone oxidoreductase I in Escherichia coli. PLoS One9, e85529 (2014). PubMed PMC
Baharoglu Z, Babosan A, Mazel D. Identification of genes involved in low aminoglycoside-induced SOS response in Vibrio cholerae: A role for transcription stalling and Mfd helicase. Nucleic Acids Res. 2014;42:2366–2379. doi: 10.1093/nar/gkt1259. PubMed DOI PMC
El Khoury, J., Zamarreño Beas, J., Huguenot, A., Py, B. & Barras, F. The AAA+ ATPase RavA-ViaA complex sensitizes Escherichia coli to aminoglycosides under anaerobic low energy conservation conditions. bioRxiv (2022). 10.1101/2021.08.03.455006
Snider J, et al. Formation of a distinctive complex between the inducible bacterial lysine decarboxylase and a novel AAA+ ATPase. J. Biol. Chem. 2006;281:1532–1546. doi: 10.1074/jbc.M511172200. PubMed DOI
El Bakkouri M, et al. Structure of RavA MoxR AAA+ protein reveals the design principles of a molecular cage modulating the inducible lysine decarboxylase activity. Proc. Natl Acad. Sci. USA. 2010;107:22499–22504. doi: 10.1073/pnas.1009092107. PubMed DOI PMC
Jessop M, et al. Structural insights into ATP hydrolysis by the MoxR ATPase RavA and the LdcI-RavA cage-like complex. Commun. Biol. 2020;3:46. doi: 10.1038/s42003-020-0772-0. PubMed DOI PMC
Puchades C, Sandate CR, Lander GC. The molecular principles governing the activity and functional diversity of AAA+ proteins. Nat. Rev. Mol. Cell Biol. 2020;21:43–58. doi: 10.1038/s41580-019-0183-6. PubMed DOI PMC
Jessop M, Felix J, Gutsche I. AAA+ ATPases: structural insertions under the magnifying glass. Curr. Opin. Struct. Biol. 2021;66:119–128. doi: 10.1016/j.sbi.2020.10.027. PubMed DOI PMC
Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol. Biol. Cell. 2002;13:3369–3387. doi: 10.1091/mbc.e02-05-0259. PubMed DOI PMC
Wong KS, Bhandari V, Janga SC, Houry WA. The RavA-ViaA Chaperone-Like System Interacts with and Modulates the Activity of the Fumarate Reductase Respiratory Complex. J. Mol. Biol. 2017;429:324–344. doi: 10.1016/j.jmb.2016.12.008. PubMed DOI
Minato Y, Fassio SR, Reddekopp RL, Häse CC. Inhibition of the sodium-translocating NADH-ubiquinone oxidoreductase [Na+-NQR] decreases cholera toxin production in Vibrio cholerae O1 at the late exponential growth phase. Microb. Pathog. 2019;66:36–39. doi: 10.1016/j.micpath.2013.12.002. PubMed DOI PMC
Malet H, et al. Assembly principles of a unique cage formed by hexameric and decameric E. coli proteins. Elife. 2014;3:e03653. doi: 10.7554/eLife.03653. PubMed DOI PMC
Jessop, M. et al. Supramolecular assembly of the Escherichia coli LdcI upon acid stress. Proc. Natl. Acad. Sci. USA. 118, e2014383118 (2021). PubMed PMC
Fischer H, de Oliveira Neto M, Napolitano HB, Polikarpov I, Craievich AF. Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J. Appl. Crystallogr. 2010;43:101–109. doi: 10.1107/S0021889809043076. DOI
Piiadov V, Ares de Araújo E, Oliveira Neto M, Craievich AF, Polikarpov I. SAXSMoW 2.0: Online calculator of the molecular weight of proteins in dilute solution from experimental SAXS data measured on a relative scale. Protein Sci. 2019;28:454–463. doi: 10.1002/pro.3528. PubMed DOI PMC
Rambo RP, Tainer JA. Accurate assessment of mass, models and resolution by small-angle scattering. Nature. 2013;496:477–481. doi: 10.1038/nature12070. PubMed DOI PMC
Sosnowski, P. et al. The CryoEM structure of the Saccharomyces cerevisiae ribosome maturation factor Rea1. Elife7, e39163 (2018). PubMed PMC
Chen Z, et al. Structural Insights into Mdn1, an Essential AAA Protein Required for Ribosome Biogenesis. Cell. 2018;175:822–834.e18. doi: 10.1016/j.cell.2018.09.015. PubMed DOI PMC
Tsai YCC, et al. Insights into the mechanism and regulation of the CbbQO-type Rubisco activase, a MoxR AAA+ ATPase. Proc. Natl Acad. Sci. USA. 2020;117:381–387. doi: 10.1073/pnas.1911123117. PubMed DOI PMC
Kandiah E, et al. Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA. Sci. Rep. 2016;6:24601. doi: 10.1038/srep24601. PubMed DOI PMC
Braun M, Bungert S, Friedrich T. Characterization of the Overproduced NADH Dehydrogenase Fragment of the NADH:Ubiquinone Oxidoreductase (Complex I) from Escherichia coli. Biochemistry. 1998;37:1861–1867. doi: 10.1021/bi971176p. PubMed DOI
Bungert S, Krafft B, Schlesinger R, Friedrich T. One-step purification of the NADH dehydrogenase fragment of the Escherichia coli complex I by means of Strep -tag affinity chromatography. FEBS Lett. 1999;460:207–211. doi: 10.1016/S0014-5793(99)01341-1. PubMed DOI
Léger C, et al. Enzyme electrokinetics: energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase. Biochemistry. 2001;40:11234–11245. doi: 10.1021/bi010889b. PubMed DOI
Virant D, et al. A peptide tag-specific nanobody enables high-quality labeling for dSTORM imaging. Nat. Commun. 2018;9:930. doi: 10.1038/s41467-018-03191-2. PubMed DOI PMC
Subach FV, et al. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat. Methods. 2009;6:153–159. doi: 10.1038/nmeth.1298. PubMed DOI PMC
Carranza G, et al. Cardiolipin plays an essential role in the formation of intracellular membranes in Escherichia coli. Biochim. Biophys. Acta - Biomembr. 2017;1859:1124–1132. doi: 10.1016/j.bbamem.2017.03.006. PubMed DOI
Jamin, N., Garrigos, M., Jaxel, C., Frelet-Barrand, A. & Orlowski, S. Ectopic neo-formed intracellular membranes in Escherichia coli: A response to membrane protein-induced stress involving membrane curvature and domains. Biomolecules8, 88 (2018). PubMed PMC
Royes J, Biou V, Dautin N, Tribet C, Miroux B. Inducible intracellular membranes: Molecular aspects and emerging applications. Microb. Cell Fact. 2020;19:1–26. doi: 10.1186/s12934-020-01433-x. PubMed DOI PMC
Mileykovskaya E, Dowhan W. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim. Biophys. Acta. 2009;1788:2084–2091. doi: 10.1016/j.bbamem.2009.04.003. PubMed DOI PMC
Renner LD, Weibel DB. Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc. Natl Acad. Sci. USA. 2011;108:6264–6269. doi: 10.1073/pnas.1015757108. PubMed DOI PMC
Shibuya I. Metabolic regulations and biological functions of phospholipids in Escherichia coli. Prog. Lipid Res. 1992;31:245–299. doi: 10.1016/0163-7827(92)90010-G. PubMed DOI
Hiraoka S, Matsuzaki H, Shibuya I. Active increase in cardiolipin synthesis in the stationary growth phase and its physiological significance in Escherichia coli. FEBS Lett. 1993;336:221–224. doi: 10.1016/0014-5793(93)80807-7. PubMed DOI
Tropp BE. Cardiolipin synthase from Escherichia coli. Biochim. Biophys. Acta. 1997;1348:192–200. doi: 10.1016/S0005-2760(97)00100-8. PubMed DOI
Munnik, T. & Wierzchowiecka, M. Lipid-Binding Analysis Using a Fat Blot Assay. In: (eds Munnik, T. & Heilmann, I.). Plant Lipid Signaling Protocols. Methods in Molecular Biology, vol 1009. 253–259 (Humana Press, Totowa, NJ, 2013) 10.1007/978-1-62703-401-2_23. PubMed
Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Tunyasuvunakool K, et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021;596:590–596. doi: 10.1038/s41586-021-03828-1. PubMed DOI PMC
Baek M, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373:871–876. doi: 10.1126/science.abj8754. PubMed DOI PMC
Szeto TH, Rowland SL, Rothfield LI, King GF. Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proc. Natl Acad. Sci. USA. 2002;99:15693–15698. doi: 10.1073/pnas.232590599. PubMed DOI PMC
Mileykovskaya E, et al. Effects of phospholipid composition on MinD-membrane interactions in vitro and in vivo. J. Biol. Chem. 2003;278:22193–22198. doi: 10.1074/jbc.M302603200. PubMed DOI
Salje J, van den Ent F, de Boer P, Löwe J. Direct Membrane Binding by Bacterial Actin MreB. Mol. Cell. 2011;43:478–487. doi: 10.1016/j.molcel.2011.07.008. PubMed DOI PMC
Corey, R. A. et al. Identification and assessment of cardiolipin interactions with E. coli inner membrane proteins. Sci. Adv. 7, eabh2217 (2021). PubMed PMC
Zamarreño Beas, J., Barras F., P. B. Study of molecular mechanisms allowing E. coli to resist against antibiotics. AIMS Microbiol4, 482–501 (2018).
Schlame M. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J. Lipid Res. 2008;49:1607–1620. doi: 10.1194/jlr.R700018-JLR200. PubMed DOI PMC
Jeucken A, Helms JB, Brouwers JF. Cardiolipin synthases of Escherichia coli have phospholipid class specific phospholipase D activity dependent on endogenous and foreign phospholipids. Biochim. Biophys. acta Mol. cell Biol. lipids. 2018;1863:1345–1353. doi: 10.1016/j.bbalip.2018.06.017. PubMed DOI
Ragolia L, Tropp BE. The effects of phosphoglycerides on Escherichia coli cardiolipin synthase. Biochim. Biophys. Acta. 1994;1214:323–332. doi: 10.1016/0005-2760(94)90080-9. PubMed DOI
Haines TH, Dencher NA. Cardiolipin: A proton trap for oxidative phosphorylation. FEBS Lett. 2002;528:35–39. doi: 10.1016/S0014-5793(02)03292-1. PubMed DOI
Arias-Cartin R, Grimaldi S, Arnoux P, Guigliarelli B, Magalon A. Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. Biochim. Biophys. Acta. 2012;1817:1937–1949. doi: 10.1016/j.bbabio.2012.04.005. PubMed DOI
Magalon A, Alberge F. Distribution and dynamics of OXPHOS complexes in the bacterial cytoplasmic membrane. Biochim. Biophys. Acta. 2016;1857:198–213. doi: 10.1016/j.bbabio.2015.10.015. PubMed DOI
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA. 2000;97:6640–6645. doi: 10.1073/pnas.120163297. PubMed DOI PMC
Miller, J. H. A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. (Plainview, NY, 1992).
Sternberg NL, Maurer R. Bacteriophage-mediated generalized transduction in Escherichia coli and Salmonella typhimurium. Methods Enzymol. 1991;204:18–43. doi: 10.1016/0076-6879(91)04004-8. PubMed DOI
Pernot P, et al. Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution. J. Synchrotron Radiat. 2013;20:660–664. doi: 10.1107/S0909049513010431. PubMed DOI PMC
Franke D, et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr. 2017;50:1212–1225. doi: 10.1107/S1600576717007786. PubMed DOI PMC
Guinier A. La diffraction des rayons X aux très petits angles: application à l’étude de phénomènes ultramicroscopiques. Ann. Phys. (Paris). 1939;11:161–237.
Petoukhov MV, et al. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 2012;45:342–350. doi: 10.1107/S0021889812007662. PubMed DOI PMC
Mertens N, Remaut E, Fiers W. Tight transcriptional control mechanism ensures stable high-level expression from T7 promoter-based expression plasmids. Biotechnol. (N. Y). 1995;13:175–179. PubMed
Ovesný M, Křížek P, Borkovec J, Svindrych Z, Hagen GM. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–2390. doi: 10.1093/bioinformatics/btu202. PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI
Jouhet J, Maréchal E, Bligny R, Joyard J, Block MA. Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett. 2003;544:63–68. doi: 10.1016/S0014-5793(03)00477-0. PubMed DOI
Jouhet J, et al. LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation. PLoS One. 2017;12:e0182423. doi: 10.1371/journal.pone.0182423. PubMed DOI PMC
Knapp, O. & Benz, R. Membrane Activity and Channel Formation of the Adenylate Cyclase Toxin (CyaA) of Bordetella pertussis in Lipid Bilayer Membranes. Toxins (Basel). 12, (2020). PubMed PMC