Nanoscale membrane curvature sorts lipid phases and alters lipid diffusion
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem
PubMed
36604961
PubMed Central
PMC10257122
DOI
10.1016/j.bpj.2023.01.001
PII: S0006-3495(23)00001-2
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána MeSH
- difuze MeSH
- lipidové dvojvrstvy * MeSH
- simulace molekulární dynamiky * MeSH
- teplota MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- lipidové dvojvrstvy * MeSH
The precise spatiotemporal control of nanoscale membrane shape and composition is the result of a complex interplay of individual and collective molecular behaviors. Here, we employed single-molecule localization microscopy and computational simulations to observe single-lipid diffusion and sorting in model membranes with varying compositions, phases, temperatures, and curvatures. Supported lipid bilayers were created over 50-nm-radius nanoparticles to mimic the size of naturally occurring membrane buds, such as endocytic pits and the formation of viral envelopes. The curved membranes recruited liquid-disordered lipid phases while altering the diffusion and sorting of tracer lipids. Disorder-preferring fluorescent lipids sorted to and experienced faster diffusion on the nanoscale curvature only when embedded in a membrane capable of sustaining lipid phase separation at low temperatures. The curvature-induced sorting and faster diffusion even occurred when the sample temperature was above the miscibility temperature of the planar membrane, implying that the nanoscale curvature could induce phase separation in otherwise homogeneous membranes. Further confirmation and understanding of these results are provided by continuum and coarse-grained molecular dynamics simulations with explicit and spontaneous curvature-phase coupling, respectively. The curvature-induced membrane compositional heterogeneity and altered dynamics were achieved only with a coupling of the curvature with a lipid phase separation. These cross-validating results demonstrate the complex interplay of lipid phases, molecular diffusion, and nanoscale membrane curvature that are critical for membrane functionality.
Department of Physics and Astronomy Wayne State University Detroit Michigan
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Pralle A., Keller P., et al. Hörber J.K. Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 2000;148:997–1008. PubMed PMC
Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–572. PubMed
Honerkamp-Smith A.R., Cicuta P., et al. Keller S.L. Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys. J. 2008;95:236–246. PubMed PMC
Shaw T.R., Ghosh S., Veatch S.L. Critical phenomena in plasma membrane organization and function. Annu. Rev. Phys. Chem. 2021;72:51–72. PubMed PMC
Fessler M.B., Parks J.S. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J. Immunol. 2011;187:1529–1535. PubMed PMC
Hurley J.H., Boura E., et al. Różycki B. Membrane budding. Cell. 2010;143:875–887. PubMed PMC
Simons K., Toomre D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 2000;1:31–39. PubMed
Waheed A.A., Freed E.O. The role of lipids in retrovirus replication. Viruses. 2010;2:1146–1180. PubMed PMC
Mukherjee S., Maxfield F.R. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic. 2000;1:203–211. PubMed
Parton R.G., Simons K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 2007;8:185–194. PubMed
Parton R.G., Del Pozo M.A., et al. Lamaze C. Caveolae: the FAQs. Traffic. 2020;21:181–185. PubMed PMC
Veatch S.L., Keller S.L. Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 2002;89:268101. PubMed
Veatch S.L., Keller S.L. Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta. 2005;1746:172–185. PubMed
Roux A., Cuvelier D., et al. Goud B. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 2005;24:1537–1545. PubMed PMC
Sorre B., Callan-Jones A., et al. Bassereau P. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc. Natl. Acad. Sci. USA. 2009;106:5622–5626. PubMed PMC
Tian A., Baumgart T. Sorting of lipids and proteins in membrane curvature gradients. Biophys. J. 2009;96:2676–2688. PubMed PMC
Heinrich M., Tian A., et al. Baumgart T. Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary. Proc. Natl. Acad. Sci. USA. 2010;107:7208–7213. PubMed PMC
Kamal M.M., Mills D., et al. Howard J. Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proc. Natl. Acad. Sci. USA. 2009;106:22245–22250. PubMed PMC
Ogunyankin M.O., Huber D.L., et al. Longo M.L. Nanoscale patterning of membrane-bound proteins formed through curvature-induced partitioning of phase-specific receptor lipids. Langmuir. 2013;29:6109–6115. PubMed
Yoon T.-Y., Jeong C., et al. Lee S.-D. Topographic control of lipid-raft reconstitution in model membranes. Nat. Mater. 2006;5:281–285. PubMed
Parthasarathy R., Yu C.h., Groves J.T. Curvature-modulated phase separation in lipid bilayer membranes. Langmuir. 2006;22:5095–5099. PubMed
Baumgart T., Das S., et al. Jenkins J.T. Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 2005;89:1067–1080. PubMed PMC
Waheed A.A., Freed E.O. Lipids and membrane microdomains in HIV-1 replication. Virus Res. 2009;143:162–176. PubMed PMC
Lipowsky R. Domain-induced budding of fluid membranes. Biophys. J. 1993;64:1133–1138. PubMed PMC
Cooke I.R., Deserno M. Coupling between lipid shape and membrane curvature. Biophys. J. 2006;91:487–495. PubMed PMC
Cheney P.P., Weisgerber A.W., et al. Knowles M.K. Single lipid molecule dynamics on supported lipid bilayers with membrane curvature. Membranes. 2017;7:15. PubMed PMC
Larsen J.B., Jensen M.B., et al. Stamou D. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat. Chem. Biol. 2015;11:192–194. PubMed
Dietrich C., Bagatolli L.A., et al. Gratton E. Lipid rafts reconstituted in model membranes. Biophys. J. 2001;80:1417–1428. PubMed PMC
Scherfeld D., Kahya N., Schwille P. Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol. Biophys. J. 2003;85:3758–3768. PubMed PMC
Filippov A., Orädd G., Lindblom G. Lipid lateral diffusion in ordered and disordered phases in raft mixtures. Biophys. J. 2004;86:891–896. PubMed PMC
Chiantia S., Ries J., et al. Schwille P. Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. ChemPhysChem. 2006;7:2409–2418. PubMed
Ge Y., Gao J., et al. Naumann C.A. Changes in cholesterol level alter integrin sequestration in raft-mimicking lipid mixtures. Biophys. J. 2018;114:158–167. PubMed PMC
Wu H.-M., Lin Y.-H., et al. Hsieh C.-L. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci. Rep. 2016;6:20542. PubMed PMC
Woodward X., Kelly C.V. Single-lipid dynamics in phase-separated supported lipid bilayers. Chem. Phys. Lipids. 2020;233:104991. PubMed
Gov N.S. Diffusion in curved fluid membranes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006;73:041918. PubMed
Domanov Y.A., Aimon S., et al. Bassereau P. Mobility in geometrically confined membranes. Proc. Natl. Acad. Sci. USA. 2011;108:12605–12610. PubMed PMC
Woodward X., Stimpson E.E., Kelly C.V. Single-lipid tracking on nanoscale membrane buds: the effects of curvature on lipid diffusion and sorting. Biochim. Biophys. Acta. Biomembr. 2018;1860:2064–2075. PubMed
Yesylevskyy S.O., Rivel T., Ramseyer C. The influence of curvature on the properties of the plasma membrane. Insights from atomistic molecular dynamics simulations. Sci. Rep. 2017;7:16078. PubMed PMC
Veatch S.L., Keller S.L. A closer look at the canonical ‘raft mixture’ in model membrane studies. Biophys. J. 2003;84:725–726. PubMed PMC
Gunderson R.S., Honerkamp-Smith A.R. Liquid-liquid phase transition temperatures increase when lipid bilayers are supported on glass. Biochim. Biophys. Acta. Biomembr. 2018;1860:1965–1971. PubMed
Kabbani A.M., Kelly C.V. The detection of nanoscale membrane bending with polarized localization microscopy. Biophys. J. 2017;113:1782–1794. PubMed PMC
Boyd K.J., May E.R. BUMPy: a model-independent tool for constructing lipid bilayers of varying curvature and composition. J. Chem. Theory Comput. 2018;14:6642–6652. PubMed PMC
Marrink S.J., Risselada H.J., et al. de Vries A.H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–7824. PubMed
Kabbani A.M., Raghunathan K., et al. Kelly C.V. Structured clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin. Proc. Natl. Acad. Sci. USA. 2020;117:14978–14986. PubMed PMC
Kabbani A.M., Woodward X., Kelly C.V. Revealing the effects of nanoscale membrane curvature on lipid mobility. Membranes. 2017;7:60. PubMed PMC
Bag N., Yap D.H.X., Wohland T. Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy. Biochim. Biophys. Acta. 2014;1838:802–813. PubMed
Sengupta P., Hammond A., et al. Baird B. Structural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles. Biochim. Biophys. Acta. 2008;1778:20–32. PubMed PMC
Tamm L.K. Lateral diffusion and fluorescence microscope studies on a monoclonal antibody specifically bound to supported phospholipid bilayers. Biochemistry. 1988;27:1450–1457. PubMed
Marrink S.J., Tieleman D.P. Perspective on the Martini model. Chem. Soc. Rev. 2013;42:6801–6822. PubMed
Fábián B., Javanainen M. CurD: a tool for diffusion analyses on curved membranes. ChemRxiv. 2021 https://chemrxiv.org/engage/chemrxiv/article-details/6162d1ad8b620d83564a965d Preprint at. PubMed
Lindblom G., Orädd G., Filippov A. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol: an NMR study of dynamics and lateral phase separation. Chem. Phys. Lipids. 2006;141:179–184. PubMed
Thallmair S., Javanainen M., et al. Marrink S.J. Nonconverged constraints cause artificial temperature gradients in lipid bilayer simulations. J. Phys. Chem. B. 2021;125:9537–9546. PubMed PMC
Callan-Jones A., Sorre B., Bassereau P. Curvature-Driven lipid sorting in biomembranes. Cold Spring Harb. Perspect. Biol. 2011;3:a004648. PubMed PMC
Jaqaman K., Loerke D., et al. Danuser G. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods. 2008;5:695–702. PubMed PMC
Kabbani A.M., Kelly C.V. Nanoscale membrane budding induced by CTxB and detected via polarized localization microscopy. Biophys. J. 2017;113:1795–1806. PubMed PMC
Ovesný M., Křížek P., et al. Hagen G.M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–2390. PubMed PMC
Lagerholm B.C., Andrade D.M., et al. Eggeling C. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS. J. Phys. D Appl. Phys. 2017;50:063001. PubMed PMC
Qian H., Sheetz M.P., Elson E.L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 1991;60:910–921. PubMed PMC
Berglund A.J. Statistics of camera-based single-particle tracking. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2010;82:011917. PubMed
Mobarak E., Javanainen M., et al. Vattulainen I. How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative. Biochim. Biophys. Acta. Biomembr. 2018;1860:2436–2445. PubMed
Machán R., Hof M. Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. Biochim. Biophys. Acta. 2010;1798:1377–1391. PubMed
Kelly C.V. Continuum-membrane-phase-curvature-simulation. 2022. https://github.com/CVKellyWSU/Continuum-membrane-phase-curvature-simulation GitHub.
Sadeghi S., Müller M., Vink R.L.C. Raft formation in lipid bilayers coupled to curvature. Biophys. J. 2014;107:1591–1600. PubMed PMC
Rangamani P. The many faces of membrane tension: challenges across systems and scales. Biochim. Biophys. Acta. Biomembr. 2022;1864:183897. PubMed
Abraham M.J., Murtola T., et al. Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.
Cino E.A., Tieleman D.P. Curvature-based sorting of eight lipid types in asymmetric buckled plasma membrane models. Biophys. J. 2022;121:2060–2068. PubMed PMC
Javanainen M. Simulations of POPC membranes of various shapes. 2020. https://zenodo.org/record/4196842 Zenodo. 4196842.
Javanainen M., Fabian B. Ternary lipid composition in a curved geometry. 2021. https://zenodo.org/record/4445375 Zenodo. 4445375.
Veatch S.L., Gawrisch K., Keller S.L. Closed-loop miscibility gap and quantitative tie-lines in ternary membranes containing diphytanoyl PC. Biophys. J. 2006;90:4428–4436. PubMed PMC
Diffusion Analyses along Mean and Gaussian-Curved Membranes with CurD