Nanoscale membrane curvature sorts lipid phases and alters lipid diffusion

. 2023 Jun 06 ; 122 (11) : 2203-2215. [epub] 20230104

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36604961
Odkazy

PubMed 36604961
PubMed Central PMC10257122
DOI 10.1016/j.bpj.2023.01.001
PII: S0006-3495(23)00001-2
Knihovny.cz E-zdroje

The precise spatiotemporal control of nanoscale membrane shape and composition is the result of a complex interplay of individual and collective molecular behaviors. Here, we employed single-molecule localization microscopy and computational simulations to observe single-lipid diffusion and sorting in model membranes with varying compositions, phases, temperatures, and curvatures. Supported lipid bilayers were created over 50-nm-radius nanoparticles to mimic the size of naturally occurring membrane buds, such as endocytic pits and the formation of viral envelopes. The curved membranes recruited liquid-disordered lipid phases while altering the diffusion and sorting of tracer lipids. Disorder-preferring fluorescent lipids sorted to and experienced faster diffusion on the nanoscale curvature only when embedded in a membrane capable of sustaining lipid phase separation at low temperatures. The curvature-induced sorting and faster diffusion even occurred when the sample temperature was above the miscibility temperature of the planar membrane, implying that the nanoscale curvature could induce phase separation in otherwise homogeneous membranes. Further confirmation and understanding of these results are provided by continuum and coarse-grained molecular dynamics simulations with explicit and spontaneous curvature-phase coupling, respectively. The curvature-induced membrane compositional heterogeneity and altered dynamics were achieved only with a coupling of the curvature with a lipid phase separation. These cross-validating results demonstrate the complex interplay of lipid phases, molecular diffusion, and nanoscale membrane curvature that are critical for membrane functionality.

Zobrazit více v PubMed

Pralle A., Keller P., et al. Hörber J.K. Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 2000;148:997–1008. PubMed PMC

Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–572. PubMed

Honerkamp-Smith A.R., Cicuta P., et al. Keller S.L. Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys. J. 2008;95:236–246. PubMed PMC

Shaw T.R., Ghosh S., Veatch S.L. Critical phenomena in plasma membrane organization and function. Annu. Rev. Phys. Chem. 2021;72:51–72. PubMed PMC

Fessler M.B., Parks J.S. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J. Immunol. 2011;187:1529–1535. PubMed PMC

Hurley J.H., Boura E., et al. Różycki B. Membrane budding. Cell. 2010;143:875–887. PubMed PMC

Simons K., Toomre D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 2000;1:31–39. PubMed

Waheed A.A., Freed E.O. The role of lipids in retrovirus replication. Viruses. 2010;2:1146–1180. PubMed PMC

Mukherjee S., Maxfield F.R. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic. 2000;1:203–211. PubMed

Parton R.G., Simons K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 2007;8:185–194. PubMed

Parton R.G., Del Pozo M.A., et al. Lamaze C. Caveolae: the FAQs. Traffic. 2020;21:181–185. PubMed PMC

Veatch S.L., Keller S.L. Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 2002;89:268101. PubMed

Veatch S.L., Keller S.L. Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta. 2005;1746:172–185. PubMed

Roux A., Cuvelier D., et al. Goud B. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 2005;24:1537–1545. PubMed PMC

Sorre B., Callan-Jones A., et al. Bassereau P. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc. Natl. Acad. Sci. USA. 2009;106:5622–5626. PubMed PMC

Tian A., Baumgart T. Sorting of lipids and proteins in membrane curvature gradients. Biophys. J. 2009;96:2676–2688. PubMed PMC

Heinrich M., Tian A., et al. Baumgart T. Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary. Proc. Natl. Acad. Sci. USA. 2010;107:7208–7213. PubMed PMC

Kamal M.M., Mills D., et al. Howard J. Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proc. Natl. Acad. Sci. USA. 2009;106:22245–22250. PubMed PMC

Ogunyankin M.O., Huber D.L., et al. Longo M.L. Nanoscale patterning of membrane-bound proteins formed through curvature-induced partitioning of phase-specific receptor lipids. Langmuir. 2013;29:6109–6115. PubMed

Yoon T.-Y., Jeong C., et al. Lee S.-D. Topographic control of lipid-raft reconstitution in model membranes. Nat. Mater. 2006;5:281–285. PubMed

Parthasarathy R., Yu C.h., Groves J.T. Curvature-modulated phase separation in lipid bilayer membranes. Langmuir. 2006;22:5095–5099. PubMed

Baumgart T., Das S., et al. Jenkins J.T. Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 2005;89:1067–1080. PubMed PMC

Waheed A.A., Freed E.O. Lipids and membrane microdomains in HIV-1 replication. Virus Res. 2009;143:162–176. PubMed PMC

Lipowsky R. Domain-induced budding of fluid membranes. Biophys. J. 1993;64:1133–1138. PubMed PMC

Cooke I.R., Deserno M. Coupling between lipid shape and membrane curvature. Biophys. J. 2006;91:487–495. PubMed PMC

Cheney P.P., Weisgerber A.W., et al. Knowles M.K. Single lipid molecule dynamics on supported lipid bilayers with membrane curvature. Membranes. 2017;7:15. PubMed PMC

Larsen J.B., Jensen M.B., et al. Stamou D. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat. Chem. Biol. 2015;11:192–194. PubMed

Dietrich C., Bagatolli L.A., et al. Gratton E. Lipid rafts reconstituted in model membranes. Biophys. J. 2001;80:1417–1428. PubMed PMC

Scherfeld D., Kahya N., Schwille P. Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol. Biophys. J. 2003;85:3758–3768. PubMed PMC

Filippov A., Orädd G., Lindblom G. Lipid lateral diffusion in ordered and disordered phases in raft mixtures. Biophys. J. 2004;86:891–896. PubMed PMC

Chiantia S., Ries J., et al. Schwille P. Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. ChemPhysChem. 2006;7:2409–2418. PubMed

Ge Y., Gao J., et al. Naumann C.A. Changes in cholesterol level alter integrin sequestration in raft-mimicking lipid mixtures. Biophys. J. 2018;114:158–167. PubMed PMC

Wu H.-M., Lin Y.-H., et al. Hsieh C.-L. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci. Rep. 2016;6:20542. PubMed PMC

Woodward X., Kelly C.V. Single-lipid dynamics in phase-separated supported lipid bilayers. Chem. Phys. Lipids. 2020;233:104991. PubMed

Gov N.S. Diffusion in curved fluid membranes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006;73:041918. PubMed

Domanov Y.A., Aimon S., et al. Bassereau P. Mobility in geometrically confined membranes. Proc. Natl. Acad. Sci. USA. 2011;108:12605–12610. PubMed PMC

Woodward X., Stimpson E.E., Kelly C.V. Single-lipid tracking on nanoscale membrane buds: the effects of curvature on lipid diffusion and sorting. Biochim. Biophys. Acta. Biomembr. 2018;1860:2064–2075. PubMed

Yesylevskyy S.O., Rivel T., Ramseyer C. The influence of curvature on the properties of the plasma membrane. Insights from atomistic molecular dynamics simulations. Sci. Rep. 2017;7:16078. PubMed PMC

Veatch S.L., Keller S.L. A closer look at the canonical ‘raft mixture’ in model membrane studies. Biophys. J. 2003;84:725–726. PubMed PMC

Gunderson R.S., Honerkamp-Smith A.R. Liquid-liquid phase transition temperatures increase when lipid bilayers are supported on glass. Biochim. Biophys. Acta. Biomembr. 2018;1860:1965–1971. PubMed

Kabbani A.M., Kelly C.V. The detection of nanoscale membrane bending with polarized localization microscopy. Biophys. J. 2017;113:1782–1794. PubMed PMC

Boyd K.J., May E.R. BUMPy: a model-independent tool for constructing lipid bilayers of varying curvature and composition. J. Chem. Theory Comput. 2018;14:6642–6652. PubMed PMC

Marrink S.J., Risselada H.J., et al. de Vries A.H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–7824. PubMed

Kabbani A.M., Raghunathan K., et al. Kelly C.V. Structured clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin. Proc. Natl. Acad. Sci. USA. 2020;117:14978–14986. PubMed PMC

Kabbani A.M., Woodward X., Kelly C.V. Revealing the effects of nanoscale membrane curvature on lipid mobility. Membranes. 2017;7:60. PubMed PMC

Bag N., Yap D.H.X., Wohland T. Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy. Biochim. Biophys. Acta. 2014;1838:802–813. PubMed

Sengupta P., Hammond A., et al. Baird B. Structural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles. Biochim. Biophys. Acta. 2008;1778:20–32. PubMed PMC

Tamm L.K. Lateral diffusion and fluorescence microscope studies on a monoclonal antibody specifically bound to supported phospholipid bilayers. Biochemistry. 1988;27:1450–1457. PubMed

Marrink S.J., Tieleman D.P. Perspective on the Martini model. Chem. Soc. Rev. 2013;42:6801–6822. PubMed

Fábián B., Javanainen M. CurD: a tool for diffusion analyses on curved membranes. ChemRxiv. 2021 https://chemrxiv.org/engage/chemrxiv/article-details/6162d1ad8b620d83564a965d Preprint at. PubMed

Lindblom G., Orädd G., Filippov A. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol: an NMR study of dynamics and lateral phase separation. Chem. Phys. Lipids. 2006;141:179–184. PubMed

Thallmair S., Javanainen M., et al. Marrink S.J. Nonconverged constraints cause artificial temperature gradients in lipid bilayer simulations. J. Phys. Chem. B. 2021;125:9537–9546. PubMed PMC

Callan-Jones A., Sorre B., Bassereau P. Curvature-Driven lipid sorting in biomembranes. Cold Spring Harb. Perspect. Biol. 2011;3:a004648. PubMed PMC

Jaqaman K., Loerke D., et al. Danuser G. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods. 2008;5:695–702. PubMed PMC

Kabbani A.M., Kelly C.V. Nanoscale membrane budding induced by CTxB and detected via polarized localization microscopy. Biophys. J. 2017;113:1795–1806. PubMed PMC

Ovesný M., Křížek P., et al. Hagen G.M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–2390. PubMed PMC

Lagerholm B.C., Andrade D.M., et al. Eggeling C. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS. J. Phys. D Appl. Phys. 2017;50:063001. PubMed PMC

Qian H., Sheetz M.P., Elson E.L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 1991;60:910–921. PubMed PMC

Berglund A.J. Statistics of camera-based single-particle tracking. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2010;82:011917. PubMed

Mobarak E., Javanainen M., et al. Vattulainen I. How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative. Biochim. Biophys. Acta. Biomembr. 2018;1860:2436–2445. PubMed

Machán R., Hof M. Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. Biochim. Biophys. Acta. 2010;1798:1377–1391. PubMed

Kelly C.V. Continuum-membrane-phase-curvature-simulation. 2022. https://github.com/CVKellyWSU/Continuum-membrane-phase-curvature-simulation GitHub.

Sadeghi S., Müller M., Vink R.L.C. Raft formation in lipid bilayers coupled to curvature. Biophys. J. 2014;107:1591–1600. PubMed PMC

Rangamani P. The many faces of membrane tension: challenges across systems and scales. Biochim. Biophys. Acta. Biomembr. 2022;1864:183897. PubMed

Abraham M.J., Murtola T., et al. Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

Cino E.A., Tieleman D.P. Curvature-based sorting of eight lipid types in asymmetric buckled plasma membrane models. Biophys. J. 2022;121:2060–2068. PubMed PMC

Javanainen M. Simulations of POPC membranes of various shapes. 2020. https://zenodo.org/record/4196842 Zenodo. 4196842.

Javanainen M., Fabian B. Ternary lipid composition in a curved geometry. 2021. https://zenodo.org/record/4445375 Zenodo. 4445375.

Veatch S.L., Gawrisch K., Keller S.L. Closed-loop miscibility gap and quantitative tie-lines in ternary membranes containing diphytanoyl PC. Biophys. J. 2006;90:4428–4436. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Diffusion Analyses along Mean and Gaussian-Curved Membranes with CurD

. 2024 Mar 21 ; 15 (11) : 3214-3220. [epub] 20240314

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace