Liquid-Phase Exfoliation of Bismuth Telluride Iodide (BiTeI): Structural and Optical Properties of Single-/Few-Layer Flakes
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
35876692
PubMed Central
PMC9354013
DOI
10.1021/acsami.2c07704
Knihovny.cz E-resources
- Keywords
- Rashba effect, liquid-phase exfoliation, nonlinear optics, second-harmonic generation, two-dimensional materials,
- Publication type
- Journal Article MeSH
Bismuth telluride halides (BiTeX) are Rashba-type crystals with several potential applications ranging from spintronics and nonlinear optics to energy. Their layered structures and low cleavage energies allow their production in a two-dimensional form, opening the path to miniaturized device concepts. The possibility to exfoliate bulk BiTeX crystals in the liquid represents a useful tool to formulate a large variety of functional inks for large-scale and cost-effective device manufacturing. Nevertheless, the exfoliation of BiTeI by means of mechanical and electrochemical exfoliation proved to be challenging. In this work, we report the first ultrasonication-assisted liquid-phase exfoliation (LPE) of BiTeI crystals. By screening solvents with different surface tension and Hildebrandt parameters, we maximize the exfoliation efficiency by minimizing the Gibbs free energy of the mixture solvent/BiTeI crystal. The most effective solvents for the BiTeI exfoliation have a surface tension close to 28 mN m-1 and a Hildebrandt parameter between 19 and 25 MPa0.5. The morphological, structural, and chemical properties of the LPE-produced single-/few-layer BiTeI flakes (average thickness of ∼3 nm) are evaluated through microscopic and optical characterizations, confirming their crystallinity. Second-harmonic generation measurements confirm the non-centrosymmetric structure of both bulk and exfoliated materials, revealing a large nonlinear optical response of BiTeI flakes due to the presence of strong quantum confinement effects and the absence of typical phase-matching requirements encountered in bulk nonlinear crystals. We estimated a second-order nonlinearity at 0.8 eV of |χ(2)| ∼ 1 nm V-1, which is 10 times larger than in bulk BiTeI crystals and is of the same order of magnitude as in other semiconducting monolayers (e.g., MoS2).
BeDimensional S p A via Lungotorrente Secca 30R 16163 Genova Italy
Department of Physics University of Calabria Via P Bucci cubo 31 C Rende Cosenza 87036 Italy
Dipartimento di Fisica Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
Functional Nanosystems Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy
Graphene Labs Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy
Nanochemistry Department Istituto Italiano di Tecnologia via Morego 30 Genova 16163 Italy
See more in PubMed
Ishizaka K.; Bahramy M. S.; Murakawa H.; Sakano M.; Shimojima T.; Sonobe T.; Koizumi K.; Shin S.; Miyahara H.; Kimura A.; Miyamoto K.; Okuda T.; Namatame H.; Taniguchi M.; Arita R.; Nagaosa N.; Kobayashi K.; Murakami Y.; Kumai R.; Kaneko Y.; Onose Y.; Tokura Y. Giant Rashba-Type Spin Splitting in Bulk BiTeI. Nat. Mater. 2011, 10, 521–526. 10.1038/nmat3051. PubMed DOI
Bahramy M. S.; Arita R.; Nagaosa N. Origin of Giant Bulk Rashba Splitting: Application to BiTeI. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 041202.10.1103/physrevb.84.041202. DOI
Landolt G.; Eremeev S. V.; Tereshchenko O. E.; Muff S.; Slomski B.; Kokh K. A.; Kobayashi M.; Schmitt T.; Strocov V. N.; Osterwalder J.; Chulkov E. V.; Hugo Dil J. Bulk and Surface Rashba Splitting in Single Termination BiTeCl. New J. Phys. 2013, 15, 085022.10.1088/1367-2630/15/8/085022. DOI
Chen F.; Zhao D.; Xiang Z. J.; Shang C.; Luo X. G.; Pan B. Y.; Li S. Y.; Wu T.; Chen X. H. Quantum Oscillations in Rashba Semiconductor BiTeCl. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 201202.10.1103/physrevb.90.201202. DOI
Chen Y. L.; Kanou M.; Liu Z. K.; Zhang H. J.; Sobota J. A.; Leuenberger D.; Mo S. K.; Zhou B.; Yang S.-L.; Kirchmann P. S.; Lu D. H.; Moore R. G.; Hussain Z.; Shen Z. X.; Qi X. L.; Sasagawa T. Discovery of a Single Topological Dirac Fermion in the Strong Inversion Asymmetric Compound BiTeCl. Nat. Phys. 2013, 9, 704–708. 10.1038/nphys2768. DOI
Shevelkov A. V.; Dikarev E. V.; Shpanchenko R. V.; Popovkin B. A. Crystal Structures of Bismuth Tellurohalides BiTeX (X = Cl, Br, I) from X-Ray Powder Diffraction Data. J. Solid State Chem. 1995, 114, 379–384. 10.1006/jssc.1995.1058. DOI
Sakano M.; Miyawaki J.; Chainani A.; Takata Y.; Sonobe T.; Shimojima T.; Oura M.; Shin S.; Bahramy M. S.; Arita R.; Nagaosa N.; Murakawa H.; Kaneko Y.; Tokura Y.; Ishizaka K. Three-Dimensional Bulk Band Dispersion in Polar BiTeI with Giant Rashba-Type Spin Splitting. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 085204.10.1103/physrevb.86.085204. DOI
Lee J. S.; Schober G. A. H.; Bahramy M. S.; Murakawa H.; Onose Y.; Arita R.; Nagaosa N.; Tokura Y. Optical Response of Relativistic Electrons in the Polar BiTeI Semiconductor. Phys. Rev. Lett. 2011, 107, 117401.10.1103/physrevlett.107.117401. PubMed DOI
Martin C.; Mun E. D.; Berger H.; Zapf V. S.; Tanner D. B. Quantum Oscillations and Optical Conductivity in Rashba Spin-Splitting BiTeI. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 041104.10.1103/physrevb.87.041104. DOI
Crepaldi A.; Moreschini L.; Autès G.; Tournier-Colletta C.; Moser S.; Virk N.; Berger H.; Bugnon P.; Chang Y. J.; Kern K.; Bostwick A.; Rotenberg E.; Yazyev O. V.; Grioni M. Giant Ambipolar Rashba Effect in the Semiconductor BiTeI. Phys. Rev. Lett. 2012, 109, 096803.10.1103/PhysRevLett.109.096803. PubMed DOI
Eremeev S. V.; Nechaev I. A.; Koroteev Y. M.; Echenique P. M.; Chulkov E. V. Ideal Two-Dimensional Electron Systems with a Giant Rashba-Type Spin Splitting in Real Materials: Surfaces of Bismuth Tellurohalides. Phys. Rev. Lett. 2012, 108, 246802.10.1103/physrevlett.108.246802. PubMed DOI
Eremeev S. V.; Rusinov I. P.; Nechaev I. A.; Chulkov E. V. Rashba Split Surface States in BiTeBr. New J. Phys. 2013, 15, 075015.10.1088/1367-2630/15/7/075015. DOI
Eremeev S. V.; Nechaev I. A.; Chulkov E. V. Giant Rashba-Type Spin Splitting at Polar Surfaces of BiTeI. JETP L.ett 2012, 96, 437–444. 10.1134/s0021364012190071. PubMed DOI
Sakano M.; Bahramy M. S.; Katayama A.; Shimojima T.; Murakawa H.; Kaneko Y.; Malaeb W.; Shin S.; Ono K.; Kumigashira H.; Arita R.; Nagaosa N.; Hwang H. Y.; Tokura Y.; Ishizaka K. Strongly Spin-Orbit Coupled Two-Dimensional Electron Gas Emerging near the Surface of Polar Semiconductors. Phys. Rev. Lett. 2013, 110, 107204.10.1103/physrevlett.110.107204. PubMed DOI
Crepaldi A.; Cilento F.; Zacchigna M.; Zonno M.; Johannsen J. C.; Tournier-Colletta C.; Moreschini L.; Vobornik I.; Bondino F.; Magnano E.; Berger H.; Magrez A.; Bugnon P.; Autès G.; Yazyev O. V.; Grioni M.; Parmigiani F. Momentum and Photon Energy Dependence of the Circular Dichroic Photoemission in the Bulk Rashba Semiconductors BiTe X (X = I, Br, Cl). Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 125408.
Fiedler S.; El-Kareh L.; Eremeev S. V.; Tereshchenko O. E.; Seibel C.; Lutz P.; Kokh K. A.; Chulkov E. V.; Kuznetsova T. V.; Grebennikov V. I.; Bentmann H.; Bode M.; Reinert F. Defect and Structural Imperfection Effects on the Electronic Properties of BiTeI Surfaces. New J. Phys. 2014, 16, 075013.10.1088/1367-2630/16/7/075013. DOI
Butler C. J.; Yang H. H.; Hong J. Y.; Hsu S. H.; Sankar R.; Lu C. I.; Lu H. Y.; Yang K. H. O.; Shiu H. W.; Chen C. H.; Kaun C. C.; Shu G. J.; Chou F. C.; Lin M. T. Mapping Polarization Induced Surface Band Bending on the Rashba Semiconductor BiTeI. Nat. Commun. 2014, 5, 4066.10.1038/ncomms5066. PubMed DOI PMC
Monserrat B.; Vanderbilt D. Temperature Dependence of the Bulk Rashba Splitting in the Bismuth Tellurohalides. Phys. Rev. Mater. 2017, 1, 054201.10.1103/physrevmaterials.1.054201. DOI
Rusinov I. P.; Nechaev I. A.; Eremeev S. V.; Friedrich C.; Blügel S.; Chulkov E. V. Many-Body Effects on the Rashba-Type Spin Splitting in Bulk Bismuth Tellurohalides. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 205103.10.1103/physrevb.87.205103. DOI
Bychkov Y. A.; Rashba E. I. Properties of a 2D Electron Gas with Lifted Spectral Degeneracy. JETP L.ett 1984, 39, 78.
Zhu Z.; Cheng Y.; Schwingenschlögl U. Orbital-Dependent Rashba Coupling in Bulk BiTeCl and BiTeI. New J. Phys. 2013, 15, 023010.10.1088/1367-2630/15/2/023010. DOI
Maaß H.; Bentmann H.; Seibel C.; Tusche C.; Eremeev S. V.; Peixoto T. R. F.; Tereshchenko O. E.; Kokh K. A.; Chulkov E. V.; Kirschner J.; Reinert F. Spin-Texture Inversion in the Giant Rashba Semiconductor BiTeI. Nat. Commun. 2016, 7, 11621.10.1038/ncomms11621. PubMed DOI PMC
Landolt G.; Eremeev S. V.; Koroteev Y. M.; Slomski B.; Muff S.; Neupert T.; Kobayashi M.; Strocov V. N.; Schmitt T.; Aliev Z. S.; Babanly M. B.; Amiraslanov I. R.; Chulkov E. V.; Osterwalder J.; Dil J. H. Disentanglement of Surface and Bulk Rashba Spin Splittings in Noncentrosymmetric BiTeI. Phys. Rev. Lett. 2012, 109, 116403.10.1103/physrevlett.109.116403. PubMed DOI
Ye L.; Checkelsky J. G.; Kagawa F.; Tokura Y. Transport Signatures of Fermi Surface Topology Change in BiTeI. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 201104.10.1103/physrevb.91.201104. DOI
Ideue T.; Ye L.; Checkelsky J. G.; Murakawa H.; Kaneko Y.; Tokura Y. Thermoelectric Probe for Fermi Surface Topology in the Three-Dimensional Rashba Semiconductor BiTeI. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92, 115144.10.1103/physrevb.92.115144. DOI
Bell C.; Bahramy M. S.; Murakawa H.; Checkelsky J. G.; Arita R.; Kaneko Y.; Onose Y.; Tokunaga M.; Kohama Y.; Nagaosa N.; Tokura Y.; Hwang H. Y. Shubnikov–de Haas Oscillations in the Bulk Rashba Semiconductor BiTeI. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 081109.10.1103/physrevb.87.081109. DOI
Wang C.-R.; Tung J.-C.; Sankar R.; Hsieh C.-T.; Chien Y.-Y.; Guo G.-Y.; Chou F. C.; Lee W.-L. Magnetotransport in Copper-Doped Noncentrosymmetric BiTeI. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 081104.10.1103/physrevb.88.081104. DOI
Park J.; Jin K.-H.; Jo Y. J.; Choi E. S.; Kang W.; Kampert E.; Rhyee J.-S.; Jhi S.-H.; Kim J. S. Quantum Oscillation Signatures of Pressure-Induced Topological Phase Transition in BiTeI. Sci. Rep. 2015, 5, 15973.10.1038/srep15973. PubMed DOI PMC
Ideue T.; Checkelsky J. G.; Bahramy M. S.; Murakawa H.; Kaneko Y.; Nagaosa N.; Tokura Y. Pressure Variation of Rashba Spin Splitting toward Topological Transition in the Polar Semiconductor BiTeI. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 161107.10.1103/physrevb.90.161107. DOI
Bordács S.; Checkelsky J. G.; Murakawa H.; Hwang H. Y.; Tokura Y. Landau Level Spectroscopy of Dirac Electrons in a Polar Semiconductor with Giant Rashba Spin Splitting. Phys. Rev. Lett. 2013, 111, 166403.10.1103/PhysRevLett.111.166403. PubMed DOI
Ogawa N.; Bahramy M. S.; Murakawa H.; Kaneko Y.; Tokura Y. Magnetophotocurrent in BiTeI with Rashba Spin-Split Bands. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 035130.10.1103/physrevb.88.035130. DOI
Bahramy M. S.; Yang B.-J.; Arita R.; Nagaosa N. Emergence of Non-Centrosymmetric Topological Insulating Phase in BiTeI under Pressure. Nat. Commun. 2012, 3, 679.10.1038/ncomms1679. PubMed DOI
Qi Y.; Shi W.; Naumov P. G.; Kumar N.; Sankar R.; Schnelle W.; Shekhar C.; Chou F.-C.; Felser C.; Yan B.; Medvedev S. A. Topological Quantum Phase Transition and Superconductivity Induced by Pressure in the Bismuth Tellurohalide BiTeI. Adv. Mater. 2017, 29, 1605965.10.1002/adma.201605965. PubMed DOI
Jin M. L.; Zhang S. J.; Xing L. Y.; Li W. M.; Zhao G. Q.; Wang X. C.; Long Y. W.; Li X. D.; Bai H. Y.; Gu C. Z.; Jin C. Q. Pressure-Induced Superconductivity and Quantum Phase Transitions in the Rashba Material BiTeCl. J. Phys. Chem. Solids 2019, 128, 211–217. 10.1016/j.jpcs.2017.09.024. DOI
Rusinov I. P.; Menshchikova T. V.; Sklyadneva I. Y.; Heid R.; Bohnen K.-P.; Chulkov E. V. Pressure Effects on Crystal and Electronic Structure of Bismuth Tellurohalides. New J. Phys. 2016, 18, 113003.10.1088/1367-2630/18/11/113003. DOI
Crassee I.; Borondics F.; Tran M. K.; Autès G.; Magrez A.; Bugnon P.; Berger H.; Teyssier J.; Yazyev O. V.; Orlita M.; Akrap A. BiTeCl and BiTeBr: A Comparative High-Pressure Optical Study. Phys. Rev. B 2017, 95, 045201.10.1103/physrevb.95.045201. DOI
Chen Y.; Xi X.; Yim W.-L.; Peng F.; Wang Y.; Wang H.; Ma Y.; Liu G.; Sun C.; Ma C.; Chen Z.; Berger H. High-Pressure Phase Transitions and Structures of Topological Insulator BiTeI. J. Phys. Chem. C 2013, 117, 25677–25683. 10.1021/jp409824g. DOI
Tan L. Z.; Rappe A. M. Enhancement of the Bulk Photovoltaic Effect in Topological Insulators. Phys. Rev. Lett. 2016, 116, 237402.10.1103/physrevlett.116.237402. PubMed DOI
Koo H. C.; Kim S. B.; Kim H.; Park T.-E.; Choi J. W.; Kim K.-W.; Go G.; Oh J. H.; Lee D.-K.; Park E.-S.; Hong I.-S.; Lee K.-J. Rashba Effect in Functional Spintronic Devices. Adv. Mater. 2020, 32, 2002117.10.1002/adma.202002117. PubMed DOI
Klimovskikh I. I.; Shikin A. M.; Otrokov M. M.; Ernst A.; Rusinov I. P.; Tereshchenko O. E.; Golyashov V. A.; Sánchez-Barriga J.; Varykhalov A. Y.; Rader O.; Kokh K. A.; Chulkov E. V. Giant Magnetic Band Gap in the Rashba-Split Surface State of Vanadium-Doped BiTeI: A Combined Photoemission and Ab Initio Study. Sci. Rep. 2017, 7, 3353.10.1038/s41598-017-03507-0. PubMed DOI PMC
Kocsis M.; Zheliuk O.; Makk P.; Tóvári E.; Kun P.; Tereshchenko O. E.; Kokh K. A.; Taniguchi T.; Watanabe K.; Ye J.; Csonka S. In Situ Tuning of Symmetry-Breaking Induced Non-Reciprocity in Giant-Rashba Semiconductor BiTeBr. Phys. Rev. Res. 2021, 3, 033253.10.1103/physrevresearch.3.033253. DOI
Demkó L.; Schober G. A. H.; Kocsis V.; Bahramy M. S.; Murakawa H.; Lee J. S.; Kézsmárki I.; Arita R.; Nagaosa N.; Tokura Y. Enhanced Infrared Magneto-Optical Response of the Nonmagnetic Semiconductor BiTeI Driven by Bulk Rashba Splitting. Phys. Rev. Lett. 2012, 109, 167401.10.1103/PhysRevLett.109.167401. PubMed DOI
VanGennep D.; Maiti S.; Graf D.; Tozer S. W.; Martin C.; Berger H.; Maslov D. L.; Hamlin J. J. Pressure Tuning the Fermi Level through the Dirac Point of Giant Rashba Semiconductor BiTeI. J. Phys. Condens. Matter 2014, 26, 342202.10.1088/0953-8984/26/34/342202. PubMed DOI
Manchon A.; Koo H. C.; Nitta J.; Frolov S. M.; Duine R. A. New Perspectives for Rashba Spin–Orbit Coupling. Nat. Mater. 2015, 14, 871–882. 10.1038/nmat4360. PubMed DOI
Tsutsui K.; Murakami S. Spin-Torque Efficiency Enhanced by Rashba Spin Splitting in Three Dimensions. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 115201.10.1103/physrevb.86.115201. DOI
Kovács-Krausz Z.; Hoque A. M.; Makk P.; Szentpéteri B.; Kocsis M.; Fülöp B.; Yakushev M. V.; Kuznetsova T. V.; Tereshchenko O. E.; Kokh K. A.; Lukács I. E.; Taniguchi T.; Watanabe K.; Dash S. P.; Csonka S. Electrically Controlled Spin Injection from Giant Rashba Spin–Orbit Conductor BiTeBr. Nano L.ett 2020, 20, 4782–4791. PubMed PMC
Tournier-Colletta C.; Autès G.; Kierren B.; Bugnon P.; Berger H.; Fagot-Revurat Y.; Yazyev O. V.; Grioni M.; Malterre D. Atomic and Electronic Structure of a Rashba p – n Junction at the BiTeI Surface. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 085402.10.1103/physrevb.89.085402. DOI
Li X.; Sheng Y.; Wu L.; Hu S.; Yang J.; Singh D. J.; Yang J.; Zhang W. Defect-Mediated Rashba Engineering for Optimizing Electrical Transport in Thermoelectric BiTeI. npj Comput. Mater. 2020, 6, 107.10.1038/s41524-020-00378-4. DOI
Wu L.; Yang J.; Zhang T.; Wang S.; Wei P.; Zhang W.; Chen L.; Yang J. Enhanced Thermoelectric Performance in the Rashba Semiconductor BiTeI through Band Gap Engineering. J. Phys. Condens. Matter 2016, 28, 085801.10.1088/0953-8984/28/8/085801. PubMed DOI
Xin J.-Z.; Fu C.-G.; Shi W.-J.; Li G.-W.; Auffermann G.; Qi Y.-P.; Zhu T.-J.; Zhao X.-B.; Felser C. Synthesis and Thermoelectric Properties of Rashba Semiconductor BiTeBr with Intensive Texture. Rare Met. 2018, 37, 274–281. 10.1007/s12598-018-1027-9. PubMed DOI PMC
Wu L.; Yang J.; Wang S.; Wei P.; Yang J.; Zhang W.; Chen L. Two-Dimensional Thermoelectrics with Rashba Spin-Split Bands in Bulk BiTeI. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 195210.10.1103/physrevb.90.195210. DOI
Kim J.; Rabe K. M.; Vanderbilt D. Negative Piezoelectric Response of van Der Waals Layered Bismuth Tellurohalides. Phys. Rev. B 2019, 100, 104115.10.1103/physrevb.100.104115. DOI
Wu H.-J.; Yang H.-R.; Rosales-Guzmán C.; Gao W.; Shi B.-S.; Zhu Z.-H. Vectorial Nonlinear Optics: Type-II Second-Harmonic Generation Driven by Spin-Orbit-Coupled Fields. Phys. Rev. A 2019, 100, 053840.10.1103/physreva.100.053840. DOI
Antonatos N.; Kovalska E.; Mazánek V.; Veselý M.; Sedmidubský D.; Wu B.; Sofer Z. Electrochemical Exfoliation of Janus-like BiTeI Nanosheets for Electrocatalytic Nitrogen Reduction. ACS Appl. Nano Mater. 2021, 4, 590–599. 10.1021/acsanm.0c02860. DOI
Park T.; Hong J.; Shim J. H. Enhancement of Giant Rashba Splitting in BiTeI under Asymmetric Interlayer Interaction. J. Phys. Soc. Jpn. 2020, 89, 044701.10.7566/jpsj.89.044701. DOI
Novoselov K. S.; Mishchenko A.; Carvalho A.; Castro Neto A. H. 2D Materials and van Der Waals Heterostructures. Science 2016, 353, aac9439.10.1126/science.aac9439. PubMed DOI
Frisenda R.; Navarro-Moratalla E.; Gant P.; Pérez De Lara D.; Jarillo-Herrero P.; Gorbachev R. V.; Castellanos-Gomez A. Recent Progress in the Assembly of Nanodevices and van Der Waals Heterostructures by Deterministic Placement of 2D Materials. Chem. Soc. Rev. 2018, 47, 53–68. 10.1039/c7cs00556c. PubMed DOI
Sunku S. S.; Halbertal D.; Engelke R.; Yoo H.; Finney N. R.; Curreli N.; Ni G.; Tan C.; McLeod A. S.; Lo C. F. B.; Dean C. R.; Hone J. C.; Kim P.; Basov D. N. Dual-Gated Graphene Devices for Near-Field Nano-Imaging. Nano L.ett 2021, 21, 1688–1693. 10.1021/acs.nanolett.0c04494. PubMed DOI
Tajkov Z.; Visontai D.; Oroszlány L.; Koltai J. Uniaxial Strain Induced Topological Phase Transition in Bismuth–Tellurohalide–Graphene Heterostructures. Nanoscale 2019, 11, 12704–12711. 10.1039/c9nr04519h. PubMed DOI
Ma Y.; Dai Y.; Wei W.; Li X.; Huang B. Emergence of Electric Polarity in BiTeX (X = Br and I) Monolayers and the Giant Rashba Spin Splitting. Phys. Chem. Chem. Phys. 2014, 16, 17603.10.1039/c4cp01975j. PubMed DOI
Zhang C.; Wang S.; Zhang H.; Feng Y.; Tian W.; Yan Y.; Bian J.; Wang Y.; Jin S.; Zakeeruddin S. M.; Grätzel M.; Shi Y. Efficient Stable Graphene-Based Perovskite Solar Cells with High Flexibility in Device Assembling via Modular Architecture Design. Energy Environ. Sci. 2019, 12, 3585–3594. 10.1039/c9ee02391g. DOI
Das T.; Balatsky A. V. Engineering Three-Dimensional Topological Insulators in Rashba-Type Spin-Orbit Coupled Heterostructures. Nat. Commun. 2013, 4, 1972.10.1038/ncomms2972. PubMed DOI PMC
Tajkov Z.; Visontai D.; Oroszlány L.; Koltai J. Topological Phase Diagram of BiTeX–Graphene Hybrid Structures. Appl. Sci. 2019, 9, 4330.10.3390/app9204330. DOI
Nechaev I. A.; Eremeev S. V.; Krasovskii E. E.; Echenique P. M.; Chulkov E. V. Quantum Spin Hall Insulators in Centrosymmetric Thin Films Composed from Topologically Trivial BiTeI Trilayers. Sci. Rep. 2017, 7, 43666.10.1038/srep43666. PubMed DOI PMC
Safeer C. K.; Ingla-Aynés J.; Herling F.; Garcia J. H.; Vila M.; Ontoso N.; Calvo M. R.; Roche S.; Hueso L. E.; Casanova F. Room-Temperature Spin Hall Effect in Graphene/MoS 2 van Der Waals Heterostructures. Nano L.ett 2019, 19, 1074–1082. 10.1021/acs.nanolett.8b04368. PubMed DOI
Ghiasi T. S.; Kaverzin A. A.; Blah P. J.; van Wees B. J. Charge-to-Spin Conversion by the Rashba–Edelstein Effect in Two-Dimensional van Der Waals Heterostructures up to Room Temperature. Nano L.ett 2019, 19, 5959–5966. 10.1021/acs.nanolett.9b01611. PubMed DOI PMC
Benítez L. A.; Savero Torres W.; Sierra J. F.; Timmermans M.; Garcia J. H.; Roche S.; Costache M. V.; Valenzuela S. O. Tunable Room-Temperature Spin Galvanic and Spin Hall Effects in van Der Waals Heterostructures. Nat. Mater. 2020, 19, 170–175. PubMed
Guo S.-D.; Guo X.-S.; Liu Z.-Y.; Quan Y.-N. Large Piezoelectric Coefficients Combined with High Electron Mobilities in Janus Monolayer XTeI (X = Sb and Bi): A First-Principles Study. J. Appl. Phys. 2020, 127, 064302.10.1063/1.5134960. DOI
Stranks S. D.; Plochocka P. The Influence of the Rashba Effect. Nat. Mater. 2018, 17, 381–382. 10.1038/s41563-018-0067-8. PubMed DOI
Waldrop M. M. The chips are down for Moore’s law. Nature 2016, 530, 144–147. 10.1038/530144a. PubMed DOI
Bonaccorso F.; Sun Z. Solution Processing of Graphene, Topological Insulators and Other 2d Crystals for Ultrafast Photonics. Opt. Mater. Express 2014, 4, 63.10.1364/ome.4.000063. DOI
Bonaccorso F.; Sun Z.; Hasan T.; Ferrari A. C. Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4, 611–622. 10.1038/nphoton.2010.186. DOI
Björkman T.; Gulans A.; Krasheninnikov A. V.; Nieminen R. M. Van Der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Phys. Rev. Lett. 2012, 108, 235502.10.1103/PhysRevLett.108.235502. PubMed DOI
Bianca G.; Zappia M. I.; Bellani S.; Sofer Z.; Serri M.; Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Hartman T.; Leoncino L.; Sedmidubský D.; Pellegrini V.; Chiarello G.; Bonaccorso F. Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 48598–48613. 10.1021/acsami.0c14201. PubMed DOI PMC
Zappia M. I.; Bianca G.; Bellani S.; Serri M.; Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Bouša D.; Sedmidubský D.; Pellegrini V.; Sofer Z.; Cupolillo A.; Bonaccorso F. Solution-Processed GaSe Nanoflake-Based Films for Photoelectrochemical Water Splitting and Photoelectrochemical-Type Photodetectors. Adv. Funct. Mater. 2020, 30, 1909572.10.1002/adfm.201909572. DOI
Zacharia R.; Ulbricht H.; Hertel T. Interlayer Cohesive Energy of Graphite from Thermal Desorption of Polyaromatic Hydrocarbons. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 69, 155406.10.1103/physrevb.69.155406. DOI
Hajra D.; Sailus R.; Blei M.; Yumigeta K.; Shen Y.; Tongay S. Epitaxial Synthesis of Highly Oriented 2D Janus Rashba Semiconductor BiTeCl and BiTeBr Layers. ACS Nano 2020, 14, 15626–15632. 10.1021/acsnano.0c06434. PubMed DOI
Fülöp B.; Tajkov Z.; Pető J.; Kun P.; Koltai J.; Oroszlány L.; Tóvári E.; Murakawa H.; Tokura Y.; Bordács S.; Tapasztó L.; Csonka S. Exfoliation of Single Layer BiTeI Flakes. 2D Mater. 2018, 5, 031013.
Bonaccorso F.; Bartolotta A.; Coleman J. N.; Backes C. 2D-Crystal-Based Functional Inks. Adv. Mater. 2016, 28, 6136–6166. 10.1002/adma.201506410. PubMed DOI
Hu G.; Kang J.; Ng L. W. T.; Zhu X.; Howe R. C. T.; Jones C. G.; Hersam M. C.; Hasan T. Functional Inks and Printing of Two-Dimensional Materials. Chem. Soc. Rev. 2018, 47, 3265–3300. 10.1039/c8cs00084k. PubMed DOI
Bellani S.; Bartolotta A.; Agresti A.; Calogero G.; Grancini G.; Di Carlo A.; Kymakis E.; Bonaccorso F. Solution-Processed Two-Dimensional Materials for next-Generation Photovoltaics. Chem. Soc. Rev. 2021, 50, 11870–11965. 10.1039/d1cs00106j. PubMed DOI PMC
Jeong G. H.; Sasikala S. P.; Yun T.; Lee G. Y.; Lee W. J.; Kim S. O. Nanoscale Assembly of 2D Materials for Energy and Environmental Applications. Adv. Mater. 2020, 32, 1907006.10.1002/adma.201907006. PubMed DOI
Najafi L.; Bellani S.; Zappia M. I.; Serri M.; Oropesa-Nuñez R.; Bagheri A.; Beydaghi H.; Brescia R.; Pasquale L.; Shinde D. V.; Zuo Y.; Drago F.; Mosina K.; Sofer Z.; Manna L.; Bonaccorso F. Transition Metal Dichalcogenides as Catalysts for the Hydrogen Evolution Reaction: The Emblematic Case of “Inert” ZrSe 2 as Catalyst for Electrolyzers. Nano Sel. 2022, 3, 1069–1081. 10.1002/nano.202100364. DOI
Padmajan Sasikala S.; Lim J.; Kim I. H.; Jung H. J.; Yun T.; Han T. H.; Kim S. O. Graphene Oxide Liquid Crystals: A Frontier 2D Soft Material for Graphene-Based Functional Materials. Chem. Soc. Rev. 2018, 47, 6013–6045. 10.1039/c8cs00299a. PubMed DOI
Coleman J. N.; Lotya M.; O’Neill A.; Bergin S. D.; King P. J.; Khan U.; Young K.; Gaucher A.; De S.; Smith R. J.; Shvets I. V.; Arora S. K.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568–571. 10.1126/science.1194975. PubMed DOI
Hansen C. M.Hansen Solubility Parameters A User’s Handbook; CRC press, 2013.
Esau A.; Rio D.; Pellegrini V.; Sun H.; Buha J.; Dinh D. A.; Lago E.; Ansaldo A.; Capasso A.; Manna L.; Bonaccorso F.; Del Rio Castillo A. E.; Pellegrini V.; Sun H.; Buha J.; Dinh D. A.; Lago E.; Ansaldo A.; Capasso A.; Manna L.; Bonaccorso F. Exfoliation of Few-Layer Black Phosphorus in Low-Boiling-Point Solvents and Its Application in Li-Ion Batteries. Chem. Mater. 2018, 30, 506–516.
Garakani M. A.; Bellani S.; Pellegrini V.; Oropesa-Nuñez R.; Castillo A. E.; Abouali S.; Najafi L.; Martín-García B.; Ansaldo A.; Bondavalli P.; Demirci C.; Romano V.; Mantero E.; Marasco L.; Prato M.; Bracciale G.; Bonaccorso F. Scalable Spray-Coated Graphene-Based Electrodes for High-Power Electrochemical Double-Layer Capacitors Operating over a Wide Range of Temperature. Energy Storage Mater. 2021, 34, 1–11. 10.1016/j.ensm.2020.08.036. DOI
Hernandez Y.; Nicolosi V.; Lotya M.; Blighe F. M.; Sun Z.; De S.; McGovern I. T.; Holland B.; Byrne M.; Gun’Ko Y. K.; Boland J. J.; Niraj P.; Duesberg G.; Krishnamurthy S.; Goodhue R.; Hutchison J.; Scardaci V.; Ferrari A. C.; Coleman J. N. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3, 563–568. 10.1038/nnano.2008.215. PubMed DOI
Kumar M.; Gumber S.; Lahon S.; Jha P. K.; Mohan M. Third Harmonic Generation in Quantum Dot with Rashba Spin Orbit Interaction. Eur. Phys. J. B 2014, 87, 71.10.1140/epjb/e2014-40922-x. DOI
Lafalce E.; Amerling E.; Yu Z. G.; Sercel P. C.; Whittaker-Brooks L.; Vardeny Z. V. Rashba Splitting in Organic–Inorganic Lead–Halide Perovskites Revealed through Two-Photon Absorption Spectroscopy. Nat. Commun. 2022, 13, 483.10.1038/s41467-022-28127-9. PubMed DOI PMC
Seyler K. L.; Schaibley J. R.; Gong P.; Rivera P.; Jones A. M.; Wu S.; Yan J.; Mandrus D. G.; Yao W.; Xu X. Electrical Control of Second-Harmonic Generation in a WSe2 Monolayer Transistor. Nat. Nanotechnol. 2015, 10, 407–411. 10.1038/nnano.2015.73. PubMed DOI
Yin X.; Ye Z.; Chenet D. A.; Ye Y.; O’Brien K.; Hone J. C.; Zhang X. Edge Nonlinear Optics on a MoS 2 Atomic Monolayer. Science 2014, 344, 488–490. 10.1126/science.1250564. PubMed DOI
Wang H.; Qian X. Giant Optical Second Harmonic Generation in Two-Dimensional Multiferroics. Nano L.ett 2017, 17, 5027–5034. 10.1021/acs.nanolett.7b02268. PubMed DOI
Trovatello C.; Marini A.; Xu X.; Lee C.; Liu F.; Curreli N.; Manzoni C.; Dal Conte S.; Yao K.; Ciattoni A.; Hone J.; Zhu X.; Schuck P. J.; Cerullo G. Optical Parametric Amplification by Monolayer Transition Metal Dichalcogenides. Nat. Photonics 2021, 15, 6–10. 10.1038/s41566-020-00728-0. DOI
Khan A. R.; Zhang L.; Ishfaq K.; Ikram A.; Yildrim T.; Liu B.; Rahman S.; Lu Y. Optical Harmonic Generation in 2D Materials. Adv. Funct. Mater. 2022, 32, 1–35. 10.1002/adfm.202105259. DOI
Wen X.; Gong Z.; Li D. Nonlinear Optics of Two-Dimensional Transition Metal Dichalcogenides. Infomatics 2019, 1, 317–337. 10.1002/inf2.12024. DOI
Zappia M. I.; Bianca G.; Bellani S.; Curreli N.; Sofer Z.; Serri M.; Najafi L.; Piccinni M.; Oropesa-Nuñez R.; Marvan P.; Pellegrini V.; Kriegel I.; Prato M.; Cupolillo A.; Bonaccorso F. Two-Dimensional Gallium Sulfide Nanoflakes for UV-Selective Photoelectrochemical-Type Photodetectors. J. Phys. Chem. C 2021, 125, 11857–11866. 10.1021/acs.jpcc.1c03597. PubMed DOI PMC
Curreli N.; Serri M.; Zappia M. I.; Spirito D.; Bianca G.; Buha J.; Najafi L.; Sofer Z.; Krahne R.; Pellegrini V.; Bonaccorso F. Liquid-Phase Exfoliated Gallium Selenide for Light-Driven Thin-Film Transistors. Adv. Electron. Mater. 2021, 7, 2001080.10.1002/aelm.202001080. DOI
Del Rio Castillo A. E.; Pellegrini V.; Ansaldo A.; Ricciardella F.; Sun H.; Marasco L.; Buha J.; Dang Z.; Gagliani L.; Lago E.; Curreli N.; Gentiluomo S.; Palazon F.; Prato M.; Oropesa-Nuñez R.; Toth P. S.; Mantero E.; Crugliano M.; Gamucci A.; Tomadin A.; Polini M.; Bonaccorso F. High-Yield Production of 2D Crystals by Wet-Jet Milling. Mater. Horiz. 2018, 5, 890–904. 10.1039/c8mh00487k. DOI
Bellani S.; Petroni E.; Del Rio Castillo A. E.; Curreli N.; Martín-García B.; Oropesa-Nuñez R.; Prato M.; Bonaccorso F. Scalable Production of Graphene Inks via Wet-Jet Milling Exfoliation for Screen-Printed Micro-Supercapacitors. Adv. Funct. Mater. 2019, 29, 1807659.10.1002/adfm.201807659. DOI
Beydaghi H.; Bellani S.; Najafi L.; Oropesa-Nuñez R.; Bianca G.; Bagheri A.; Conticello I.; Martín-García B.; Kashefi S.; Serri M.; Liao L.; Sofer Z.; Pellegrini V.; Bonaccorso F. Sulfonated NbS 2 -Based Proton-Exchange Membranes for Vanadium Redox Flow Batteries. Nanoscale 2022, 14, 6152–6161. 10.1039/d1nr07872k. PubMed DOI
Backes C.; Abdelkader A. M.; Alonso C.; Andrieux-Ledier A.; Arenal R.; Azpeitia J.; Balakrishnan N.; Banszerus L.; et al. Production and Processing of Graphene and Related Materials. 2D Mater. 2020, 7, 22001.
Curreli N.; Serri M.; Spirito D.; Lago E.; Petroni E.; Martín-García B.; Politano A.; Gürbulak B.; Duman S.; Krahne R.; Pellegrini V.; Bonaccorso F. Liquid Phase Exfoliated Indium Selenide Based Highly Sensitive Photodetectors. Adv. Funct. Mater. 2020, 30, 1908427.10.1002/adfm.201908427. DOI
Maragó O. M.; Bonaccorso F.; Saija R.; Privitera G.; Gucciardi P. G.; Iatì M. A.; Calogero G.; Jones P. H.; Borghese F.; Denti P.; Nicolosi V.; Ferrari A. C. Brownian Motion of Graphene. ACS Nano 2010, 4, 7515.10.1021/nn1018126. PubMed DOI
Najafi L.; Oropesa-Nuñez R.; Bellani S.; Martín-García B.; Pasquale L.; Serri M.; Drago F.; Luxa J.; Sofer Z.; Sedmidubský D.; Brescia R.; Lauciello S.; Zappia M. I.; Shinde D. V.; Manna L.; Bonaccorso F. Topochemical Transformation of Two-Dimensional VSe 2 into Metallic Nonlayered VO 2 for Water Splitting Reactions in Acidic and Alkaline Media. ACS Nano 2022, 16, 351–367. 10.1021/acsnano.1c06662. PubMed DOI
Yang L.; Miklavcic S. J. Revised Kubelka–Munk Theory III A General Theory of Light Propagation in Scattering and Absorptive Media. J. Opt. Soc. Am. A 2005, 22, 1866.10.1364/josaa.22.001866. PubMed DOI
Najafi L.; Taheri B.; Martín-García B.; Bellani S.; Di Girolamo D.; Agresti A.; Oropesa-Nunìez R.; Pescetelli S.; Vesce L.; Calabrò E.; Prato M.; Del Rio Castillo A. E.; Di Carlo A.; Bonaccorso F. MoS2 Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH3NH3PbI3 Perovskite Solar Cell with an Efficiency of over 20. ACS Nano 2018, 12, 10736–10754. PubMed
Bonaccorso F.; Lombardo A.; Hasan T.; Sun Z.; Colombo L.; Ferrari A. C. Production and Processing of Graphene and 2d Crystals. Mater. Today 2012, 15, 564–589. 10.1016/s1369-7021(13)70014-2. DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Ansaldo A.; Prato M.; Del Rio Castillo A. E.; Bonaccorso F. Doped-MoSe2 Nanoflakes/3d Metal Oxide–Hydr(Oxy)Oxides Hybrid Catalysts for PH-Universal Electrochemical Hydrogen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1801764.10.1002/aenm.201801764. DOI
Venkatram S.; Kim C.; Chandrasekaran A.; Ramprasad R. Critical Assessment of the Hildebrand and Hansen Solubility Parameters for Polymers. J. Chem. Inf. Model. 2019, 59, 4188–4194. 10.1021/acs.jcim.9b00656. PubMed DOI
Barton A. F. M. Solubility Parameters. Chem. Rev. 1975, 75, 731–753. 10.1021/cr60298a003. DOI
Makhnev A. A.; Nomerovannaya L. V.; Kuznetsova T. V.; Tereshchenko O. E.; Kokh K. A. Optical Properties of BiTeI Semiconductor with a Strong Rashba Spin-Orbit Interaction. Opt. Spectrosc. 2014, 117, 764–768. 10.1134/s0030400x14110125. DOI
Boutinaud P. Revisiting the Spectroscopy of the Bi 3+ Ion in Oxide Compounds. Inorg. Chem. 2013, 52, 6028–6038. 10.1021/ic400382k. PubMed DOI
Blasse G.; Bril A. Investigations on Bi3+ -Activated Phosphors. J. Chem. Phys. 1968, 48, 217–222. 10.1063/1.1667905. DOI
Blasse G. The Ultraviolet Absorption Bands of Bi3+ and Eu3+ in Oxides. J. Solid State Chem. 1972, 4, 52–54. 10.1016/0022-4596(72)90131-4. DOI
Sklyadneva I. Y.; Heid R.; Bohnen K.-P.; Chis V.; Volodin V. A.; Kokh K. A.; Tereshchenko O. E.; Echenique P. M.; Chulkov E. V. Lattice Dynamics of Bismuth Tellurohalides. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 094302.10.1103/physrevb.86.094302. DOI
Tran M. K.; Levallois J.; Lerch P.; Teyssier J.; Kuzmenko A. B.; Autès G.; Yazyev O. V.; Ubaldini A.; Giannini E.; van der Marel D.; Akrap A. Infrared- and Raman-Spectroscopy Measurements of a Transition in the Crystal Structure and a Closing of the Energy Gap of BiTeI under Pressure. Phys. Rev. Lett. 2014, 112, 047402.10.1103/PhysRevLett.112.047402. PubMed DOI
Hristu R.; Stanciu S. G.; Tranca D. E.; Polychroniadis E. K.; Stanciu G. A. Identification of Stacking Faults in Silicon Carbide by Polarization-Resolved Second Harmonic Generation Microscopy. Sci. Rep. 2017, 7, 4870.10.1038/s41598-017-05010-y. PubMed DOI PMC
Cunha R.; Cadore A.; Ramos S. L. L. M.; Watanabe K.; Taniguchi T.; Kim S.; Solntsev A. S.; Aharonovich I.; Malard L. M. Second Harmonic Generation in Defective Hexagonal Boron Nitride. J. Phys. Condens. Matter 2020, 32, 19LT01.10.1088/1361-648x/ab6cbf. PubMed DOI
Kohsaka Y.; Kanou M.; Takagi H.; Hanaguri T.; Sasagawa T. Imaging Ambipolar Two-Dimensional Carriers Induced by the Spontaneous Electric Polarization of a Polar Semiconductor BiTeI. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 245312.10.1103/physrevb.91.245312. DOI
Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells