Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32960559
PubMed Central
PMC8011798
DOI
10.1021/acsami.0c14201
Knihovny.cz E-zdroje
- Klíčová slova
- germanium selenide (GeSe), hydrogen evolution reaction (HER), oxygen evolution reaction (OER), photocatalysts, two-dimensional materials, water splitting,
- Publikační typ
- časopisecké články MeSH
Photoelectrochemical (PEC) systems represent powerful tools to convert electromagnetic radiation into chemical fuels and electricity. In this context, two-dimensional (2D) materials are attracting enormous interest as potential advanced photo(electro)catalysts and, recently, 2D group-IVA metal monochalcogenides have been theoretically predicted to be water splitting photocatalysts. In this work, we use density functional theory calculations to theoretically investigate the photocatalytic activity of single-/few-layer GeSe nanoflakes for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in pH conditions ranging from 0 to 14. Our simulations show that GeSe nanoflakes with different thickness can be mixed in the form of nanoporous films to act as nanoscale tandem systems, in which the flakes, depending on their thickness, can operate as HER- and/or OER photocatalysts. On the basis of theoretical predictions, we report the first experimental characterization of the photo(electro)catalytic activity of single-/few-layer GeSe flakes in different aqueous media, ranging from acidic to alkaline solutions: 0.5 M H2SO4 (pH 0.3), 1 M KCl (pH 6.5), and 1 M KOH (pH 14). The films of the GeSe nanoflakes are fabricated by spray coating GeSe nanoflakes dispersion in 2-propanol obtained through liquid-phase exfoliation of synthesized orthorhombic (Pnma) GeSe bulk crystals. The PEC properties of the GeSe nanoflakes are used to design PEC-type photodetectors, reaching a responsivity of up to 0.32 AW-1 (external quantum efficiency of 86.3%) under 455 nm excitation wavelength in acidic electrolyte. The obtained performances are superior to those of several self-powered and low-voltage solution-processed photodetectors, approaching that of self-powered commercial UV-Vis photodetectors. The obtained results inspire the use of 2D GeSe in proof-of-concept water photoelectrolysis cells.
BeDimensional Societa per azioni via Albisola 121 16163 Genova Italy
CIC nanoGUNE 20018 Donostia San Sebastian Spain
Department of Materials Science and Engineering Uppsala University Box 534 75121 Uppsala Sweden
Department of Physics University of Calabria Via P Bucci cubo 31 C 87036 Rende Cosenza Italy
Electron Microscopy Facility Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy
Graphene Labs Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy
Zobrazit více v PubMed
Kim D.; Sakimoto K. K.; Hong D.; Yang P. Artificial Photosynthesis for Sustainable Fuel and Chemical Production. Angew. Chem., Int. Ed. 2015, 54 (11), 3259–3266. 10.1002/anie.201409116. PubMed DOI
Lewis N. S.; Nocera D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (43), 15729–15735. 10.1073/pnas.0603395103. PubMed DOI PMC
Crabtree G. W.; Lewis N. S. Solar Energy Conversion. Phys. Today 2007, 60 (3), 37–42. 10.1063/1.2718755. DOI
Chu S.; Fan S.; Wang Y.; Rossouw D.; Wang Y.; Botton G. A.; Mi Z. Tunable Syngas Production from CO2and H2O in an Aqueous Photoelectrochemical Cell. Angew. Chem., Int. Ed. 2016, 55 (46), 14262–14266. 10.1002/anie.201606424. PubMed DOI
Zhang H.; Chen G.; Bahnemann D. W. Photoelectrocatalytic Materials for Environmental Applications. J. Mater. Chem. 2009, 19 (29), 5089–5121. 10.1039/b821991e. DOI
Meng X.; Zhang Z.; Li X. Synergetic Photoelectrocatalytic Reactors for Environmental Remediation: A Review. J. Photochem. Photobiol., C 2015, 24, 83–101. 10.1016/j.jphotochemrev.2015.07.003. DOI
Daghrir R.; Drogui P.; Robert D. Photoelectrocatalytic Technologies for Environmental Applications. J. Photochem. Photobiol., A 2012, 238, 41–52. 10.1016/j.jphotochem.2012.04.009. DOI
Zhang B.; Guo L.-H. Highly Sensitive and Selective Photoelectrochemical DNA Sensor for the Detection of Hg2+ in Aqueous Solutions. Biosens. Bioelectron. 2012, 37 (1), 112–115. 10.1016/j.bios.2012.04.051. PubMed DOI
Yue Z.; Lisdat F.; Parak W. J.; Hickey S. G.; Tu L.; Sabir N.; Dorfs D.; Bigall N. C. Quantum-Dot-Based Photoelectrochemical Sensors for Chemical and Biological Detection. ACS Appl. Mater. Interfaces 2013, 5 (8), 2800–2814. 10.1021/am3028662. PubMed DOI
Shu J.; Tang D. Current Advances in Quantum-Dots-Based Photoelectrochemical Immunoassays. Chem. - Asian J. 2017, 12 (21), 2780–2789. 10.1002/asia.201701229. PubMed DOI
Zang Y.; Lei J.; Ju H. Principles and Applications of Photoelectrochemical Sensing Strategies Based on Biofunctionalized Nanostructures. Biosens. Bioelectron. 2017, 96, 8–16. 10.1016/j.bios.2017.04.030. PubMed DOI
Zhou J.; Chen L.; Wang Y.; He Y.; Pan X.; Xie E. An Overview on Emerging Photoelectrochemical Self-Powered Ultraviolet Photodetectors. Nanoscale 2016, 8 (1), 50–73. 10.1039/C5NR06167A. PubMed DOI
Tian W.; Wang Y.; Chen L.; Li L. Self-Powered Nanoscale Photodetectors. Small 2017, 13 (45), 1701848.10.1002/smll.201701848. PubMed DOI
Hosseini S. E.; Wahid M. A. Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renewable Sustainable Energy Rev. 2016, 57, 850–866. 10.1016/j.rser.2015.12.112. DOI
Dincer I.; Acar C. Review and Evaluation of Hydrogen Production Methods for Better Sustainability. Int. J. Hydrogen Energy 2015, 40 (34), 11094–11111. 10.1016/j.ijhydene.2014.12.035. DOI
Gregory D. P. The Hydrogen Economy. Sci. Am. 1973, 228 (1), 13–21. 10.1038/scientificamerican0173-13. PubMed DOI
Crabtree G. W.; Dresselhaus M. S.; Buchanan M. V. The Hydrogen Economy. Phys. Today 2004, 57 (12), 39–44. 10.1063/1.1878333. DOI
Chen K.; Wang S.; He C.; Zhu H.; Zhao H.; Guo D.; Chen Z.; Shen J.; Li P.; Liu A.; Li C.; Wu F.; Tang W. Photoelectrochemical Self-Powered Solar-Blind Photodetectors Based on Ga2O3 Nanorod Array/Electrolyte Solid/Liquid Heterojunctions with a Large Separation Interface of Photogenerated Carriers. ACS Appl. Nano Mater. 2019, 2 (10), 6169–6177. 10.1021/acsanm.9b00992. DOI
Chen D.; Wei L.; Meng L.; Wang D.; Chen Y.; Tian Y.; Yan S.; Mei L.; Jiao J.. High-Performance Self-Powered UV Detector Based on SnO2–TiO2 Nanomace Arrays. Nanoscale Res. Lett. 2018, 1310.1186/s11671-018-2501-x. PubMed DOI PMC
Wang B.; Huang Z.; Tang P.; Luo S.; Liu Y.; Li J.; Qi X. One-Pot Synthesized Bi 2 Te 3 /Graphene for a Self-Powered Photoelectrochemical-Type Photodetector. Nanotechnology 2020, 31 (11), 115201.10.1088/1361-6528/ab5970. PubMed DOI
Liu N.; Qiao H.; Xu K.; Xi Y.; Ren L.; Cheng N.; Cui D.; Qi X.; Xu X.; Hao W.; Dou S. X.; Du Y. Hydrogen Terminated Germanene for a Robust Self-Powered Flexible Photoelectrochemical Photodetector. Small 2020, 16 (23), 2000283.10.1002/smll.202000283. PubMed DOI
Li J.; Wu X.; Shirolkar M. M.; Li M.; Xu C.; Wang H. A High Performance ZnO Based Photoelectrochemical Cell Type UV Photodetector with [Co(Bpy)3]3+/2+ Electrolyte and PEDOT/ITO Counter Electrode. RSC Adv. 2017, 7 (31), 18987–18992. 10.1039/C7RA02091K. DOI
Bellani S.; Antognazza M. R.; Bonaccorso F. Carbon-Based Photocathode Materials for Solar Hydrogen Production. Adv. Mater. 2019, 31 (9), 1801446.10.1002/adma.201801446. PubMed DOI
Zhu S.; Wang D. Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Adv. Energy Mater. 2017, 7 (23), 1700841.10.1002/aenm.201700841. DOI
Lianos P. Review of Recent Trends in Photoelectrocatalytic Conversion of Solar Energy to Electricity and Hydrogen. Appl. Catal., B 2017, 210, 235–254. 10.1016/j.apcatb.2017.03.067. DOI
Faraji M.; Yousefi M.; Yousefzadeh S.; Zirak M.; Naseri N.; Jeon T. H.; Choi W.; Moshfegh A. Z. Two-Dimensional Materials in Semiconductor Photoelectrocatalytic Systems for Water Splitting. Energy Environ. Sci. 2019, 12 (1), 59–95. 10.1039/C8EE00886H. DOI
Li Y.; Li Y.-L.; Sa B.; Ahuja R. Review of Two-Dimensional Materials for Photocatalytic Water Splitting from a Theoretical Perspective. Catal. Sci. Technol. 2017, 7 (3), 545–559. 10.1039/C6CY02178F. DOI
Su T.; Shao Q.; Qin Z.; Guo Z.; Wu Z. Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catal. 2018, 8 (3), 2253–2276. 10.1021/acscatal.7b03437. DOI
Gan X.; Lei D.; Wong K.-Y. Two-Dimensional Layered Nanomaterials for Visible-Light-Driven Photocatalytic Water Splitting. Mater. Today Energy 2018, 10, 352–367. 10.1016/j.mtener.2018.10.015. DOI
Matsumoto Y.; Koinuma M.; Ida S.; Hayami S.; Taniguchi T.; Hatakeyama K.; Tateishi H.; Watanabe Y.; Amano S. Photoreaction of Graphene Oxide Nanosheets in Water. J. Phys. Chem. C 2011, 115 (39), 19280–19286. 10.1021/jp206348s. DOI
Yeh T.-F.; Cihlář J.; Chang C.-Y.; Cheng C.; Teng H. Roles of Graphene Oxide in Photocatalytic Water Splitting. Mater. Today 2013, 16 (3), 78–84. 10.1016/j.mattod.2013.03.006. DOI
Xiang Q.; Cheng B.; Yu J. Graphene-Based Photocatalysts for Solar-Fuel Generation. Angew. Chem., Int. Ed. 2015, 54 (39), 11350–11366. 10.1002/anie.201411096. PubMed DOI
Xie G.; Zhang K.; Guo B.; Liu Q.; Fang L.; Gong J. R. Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Adv. Mater. 2013, 25 (28), 3820–3839. 10.1002/adma.201301207. PubMed DOI
Naseri A.; Samadi M.; Pourjavadi A.; Moshfegh A. Z.; Ramakrishna S. Graphitic Carbon Nitride (g-C 3 N 4)-Based Photocatalysts for Solar Hydrogen Generation: Recent Advances and Future Development Directions. J. Mater. Chem. A 2017, 5 (45), 23406–23433. 10.1039/C7TA05131J. DOI
Jorge A. B.; Martin D. J.; Dhanoa M. T. S.; Rahman A. S.; Makwana N.; Tang J.; Sella A.; Corà F.; Firth S.; Darr J. A.; McMillan P. F. H2 and O2 Evolution from Water Half-Splitting Reactions by Graphitic Carbon Nitride Materials. J. Phys. Chem. C 2013, 117 (14), 7178–7185. 10.1021/jp4009338. DOI
Wang X.; Blechert S.; Antonietti M. Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catal. 2012, 2 (8), 1596–1606. 10.1021/cs300240x. DOI
Peng R.; Liang L.; Hood Z. D.; Boulesbaa A.; Puretzky A.; Ievlev A. V.; Come J.; Ovchinnikova O. S.; Wang H.; Ma C.; Chi M.; Sumpter B. G.; Wu Z. In-Plane Heterojunctions Enable Multiphasic Two-Dimensional (2D) MoS2 Nanosheets As Efficient Photocatalysts for Hydrogen Evolution from Water Reduction. ACS Catal. 2016, 6 (10), 6723–6729. 10.1021/acscatal.6b02076. DOI
Qi Y.; Xu Q.; Wang Y.; Yan B.; Ren Y.; Chen Z. CO2-Induced Phase Engineering: Protocol for Enhanced Photoelectrocatalytic Performance of 2D MoS2 Nanosheets. ACS Nano 2016, 10 (2), 2903–2909. 10.1021/acsnano.6b00001. PubMed DOI
Mahler B.; Hoepfner V.; Liao K.; Ozin G. A. Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2014, 136 (40), 14121–14127. 10.1021/ja506261t. PubMed DOI
Andoshe D. M.; Jeon J.-M.; Kim S. Y.; Jang H. W. Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting. Electron. Mater. Lett. 2015, 11 (3), 323–335. 10.1007/s13391-015-4402-9. DOI
Zhang Q.; Wang W.; Zhang J.; Zhu X.; Zhang Q.; Zhang Y.; Ren Z.; Song S.; Wang J.; Ying Z.; Wang R.; Qiu X.; Peng T.; Fu L. Highly Efficient Photocatalytic Hydrogen Evolution by ReS 2 via a Two-Electron Catalytic Reaction. Adv. Mater. 2018, 30 (23), 1707123.10.1002/adma.201707123. PubMed DOI
Liu H.; Xu B.; Liu J. M.; Yin J.; Miao F.; Duan C. G.; Wan X. G. Highly Efficient and Ultrastable Visible-Light Photocatalytic Water Splitting over ReS2. Phys. Chem. Chem. Phys. 2016, 18 (21), 14222–14227. 10.1039/C6CP01007E. PubMed DOI
Ida S.; Ishihara T. Recent Progress in Two-Dimensional Oxide Photocatalysts for Water Splitting. J. Phys. Chem. Lett. 2014, 5 (15), 2533–2542. 10.1021/jz5010957. PubMed DOI
Abe R.; Shinohara K.; Tanaka A.; Hara M.; Kondo J. N.; Domen K. Preparation of Porous Niobium Oxides by Soft-Chemical Process and Their Photocatalytic Activity. Chem. Mater. 1997, 9 (10), 2179–2184. 10.1021/cm970284v. DOI
Compton O. C.; Mullet C. H.; Chiang S.; Osterloh F. E. A Building Block Approach to Photochemical Water-Splitting Catalysts Based on Layered Niobate Nanosheets. J. Phys. Chem. C 2008, 112 (15), 6202–6208. 10.1021/jp711589z. DOI
Rahman M. Z.; Kwong C. W.; Davey K.; Qiao S. Z. 2D Phosphorene as a Water Splitting Photocatalyst: Fundamentals to Applications. Energy Environ. Sci. 2016, 9 (3), 709–728. 10.1039/C5EE03732H. DOI
Zhu M.; Osakada Y.; Kim S.; Fujitsuka M.; Majima T. Black Phosphorus: A Promising Two Dimensional Visible and near-Infrared-Activated Photocatalyst for Hydrogen Evolution. Appl. Catal., B 2017, 217 (217), 285–292. 10.1016/j.apcatb.2017.06.002. DOI
Hu W.; Lin L.; Zhang R.; Yang C.; Yang J. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons. J. Am. Chem. Soc. 2017, 139 (43), 15429–15436. 10.1021/jacs.7b08474. PubMed DOI
Sa B.; Li Y. L.; Qi J.; Ahuja R.; Sun Z. Strain Engineering for Phosphorene: The Potential Application as a Photocatalyst. J. Phys. Chem. C 2014, 118 (46), 26560–26568. 10.1021/jp508618t. DOI
Rupp C. J.; Chakraborty S.; Anversa J.; Baierle R. J.; Ahuja R. Rationalizing the Hydrogen and Oxygen Evolution Reaction Activity of Two-Dimensional Hydrogenated Silicene and Germanene. ACS Appl. Mater. Interfaces 2016, 8 (2), 1536–1544. 10.1021/acsami.5b11513. PubMed DOI
Guo Z.; Zhou J.; Zhu L.; Sun Z. MXene: A Promising Photocatalyst for Water Splitting. J. Mater. Chem. A 2016, 4 (29), 11446–11452. 10.1039/C6TA04414J. DOI
Liu J.; Li X. B.; Wang D.; Liu H.; Peng P.; Liu L. M. Single-Layer Group-IVB Nitride Halides as Promising Photocatalysts. J. Mater. Chem. A 2014, 2 (19), 6755–6761. 10.1039/c3ta15431a. DOI
Zhou J.; Sumpter B. G.; Kent P. R. C.; Huang J. A Novel and Functional Single-Layer Sheet of ZnSe. ACS Appl. Mater. Interfaces 2015, 7 (3), 1458–1464. 10.1021/am505655m. PubMed DOI
Sun Y.; Sun Z.; Gao S.; Cheng H.; Liu Q.; Piao J.; Yao T.; Wu C.; Hu S.; Wei S.; Xie Y. Fabrication of Flexible and Freestanding Zinc Chalcogenide Single Layers. Nat. Commun. 2012, 3 (1), 1057.10.1038/ncomms2066. PubMed DOI
Peng Q.; Xiong R.; Sa B.; Zhou J.; Wen C.; Wu B.; Anpo M.; Sun Z. Computational Mining of Photocatalysts for Water Splitting Hydrogen Production: Two-Dimensional InSe-Family Monolayers. Catal. Sci. Technol. 2017, 7 (13), 2744–2752. 10.1039/C7CY00090A. DOI
Cui Y.; Peng L.; Sun L.; Qian Q.; Huang Y. Two-Dimensional Few-Layer Group-III Metal Monochalcogenides as Effective Photocatalysts for Overall Water Splitting in the Visible Range. J. Mater. Chem. A 2018, 6 (45), 22768–22777. 10.1039/C8TA08103D. DOI
Zhuang H. L.; Hennig R. G. Single-Layer Group-III Monochalcogenide Photocatalysts for Water Splitting. Chem. Mater. 2013, 25 (15), 3232–3238. 10.1021/cm401661x. DOI
Zappia M. I.; Bianca G.; Bellani S.; Serri M.; Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Bouša D.; Sedmidubský D.; Pellegrini V.; Sofer Z.; Cupolillo A.; Bonaccorso F. Solution-Processed GaSe Nanoflake-Based Films for Photoelectrochemical Water Splitting and Photoelectrochemical-Type Photodetectors. Adv. Funct. Mater. 2020, 30 (10), 1909572.10.1002/adfm.201909572. DOI
Kishore M. R. A.; Ravindran P. Te. Doped Indium (II) Selenide Photocatalyst for Water Splitting: A First Principles Study. In AIP Conference Proceedings; 2017; Vol. 1832.
Li Z.; Qiao H.; Guo Z.; Ren X.; Huang Z.; Qi X.; Dhanabalan S. C.; Ponraj J. S.; Zhang D.; Li J.; Zhao J.; Zhong J.; Zhang H. High-Performance Photo-Electrochemical Photodetector Based on Liquid-Exfoliated Few-Layered InSe Nanosheets with Enhanced Stability. Adv. Funct. Mater. 2018, 28 (16), 1705237.10.1002/adfm.201705237. DOI
Chowdhury C.; Karmakar S.; Datta A. Monolayer Group IV-VI Monochalcogenides: Low-Dimensional Materials for Photocatalytic Water Splitting. J. Phys. Chem. C 2017, 121 (14), 7615–7624. 10.1021/acs.jpcc.6b12080. DOI
Lv X.; Wei W.; Sun Q.; Li F.; Huang B.; Dai Y. Two-Dimensional Germanium Monochalcogenides for Photocatalytic Water Splitting with High Carrier Mobility. Appl. Catal., B 2017, 217, 275–284. 10.1016/j.apcatb.2017.05.087. DOI
Sun L.; Cui Y.; Peng L.; Du J.; Wang S.; Huang Y. Two-Dimensional Blue-Phosphorene-Phase Germanium Monochalcogenide Photocatalysts for Water Splitting: From Ultraviolet to Visible Absorption. J. Catal. 2019, 373, 67–74. 10.1016/j.jcat.2019.03.031. DOI
Qiao M.; Chen Y.; Wang Y.; Li Y. The Germanium Telluride Monolayer: A Two Dimensional Semiconductor with High Carrier Mobility for Photocatalytic Water Splitting. J. Mater. Chem. A 2018, 6 (9), 4119–4125. 10.1039/C7TA10360C. DOI
Ji Y.; Yang M.; Dong H.; Hou T.; Wang L.; Li Y. Two-Dimensional Germanium Monochalcogenide Photocatalyst for Water Splitting under Ultraviolet, Visible to near-Infrared Light. Nanoscale 2017, 9 (25), 8608–8615. 10.1039/C7NR00688H. PubMed DOI
Zhu Y. L.; Yuan J. H.; Song Y. Q.; Wang S.; Xue K. H.; Xu M.; Cheng X. M.; Miao X. S. Two-Dimensional Silicon Chalcogenides with High Carrier Mobility for Photocatalytic Water Splitting. J. Mater. Sci. 2019, 54 (17), 11485–11496. 10.1007/s10853-019-03699-y. DOI
Li X.; Zuo X.; Jiang X.; Li D.; Cui B.; Liu D. Enhanced Photocatalysis for Water Splitting in Layered Tin Chalcogenides with High Carrier Mobility. Phys. Chem. Chem. Phys. 2019, 21 (14), 7559–7566. 10.1039/C9CP00088G. PubMed DOI
Ye Y.; Guo Q.; Liu X.; Liu C.; Wang J.; Liu Y.; Qiu J. Two-Dimensional GeSe as an Isostructural and Isoelectronic Analogue of Phosphorene: Sonication-Assisted Synthesis, Chemical Stability, and Optical Properties. Chem. Mater. 2017, 29 (19), 8361–8368. 10.1021/acs.chemmater.7b02784. DOI
Wu M.; Wei S.-H.; Huang L. Origin of Polymorphism of the Two-Dimensional Group-IV Monochalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96 (20), 205411.10.1103/PhysRevB.96.205411. DOI
Singh A. K.; Hennig R. G. Computational Prediction of Two-Dimensional Group-IV Mono-Chalcogenides. Appl. Phys. Lett. 2014, 105 (4), 04210310.1063/1.4891230. DOI
Gomes L. C.; Carvalho A. Phosphorene Analogues: Isoelectronic Two-Dimensional Group-IV Monochalcogenides with Orthorhombic Structure. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92 (8), 08540610.1103/PhysRevB.92.085406. DOI
Zhu Z.; Guan J.; Liu D.; Tománek D. Designing Isoelectronic Counterparts to Layered Group V Semiconductors. ACS Nano 2015, 9 (8), 8284–8290. 10.1021/acsnano.5b02742. PubMed DOI
Pletikosić I.; von Rohr F.; Pervan P.; Das P. K.; Vobornik I.; Cava R. J.; Valla T. Band Structure of the IV-VI Black Phosphorus Analog and Thermoelectric SnSe. Phys. Rev. Lett. 2018, 120 (15), 156403.10.1103/PhysRevLett.120.156403. PubMed DOI
Kamal C.; Chakrabarti A.; Ezawa M. Direct Band Gaps in Group IV-VI Monolayer Materials: Binary Counterparts of Phosphorene. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93 (12), 125428.10.1103/PhysRevB.93.125428. DOI
He H.; Orlando R.; Blanco M. A.; Pandey R.; Amzallag E.; Baraille I.; Rérat M. First-Principles Study of the Structural, Electronic, and Optical Properties of Ga2O3 in its monoclinic and hxagonal phases. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 74 (19), 195123.10.1103/PhysRevB.74.195123. DOI
Gu D.; Tao X.; Chen H.; Zhu W.; Ouyang Y.; Peng Q. Enhanced Photocatalytic Activity for Water Splitting of Blue-Phase GeS and GeSe Monolayers via Biaxial Straining. Nanoscale 2019, 11 (5), 2335–2342. 10.1039/C8NR08908F. PubMed DOI
Yang J. H.; Zhang Y.; Yin W. J.; Gong X. G.; Yakobson B. I.; Wei S. H. Two-Dimensional SiS Layers with Promising Electronic and Optoelectronic Properties: Theoretical Prediction. Nano Lett. 2016, 16 (2), 1110–1117. 10.1021/acs.nanolett.5b04341. PubMed DOI
Wiedemeier H.; Csillag F. J. The Thermal Expansion and High Temperature Transformation of SnS and SnSe. Z. Kristallogr. - Cryst. Mater. 1979, 149 (1–2), 17–29. 10.1524/zkri.1979.149.1-2.17. DOI
Dewandre A.; Hellman O.; Bhattacharya S.; Romero A. H.; Madsen G. K. H.; Verstraete M. J. Two-Step Phase Transition in SnSe and the Origins of Its High Power Factor from First Principles. Phys. Rev. Lett. 2016, 117 (27), 276601.10.1103/PhysRevLett.117.276601. PubMed DOI
Zhao L.-D.; Lo S.-H.; Zhang Y.; Sun H.; Tan G.; Uher C.; Wolverton C.; Dravid V. P.; Kanatzidis M. G. Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals. Nature 2014, 508 (7496), 373–377. 10.1038/nature13184. PubMed DOI
Ul Haq B.; AlFaify S.; Laref A.; Ahmed R.; Taib M. F. M. Dimensionality Reduction of Germanium Selenide for High-Efficiency Thermoelectric Applications. Ceram. Int. 2019, 45 (12), 15122–15127. 10.1016/j.ceramint.2019.04.253. DOI
Zhou X.; Hu X.; Zhou S.; Zhang Q.; Li H.; Zhai T. Ultrathin 2D GeSe 2 Rhombic Flakes with High Anisotropy Realized by Van Der Waals Epitaxy. Adv. Funct. Mater. 2017, 27 (47), 1703858.10.1002/adfm.201703858. DOI
von Rohr F. O.; Ji H.; Cevallos F. A.; Gao T.; Ong N. P.; Cava R. J. High-Pressure Synthesis and Characterization of β-GeSe—A Six-Membered-Ring Semiconductor in an Uncommon Boat Conformation. J. Am. Chem. Soc. 2017, 139 (7), 2771–2777. 10.1021/jacs.6b12828. PubMed DOI
Zhou J.; Zhang S.; Li J. Normal-to-Topological Insulator Martensitic Phase Transition in Group-IV Monochalcogenides Driven by Light. NPG Asia Mater. 2020, 12 (1), 2.10.1038/s41427-019-0188-9. DOI
Wang Z.; Wang J.; Zang Y.; Zhang Q.; Shi J.-A.; Jiang T.; Gong Y.; Song C.-L.; Ji S.-H.; Wang L.-L.; Gu L.; He K.; Duan W.; Ma X.; Chen X.; Xue Q.-K. Molecular Beam Epitaxy-Grown SnSe in the Rock-Salt Structure: An Artificial Topological Crystalline Insulator Material. Adv. Mater. 2015, 27 (28), 4150–4154. 10.1002/adma.201501676. PubMed DOI
Hu Z.-Y.; Li K.-Y.; Lu Y.; Huang Y.; Shao X.-H. High Thermoelectric Performances of Monolayer SnSe Allotropes. Nanoscale 2017, 9 (41), 16093–16100. 10.1039/C7NR04766E. PubMed DOI
Zhang S.; Liu S.; Huang S.; Cai B.; Xie M.; Qu L.; Zou Y.; Hu Z.; Yu X.; Zeng H. Structural and Electronic Properties of Atomically Thin Germanium Selenide Polymorphs. Sci. China Mater. 2015, 58 (12), 929–935. 10.1007/s40843-015-0107-5. DOI
Hu T.; Dong J. Two New Phases of Monolayer Group-IV Monochalcogenides and Their Piezoelectric Properties. Phys. Chem. Chem. Phys. 2016, 18 (47), 32514–32520. 10.1039/C6CP06734D. PubMed DOI
Kagdada H. L.; Jha P. K.; Śpiewak P.; Kurzydłowski K. J.; Singh D. K. Pressure-Induced First Order Phase Transition in Bulk GeSe. J. Appl. Phys. 2020, 127 (17), 175104.10.1063/1.5139952. DOI
Hu Z.; Ding Y.; Hu X.; Zhou W.; Yu X.; Zhang S. Recent Progress in 2D Group IV–IV Monochalcogenides: Synthesis, Properties and Applications. Nanotechnology 2019, 30 (25), 252001.10.1088/1361-6528/ab07d9. PubMed DOI
Hu Y.; Zhang S.; Sun S.; Xie M.; Cai B.; Zeng H. GeSe Monolayer Semiconductor with Tunable Direct Band Gap and Small Carrier Effective Mass. Appl. Phys. Lett. 2015, 107 (12), 122107.10.1063/1.4931459. DOI
Fan Z.-Q.; Jiang X.-W.; Wei Z.; Luo J.-W.; Li S.-S. Tunable Electronic Structures of GeSe Nanosheets and Nanoribbons. J. Phys. Chem. C 2017, 121 (26), 14373–14379. 10.1021/acs.jpcc.7b04607. DOI
Nguyen H. T. T.; Vu T. V.; Binh N. T. T.; Hoat D. M.; Hieu N. V.; Anh N. T. T.; Nguyen C. V.; Phuc H. V.; Jappor H. R.; Obeid M. M.; Hieu N. N. Strain-Tunable Electronic and Optical Properties of Monolayer GeSe: Promising for Photocatalytic Water Splitting Applications. Chem. Phys. 2020, 529, 110543.10.1016/j.chemphys.2019.110543. DOI
Huang L.; Wu F.; Li J. Structural Anisotropy Results in Strain-Tunable Electronic and Optical Properties in Monolayer GeX and SnX (X = S, Se, Te). J. Chem. Phys. 2016, 144 (11), 114708.10.1063/1.4943969. PubMed DOI
Zhao P.; Yang H.; Li J.; Jin H.; Wei W.; Yu L.; Huang B.; Dai Y. Design of New Photovoltaic Systems Based on Two-Dimensional Group-IV Monochalcogenides for High Performance Solar Cells. J. Mater. Chem. A 2017, 5 (46), 24145–24152. 10.1039/C7TA08097B. DOI
Xue D. J.; Liu S. C.; Dai C. M.; Chen S.; He C.; Zhao L.; Hu J. S.; Wan L. J. GeSe Thin-Film Solar Cells Fabricated by Self-Regulated Rapid Thermal Sublimation. J. Am. Chem. Soc. 2017, 139 (2), 958–965. 10.1021/jacs.6b11705. PubMed DOI
Liu S. C.; Mi Y.; Xue D. J.; Chen Y. X.; He C.; Liu X.; Hu J. S.; Wan L. J. Investigation of Physical and Electronic Properties of GeSe for Photovoltaic Applications. Adv. Electron. Mater. 2017, 3 (11), 1700141.10.1002/aelm.201700141. DOI
Cook A. M.; Fregoso B. M.; de Juan F.; Coh S.; Moore J. E. Design Principles for Shift Current Photovoltaics. Nat. Commun. 2017, 8 (1), 14176.10.1038/ncomms14176. PubMed DOI PMC
Mukherjee B.; Cai Y.; Tan H. R.; Feng Y. P.; Tok E. S.; Sow C. H. NIR Schottky Photodetectors Based on Individual Single-Crystalline GeSe Nanosheet. ACS Appl. Mater. Interfaces 2013, 5 (19), 9594–9604. 10.1021/am402550s. PubMed DOI
Xue D.-J.; Tan J.; Hu J.-S.; Hu W.; Guo Y.-G.; Wan L.-J. Anisotropic Photoresponse Properties of Single Micrometer-Sized GeSe Nanosheet. Adv. Mater. 2012, 24 (33), 4528–4533. 10.1002/adma.201201855. PubMed DOI
Ramasamy P.; Kwak D.; Lim D.-H.; Ra H.-S.; Lee J.-S. Solution Synthesis of GeS and GeSe Nanosheets for High-Sensitivity Photodetectors. J. Mater. Chem. C 2016, 4 (3), 479–485. 10.1039/C5TC03667D. DOI
Ma D.; Zhao J.; Wang R.; Xing C.; Li Z.; Huang W.; Jiang X.; Guo Z.; Luo Z.; Li Y.; Li J.; Luo S.; Zhang Y.; Zhang H. Ultrathin GeSe Nanosheets: From Systematic Synthesis to Studies of Carrier Dynamics and Applications for a High-Performance UV–Vis Photodetector. ACS Appl. Mater. Interfaces 2019, 11 (4), 4278–4287. 10.1021/acsami.8b19836. PubMed DOI
Tan D.; Wang X.; Zhang W.; Lim H. E.; Shinokita K.; Miyauchi Y.; Maruyama M.; Okada S.; Matsuda K. Carrier Transport and Photoresponse in GeSe/MoS 2 Heterojunction p–n Diodes. Small 2018, 14 (22), 1704559.10.1002/smll.201704559. PubMed DOI
Zhou X.; Hu X.; Jin B.; Yu J.; Liu K.; Li H.; Zhai T. Highly Anisotropic GeSe Nanosheets for Phototransistors with Ultrahigh Photoresponsivity. Adv. Sci. 2018, 5 (8), 1800478.10.1002/advs.201800478. PubMed DOI PMC
Hu X.; Huang P.; Liu K.; Jin B.; Zhang X.; Zhang X.; Zhou X.; Zhai T. Salt-Assisted Growth of Ultrathin GeSe Rectangular Flakes for Phototransistors with Ultrahigh Responsivity. ACS Appl. Mater. Interfaces 2019, 11 (26), 23353–23360. 10.1021/acsami.9b06425. PubMed DOI
Brahma M.; Kabiraj A.; Saha D.; Mahapatra S. Scalability Assessment of Group-IV Mono-Chalcogenide Based Tunnel FET. Sci. Rep. 2018, 8 (1), 5993.10.1038/s41598-018-24209-1. PubMed DOI PMC
Kang S.-Y.; Yoon Y.-S.; Park N.-W.; Lee W.-Y.; Kim G.-S.; Yoon Y.-G.; Koh J.-H.; Koo S.-M.; Umar A.; Lee S.-K. Electrical Properties of Exfoliated Multilayer Germanium Selenide (GeSe) Nanoflake Field-Effect Transistors. Sci. Adv. Mater. 2018, 10 (11), 1596–1600. 10.1166/sam.2018.3375. DOI
Yap W. C.; Yang Z.; Mehboudi M.; Yan J. A.; Barraza-Lopez S.; Zhu W. Layered Material GeSe and Vertical GeSe/MoS2 p-n Heterojunctions. Nano Res. 2018, 11 (1), 420–430. 10.1007/s12274-017-1646-8. DOI
Alhazmi A.; Amer M. R.. Electron Transport Performance of Germanium Selenide and Germanium Sulfide Field-Effect-Transistors in Dual Gates Configuration. In 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO); IEEE, 2018; pp 1–1.
Liu C.; Guan S.; Yin H.; Wan W.; Wang Y.; Zhang Y. γ-GeSe: A Two-Dimensional Ferroelectric Material with Doping-Induced Ferromagnetism. Appl. Phys. Lett. 2019, 115 (25), 252904.10.1063/1.5133022. DOI
Li Z.; Liu M.; Chen Q.; Huang Y.; Cao C.; He Y. The Electronic Structure of GeSe Monolayer with Light Nonmetallic Elements Decoration. Superlattices Microstruct. 2017, 109, 829–840. 10.1016/j.spmi.2017.05.068. DOI
Fei R.; Li W.; Li J.; Yang L. Giant Piezoelectricity of Monolayer Group IV Monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 2015, 107 (17), 173104.10.1063/1.4934750. DOI
Fei R.; Kang W.; Yang L. Ferroelectricity and Phase Transitions in Monolayer Group-IV Monochalcogenides. Phys. Rev. Lett. 2016, 117 (9), 09760110.1103/PhysRevLett.117.097601. PubMed DOI
Zhou Y.; Zhao M.; Chen Z. W.; Shi X. M.; Jiang Q. Potential Application of 2D Monolayer β-GeSe as an Anode Material in Na/K Ion Batteries. Phys. Chem. Chem. Phys. 2018, 20 (48), 30290–30296. 10.1039/C8CP05484C. PubMed DOI
He C.; Zhang J. H.; Zhang W. X.; Li T. T. GeSe/BP van Der Waals Heterostructures as Promising Anode Materials for Potassium-Ion Batteries. J. Phys. Chem. C 2019, 123 (9), 5157–5163. 10.1021/acs.jpcc.8b08909. DOI
Sannyal A.; Zhang Z.; Gao X.; Jang J. Two-Dimensional Sheet of Germanium Selenide as an Anode Material for Sodium and Potassium Ion Batteries: First-Principles Simulation Study. Comput. Mater. Sci. 2018, 154, 204–211. 10.1016/j.commatsci.2018.08.002. DOI
Zhou Y. MX (M = Ge, Sn; X = S, Se) Sheets: Theoretical Prediction of New Promising Electrode Materials for Li Ion Batteries. J. Mater. Chem. A 2016, 4 (28), 10906–10913. 10.1039/C6TA03076A. DOI
Zacharia R.; Ulbricht H.; Hertel T. Interlayer Cohesive Energy of Graphite from Thermal Desorption of Polyaromatic Hydrocarbons. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 69 (15), 155406-1–155406-7. 10.1103/PhysRevB.69.155406. DOI
Ziambaras E.; Kleis J.; Schröder E.; Hyldgaard P. Potassium Intercalation in Graphite: A van Der Waals Density-Functional Study. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76 (15), 155425.10.1103/PhysRevB.76.155425. DOI
Wang W.; Dai S.; Li X.; Yang J.; Srolovitz D. J.; Zheng Q. Measurement of the Cleavage Energy of Graphite. Nat. Commun. 2015, 6 (1), 7853.10.1038/ncomms8853. PubMed DOI PMC
Björkman T.; Gulans A.; Krasheninnikov A. V.; Nieminen R. M. Van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Phys. Rev. Lett. 2012, 108 (23), 235502.10.1103/PhysRevLett.108.235502. PubMed DOI
Schusteritsch G.; Uhrin M.; Pickard C. J. Single-Layered Hittorf’s Phosphorus: A Wide-Bandgap High Mobility 2D Material. Nano Lett. 2016, 16 (5), 2975–2980. 10.1021/acs.nanolett.5b05068. PubMed DOI
Shulenburger L.; Baczewski A. D.; Zhu Z.; Guan J.; Tománek D. The Nature of the Interlayer Interaction in Bulk and Few-Layer Phosphorus. Nano Lett. 2015, 15 (12), 8170–8175. 10.1021/acs.nanolett.5b03615. PubMed DOI
Bonaccorso F.; Lombardo A.; Hasan T.; Sun Z.; Colombo L.; Ferrari A. C. Production and Processing of Graphene and 2d Crystals. Mater. Today 2012, 15 (12), 564–589. 10.1016/S1369-7021(13)70014-2. DOI
Yi M.; Shen Z. A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A 2015, 3 (22), 11700–11715. 10.1039/C5TA00252D. DOI
Magda G. Z.; Pető J.; Dobrik G.; Hwang C.; Biró L. P.; Tapasztó L. Exfoliation of Large-Area Transition Metal Chalcogenide Single Layers. Sci. Rep. 2015, 5 (1), 14714.10.1038/srep14714. PubMed DOI PMC
Bonaccorso F.; Bartolotta A.; Coleman J. N.; Backes C. 2D-Crystal-Based Functional Inks. Adv. Mater. 2016, 28 (29), 6136–6166. 10.1002/adma.201506410. PubMed DOI
Del Rio Castillo A. E.; Pellegrini V.; Ansaldo A.; Ricciardella F.; Sun H.; Marasco L.; Buha J.; Dang Z.; Gagliani L.; Lago E.; Curreli N.; Gentiluomo S.; Palazon F.; Prato M.; Oropesa-Nuñez R.; Toth P. S.; Mantero E.; Crugliano M.; Gamucci A.; Tomadin A.; Polini M.; Bonaccorso F. High-Yield Production of 2D Crystals by Wet-Jet Milling. Mater. Horiz. 2018, 5 (5), 890–904. 10.1039/C8MH00487K. DOI
Bellani S.; Petroni E.; Del Rio Castillo A. E.; Curreli N.; Martín-García B.; Oropesa-Nuñez R.; Prato M.; Bonaccorso F. Scalable Production of Graphene Inks via Wet-Jet Milling Exfoliation for Screen-Printed Micro-Supercapacitors. Adv. Funct. Mater. 2019, 29 (14), 1807659.10.1002/adfm.201807659. DOI
Ribeiro H. B.; Ramos S. L. L. M.; Seixas L.; de Matos C. J. S.; Pimenta M. A. Edge Phonons in Layered Orthorhombic GeS and GeSe Monochalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 2019, 100 (9), 09430110.1103/PhysRevB.100.094301. DOI
Mao Y.; Mao X.; Zhao H.; Zhang N.; Shi X.; Yuan J. Enhancement of Photoluminescence Efficiency in GeSe Ultrathin Slab by Thermal Treatment and Annealing: Experiment and First-Principles Molecular Dynamics Simulations. Sci. Rep. 2018, 8 (1), 17671.10.1038/s41598-018-36068-x. PubMed DOI PMC
Gomes L. C.; Carvalho A.; Castro Neto A. H. Vacancies and Oxidation of Two-Dimensional Group-IV Monochalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94 (5), 05410310.1103/PhysRevB.94.054103. DOI
Guo Y.; Zhou S.; Bai Y.; Zhao J. Oxidation Resistance of Monolayer Group-IV Monochalcogenides. ACS Appl. Mater. Interfaces 2017, 9 (13), 12013–12020. 10.1021/acsami.6b16786. PubMed DOI
Favron A.; Gaufrès E.; Fossard F.; Phaneuf-L’Heureux A.-L.; Tang N. Y. W.; Lévesque P. L.; Loiseau A.; Leonelli R.; Francoeur S.; Martel R. Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus. Nat. Mater. 2015, 14 (8), 826–832. 10.1038/nmat4299. PubMed DOI
Huang Y.; Qiao J.; He K.; Bliznakov S.; Sutter E.; Chen X.; Luo D.; Meng F.; Su D.; Decker J.; Ji W.; Ruoff R. S.; Sutter P. Interaction of Black Phosphorus with Oxygen and Water. Chem. Mater. 2016, 28 (22), 8330–8339. 10.1021/acs.chemmater.6b03592. DOI
Ho P. H.; Chang Y. R.; Chu Y. C.; Li M. K.; Tsai C. A.; Wang W. H.; Ho C. H.; Chen C. W.; Chiu P. W. High-Mobility InSe Transistors: The Role of Surface Oxides. ACS Nano 2017, 11 (7), 7362–7370. 10.1021/acsnano.7b03531. PubMed DOI
Shi L.; Zhou Q.; Zhao Y.; Ouyang Y.; Ling C.; Li Q.; Wang J. Oxidation Mechanism and Protection Strategy of Ultrathin Indium Selenide: Insight from Theory. J. Phys. Chem. Lett. 2017, 8 (18), 4368–4373. 10.1021/acs.jpclett.7b02059. PubMed DOI
Ma D.; Li T.; Yuan D.; He C.; Lu Z.; Lu Z.; Yang Z.; Wang Y. The Role of the Intrinsic Se and In Vacancies in the Interaction of O 2 and H 2 O Molecules with the InSe Monolayer. Appl. Surf. Sci. 2018, 434, 215–227. 10.1016/j.apsusc.2017.10.204. DOI
Kowalski B. M.; Manz N.; Bethke D.; Shaner E. A.; Serov A.; Kalugin N. G. Role of Humidity in Oxidation of Ultrathin GaSe. Mater. Res. Express 2019, 6 (8), 08590710.1088/2053-1591/ab1dd2. DOI
Bergeron A.; Ibrahim J.; Leonelli R.; Francoeur S. Oxidation Dynamics of Ultrathin GaSe Probed through Raman Spectroscopy. Appl. Phys. Lett. 2017, 110 (24), 241901.10.1063/1.4986189. DOI
Vaughn D. D.; Patel R. J.; Hickner M. A.; Schaak R. E. Single-Crystal Colloidal Nanosheets of GeS and GeSe. J. Am. Chem. Soc. 2010, 132 (43), 15170–15172. 10.1021/ja107520b. PubMed DOI
Elkorashy A. M. Photoconductivity in Germanium Selenide Single Crystals. Phys. Status Solidi B 1989, 152 (1), 249–259. 10.1002/pssb.2221520128. DOI
Kannewurf C. R.; Cashman R. J. Optical Absorption and Photoconductivity in Germanium Selenide. J. Phys. Chem. Solids 1961, 22, 293–298. 10.1016/0022-3697(61)90274-8. DOI
Kumar A.; Ahluwalia P. K. Electronic Structure of Transition Metal Dichalcogenides Monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from Ab-Initio Theory: New Direct Band Gap Semiconductors. Eur. Phys. J. B 2012, 85 (6), 186.10.1140/epjb/e2012-30070-x. DOI
Ellis J. K.; Lucero M. J.; Scuseria G. E. The Indirect to Direct Band Gap Transition in Multilayered MoS2 as Predicted by Screened Hybrid Density Functional Theory. Appl. Phys. Lett. 2011, 99 (26), 261908.10.1063/1.3672219. DOI
Mak K. F.; Lee C.; Hone J.; Shan J.; Heinz T. F. Atomically Thin MoS 2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105 (13), 136805.10.1103/PhysRevLett.105.136805. PubMed DOI
Splendiani A.; Sun L.; Zhang Y.; Li T.; Kim J.; Chim C.-Y.; Galli G.; Wang F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10 (4), 1271–1275. 10.1021/nl903868w. PubMed DOI
Zhang Y.; Chang T. R.; Zhou B.; Cui Y. T.; Yan H.; Liu Z.; Schmitt F.; Lee J.; Moore R.; Chen Y.; Lin H.; Jeng H. T.; Mo S. K.; Hussain Z.; Bansil A.; Shen Z. X. Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe2. Nat. Nanotechnol. 2014, 9 (2), 111–115. 10.1038/nnano.2013.277. PubMed DOI
Shi G.; Kioupakis E. Anisotropic Spin Transport and Strong Visible-Light Absorbance in Few-Layer SnSe and GeSe. Nano Lett. 2015, 15 (10), 6926–6931. 10.1021/acs.nanolett.5b02861. PubMed DOI
Yang M.; Cao S.; You Q.; Shi L.-B.; Qian P. Intrinsic Carrier Mobility of Monolayer GeS and GeSe: First-Principles Calculation. Phys. E 2020, 118, 113877.10.1016/j.physe.2019.113877. PubMed DOI
Xu Y.; Zhang H.; Shao H.; Ni G.; Li J.; Lu H.; Zhang R.; Peng B.; Zhu Y.; Zhu H.; Soukoulis C. M. First-Principles Study on the Electronic, Optical, and Transport Properties of Monolayer α- and β -GeSe. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96 (24), 245421.10.1103/PhysRevB.96.245421. DOI
Shafique A.; Shin Y.-H. Thermoelectric and Phonon Transport Properties of Two-Dimensional IV–VI Compounds. Sci. Rep. 2017, 7 (1), 506.10.1038/s41598-017-00598-7. PubMed DOI PMC
Solanki G. K.; Deshpande M. P.; Agarwal M. K.; Patel P. D.; Vaidya S. N. Thermoelectric Power Factor Measurements in GeSe Single Crystals Grown Using Different Transporting Agents. J. Mater. Sci. Lett. 2003, 22 (14), 985–987. 10.1023/A:1024724922435. DOI
Tran P. D.; Artero V.; Fontecave M. Water Electrolysis and Photoelectrolysis on Electrodes Engineered Using Biological and Bio-Inspired Molecular Systems. Energy Environ. Sci. 2010, 3 (6), 727.10.1039/b926749b. DOI
Brimblecombe R.; Koo A.; Dismukes G. C.; Swiegers G. F.; Spiccia L. Solar Driven Water Oxidation by a Bioinspired Manganese Molecular Catalyst. J. Am. Chem. Soc. 2010, 132 (9), 2892–2894. 10.1021/ja910055a. PubMed DOI
Zhou P.; Yu J.; Jaroniec M. All-Solid-State Z-Scheme Photocatalytic Systems. Adv. Mater. 2014, 26 (29), 4920–4935. 10.1002/adma.201400288. PubMed DOI
Wang W.; Chen S.; Yang P. X.; Duan C. G.; Wang L. W. Si:WO3 Heterostructure for Z-Scheme Water Splitting: An Ab Initio Study. J. Mater. Chem. A 2013, 1 (4), 1078–1085. 10.1039/C2TA00441K. DOI
Kothe T.; Plumeré N.; Badura A.; Nowaczyk M. M.; Guschin D. A.; Rögner M.; Schuhmann W. Combination of a Photosystem 1-Based Photocathode and a Photosystem 2-Based Photoanode to a z-Scheme Mimic for Biophotovoltaic Applications. Angew. Chem., Int. Ed. 2013, 52 (52), 14233–14236. 10.1002/anie.201303671. PubMed DOI PMC
Peerakiatkhajohn P.; Yun J.-H.; Wang S.; Wang L. Review of Recent Progress in Unassisted Photoelectrochemical Water Splitting: From Material Modification to Configuration Design. J. Photonics Energy 2017, 7 (1), 01200610.1117/1.JPE.7.012006. DOI
Tachibana Y.; Vayssieres L.; Durrant J. R. Artificial Photosynthesis for Solar Water-Splitting. Nat. Photonics 2012, 6 (8), 511–518. 10.1038/nphoton.2012.175. DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Heyd J.; Scuseria G. E.; Ernzerhof M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118 (18), 8207–8215. 10.1063/1.1564060. DOI
Galy J.; Vignoles G. L. The Role of P 3s2 Lone Pair (E) in Structure. Solid State Sci. 2020, 100, 106068.10.1016/j.solidstatesciences.2019.106068. DOI
Boukhvalov D. W.; Rudenko A. N.; Prishchenko D. A.; Mazurenko V. G.; Katsnelson M. I. Chemical Modifications and Stability of Phosphorene with Impurities: A First Principles Study. Phys. Chem. Chem. Phys. 2015, 17 (23), 15209–15217. 10.1039/C5CP01901J. PubMed DOI
Zhang H.; Yang G.; Zuo X.; Tang H.; Yang Q.; Li G. Computational Studies on the Structural, Electronic and Optical Properties of Graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and Their Potential Applications as Visible-Light Driven Photocatalysts. J. Mater. Chem. A 2016, 4 (33), 12913–12920. 10.1039/C6TA04628B. DOI
Novoselov K. S.; Mishchenko A.; Carvalho A.; Castro Neto A. H. 2D Materials and van Der Waals Heterostructures. Science (Washington, DC, U. S.) 2016, 353 (6298), aac9439.10.1126/science.aac9439. PubMed DOI
Das S.; Robinson J. A.; Dubey M.; Terrones H.; Terrones M. Beyond Graphene: Progress in Novel Two-Dimensional Materials and van Der Waals Solids. Annu. Rev. Mater. Res. 2015, 45 (1), 1–27. 10.1146/annurev-matsci-070214-021034. DOI
Tan S. M.; Chua C. K.; Sedmidubský D.; Sofer Z.; Pumera M. Electrochemistry of Layered GaSe and GeS: Applications to ORR, OER and HER. Phys. Chem. Chem. Phys. 2016, 18 (3), 1699–1711. 10.1039/C5CP06682D. PubMed DOI
Dutta S. N.; Jeffrey G. A. On the Structure of Germanium Selenide and Related Binary IV/VI Compounds. Inorg. Chem. 1965, 4 (9), 1363–1366. 10.1021/ic50031a032. DOI
Schmeisser D.; Schnell R. D.; Bogen A.; Himpsel F. J.; Rieger D.; Landgren G.; Morar J. F. Surface Oxidation States of Germanium. Surf. Sci. 1986, 172 (2), 455–465. 10.1016/0039-6028(86)90767-3. DOI
Prabhakaran K.; Ogino T. Oxidation of Ge(100) and Ge(111) Surfaces: An UPS and XPS Study. Surf. Sci. 1995, 325 (3), 263–271. 10.1016/0039-6028(94)00746-2. DOI
Lam D.; Chen K.-S.; Kang J.; Liu X.; Hersam M. C. Anhydrous Liquid-Phase Exfoliation of Pristine Electrochemically Active GeS Nanosheets. Chem. Mater. 2018, 30 (7), 2245–2250. 10.1021/acs.chemmater.7b04652. DOI
Harvey A.; Backes C.; Gholamvand Z.; Hanlon D.; McAteer D.; Nerl H. C.; McGuire E.; Seral-Ascaso A.; Ramasse Q. M.; McEvoy N.; Winters S.; Berner N. C.; McCloskey D.; Donegan J. F.; Duesberg G. S.; Nicolosi V.; Coleman J. N. Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application As Hydrogen Evolution Catalysts. Chem. Mater. 2015, 27 (9), 3483–3493. 10.1021/acs.chemmater.5b00910. DOI
Petroni E.; Lago E.; Bellani S.; Boukhvalov D. W.; Politano A.; Gürbulak B.; Duman S.; Prato M.; Gentiluomo S.; Oropesa-Nuñez R.; Panda J.-K.; Toth P. S.; Del Rio Castillo A. E.; Pellegrini V.; Bonaccorso F. Liquid-Phase Exfoliated Indium–Selenide Flakes and Their Application in Hydrogen Evolution Reaction. Small 2018, 14 (26), 1800749.10.1002/smll.201800749. PubMed DOI
Curreli N.; Serri M.; Spirito D.; Lago E.; Petroni E.; Martín-García B.; Politano A.; Gürbulak B.; Duman S.; Krahne R.; Pellegrini V.; Bonaccorso F. Liquid Phase Exfoliated Indium Selenide Based Highly Sensitive Photodetectors. Adv. Funct. Mater. 2020, 30 (13), 1908427.10.1002/adfm.201908427. DOI
Najafi L.; Bellani S.; Martín-García B.; Oropesa-Nuñez R.; Del Rio Castillo A. E.; Prato M.; Moreels I.; Bonaccorso F. Solution-Processed Hybrid Graphene Flake/2H-MoS2 Quantum Dot Heterostructures for Efficient Electrochemical Hydrogen Evolution. Chem. Mater. 2017, 29 (14), 5782–5786. 10.1021/acs.chemmater.7b01897. DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Ansaldo A.; Prato M.; Del Rio Castillo A. E.; Bonaccorso F. Doped-MoSe2 Nanoflakes/3d Metal Oxide–Hydr(Oxy)Oxides Hybrid Catalysts for PH-Universal Electrochemical Hydrogen Evolution Reaction. Adv. Energy Mater. 2018, 8 (27), 1801764.10.1002/aenm.201801764. DOI
Bellani S.; Martín-García B.; Oropesa-Nuñez R.; Romano V.; Najafi L.; Demirci C.; Prato M.; Del Rio Castillo A. E.; Marasco L.; Mantero E.; D’Angelo G.; Bonaccorso F. Ion Sliding” on Graphene: A Novel Concept to Boost Supercapacitor Performance. Nanoscale Horizons 2019, 4 (5), 1077–1091. 10.1039/C8NH00446C. DOI
Ansaldo A.; Bondavalli P.; Bellani S.; Del Rio Castillo A. E.; Prato M.; Pellegrini V.; Pognon G.; Bonaccorso F. High-Power Graphene–Carbon Nanotube Hybrid Supercapacitors. ChemNanoMat 2017, 3 (6), 436–446. 10.1002/cnma.201700093. DOI
Jawaid A.; Nepal D.; Park K.; Jespersen M.; Qualley A.; Mirau P.; Drummy L. F.; Vaia R. A. Mechanism for Liquid Phase Exfoliation of MoS2. Chem. Mater. 2016, 28 (1), 337–348. 10.1021/acs.chemmater.5b04224. DOI
Capasso A.; Matteocci F.; Najafi L.; Prato M.; Buha J.; Cina L.; Pellegrini V.; Di Carlo A.; Bonaccorso F. Few-Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells. Adv. Energy Mater. 2016, 6 (16), 1600920.10.1002/aenm.201600920. DOI
Tsikritzis D.; Rogdakis K.; Chatzimanolis K.; Petrović M.; Tzoganakis N.; Najafi L.; Martín-García B.; Oropesa-Nuñez R.; Bellani S.; Del Rio Castillo A. E.; Prato M.; Stylianakis M. M.; Bonaccorso F.; Kymakis E. A Two-Fold Engineering Approach Based on Bi 2 Te 3 Flakes towards Efficient and Stable Inverted Perovskite Solar Cells. Mater. Adv. 2020, 1 (3), 450–462. 10.1039/D0MA00162G. DOI
Kang J.; Sangwan V. K.; Wood J. D.; Hersam M. C. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. Acc. Chem. Res. 2017, 50 (4), 943–951. 10.1021/acs.accounts.6b00643. PubMed DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Ansaldo A.; Prato M.; Del Rio Castillo A. E.; Bonaccorso F. Engineered MoSe2-Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Adv. Energy Mater. 2018, 8 (16), 1703212.10.1002/aenm.201703212. DOI
Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Drago F.; Prato M.; Pellegrini V.; Bonaccorso F.; Bellani S. Water-Dispersible Few-Layer Graphene Flakes for Selective and Rapid Ion Mercury (Hg 2+)-Rejecting Membranes. Mater. Adv. 2020, 1 (3), 387–402. 10.1039/D0MA00060D. DOI
Zhao H.; Mao Y.; Mao X.; Shi X.; Xu C.; Wang C.; Zhang S.; Zhou D. Band Structure and Photoelectric Characterization of GeSe Monolayers. Adv. Funct. Mater. 2018, 28, 1704855.10.1002/adfm.201704855. DOI
Wiedemeier H.; Von Schnering H. G. Refinement of the Structures of GeS, GeSe, SnS and SnSe. Zeitschrift fur Krist. - New Cryst. Struct. 1978, 148 (3–4), 295–303. 10.1524/zkri.1978.148.3-4.295. DOI
Chandrasekhar H. R.; Zwick U. Raman Scattering and Infrared Reflectivity in GeSe. Solid State Commun. 1976, 18 (11–12), 1509–1513. 10.1016/0038-1098(76)90381-1. DOI
Fukunaga T.; Sugai S.; Kinosada T.; Murase K. Observation of New Raman Lines in GeSe and SnSe at Low Temperatures. Solid State Commun. 1981, 38 (11), 1049–1052. 10.1016/0038-1098(81)90015-6. DOI
Zhang X.; Tan Q.-H.; Wu J.-B.; Shi W.; Tan P.-H. Review on the Raman Spectroscopy of Different Types of Layered Materials. Nanoscale 2016, 8 (12), 6435–6450. 10.1039/C5NR07205K. PubMed DOI
Taube A.; Łapińska A.; Judek J.; Wochtman N.; Zdrojek M. Temperature Induced Phonon Behaviour in Germanium Selenide Thin Films Probed by Raman Spectroscopy. J. Phys. D: Appl. Phys. 2016, 49 (31), 315301.10.1088/0022-3727/49/31/315301. DOI
Liu J.; Zhou Y.; Lin Y.; Li M.; Cai H.; Liang Y.; Liu M.; Huang Z.; Lai F.; Huang F.; Zheng W. Anisotropic Photoresponse of the Ultrathin GeSe Nanoplates Grown by Rapid Physical Vapor Deposition. ACS Appl. Mater. Interfaces 2019, 11 (4), 4123–4130. 10.1021/acsami.8b19306. PubMed DOI
Feng Y.; Zhou J.; Du Y.; Miao F.; Duan C.-G.; Wang B.; Wan X. Raman Spectra of Few-Layer Phosphorene Studied from First-Principles Calculations. J. Phys.: Condens. Matter 2015, 27 (18), 185302.10.1088/0953-8984/27/18/185302. PubMed DOI
Guo Z.; Zhang H.; Lu S.; Wang Z.; Tang S.; Shao J.; Sun Z.; Xie H.; Wang H.; Yu X.-F.; Chu P. K. From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics. Adv. Funct. Mater. 2015, 25 (45), 6996–7002. 10.1002/adfm.201502902. DOI
Ferrari A. C.; Basko D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8 (4), 235–246. 10.1038/nnano.2013.46. PubMed DOI
Bonaccorso F.; Tan P.-H.; Ferrari A. C. Multiwall Nanotubes, Multilayers, and Hybrid Nanostructures: New Frontiers for Technology and Raman Spectroscopy. ACS Nano 2013, 7 (3), 1838–1844. 10.1021/nn400758r. PubMed DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Martín-García B.; Prato M.; Bonaccorso F. Single-/Few-Layer Graphene as Long-Lasting Electrocatalyst for Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2019, 2 (8), 5373–5379. 10.1021/acsaem.9b00949. DOI
Galeener F. L.; Mikkelsen J. C.; Geils R. H.; Mosby W. J. The Relative Raman Cross Sections of Vitreous SiO2, GeO 2, B 2 O 3, and P 2 O 5. Appl. Phys. Lett. 1978, 32 (1), 34–36. 10.1063/1.89823. DOI
Durben D. J.; Wolf G. H. Raman Spectroscopic Study of the Pressure-Induced Coordination Change in GeO2 Glass. Phys. Rev. B: Condens. Matter Mater. Phys. 1991, 43 (3), 2355–2363. 10.1103/PhysRevB.43.2355. PubMed DOI
Carroll P. J.; Lannin J. S. Raman Scattering of Amorphous Selenium Films. Solid State Commun. 1981, 40 (1), 81–84. 10.1016/0038-1098(81)90716-X. DOI
Yang L.; Miklavcic S. J. Revised Kubelka–Munk Theory III A General Theory of Light Propagation in Scattering and Absorptive Media. J. Opt. Soc. Am. A 2005, 22 (9), 1866.10.1364/JOSAA.22.001866. PubMed DOI
Vargas W. E.; Niklasson G. A. Applicability Conditions of the Kubelka–Munk Theory. Appl. Opt. 1997, 36 (22), 5580.10.1364/AO.36.005580. PubMed DOI
Najafi L.; Taheri B.; Martin-Garcia B.; Bellani S.; Di Girolamo D.; Agresti A.; Oropesa-Nunez R.; Pescetelli S.; Vesce L.; Calabro E.; et al. MoS2 Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH3NH3PbI3 Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano 2018, 12 (11), 10736–10754. 10.1021/acsnano.8b05514. PubMed DOI
Antunez P. D.; Torelli D. A.; Yang F.; Rabuffetti F. A.; Lewis N. S.; Brutchey R. L. Low Temperature Solution-Phase Deposition of SnS Thin Films. Chem. Mater. 2014, 26 (19), 5444–5446. 10.1021/cm503124u. DOI
Patel M.; Chavda A.; Mukhopadhyay I.; Kim J.; Ray A. Nanostructured SnS with Inherent Anisotropic Optical Properties for High Photoactivity. Nanoscale 2016, 8 (4), 2293–2303. 10.1039/C5NR06731F. PubMed DOI
Woomer A. H.; Farnsworth T. W.; Hu J.; Wells R. A.; Donley C. L.; Warren S. C. Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. ACS Nano 2015, 9 (9), 8869–8884. 10.1021/acsnano.5b02599. PubMed DOI
Tomaszewska E.; Soliwoda K.; Kadziola K.; Tkacz-Szczesna B.; Celichowski G.; Cichomski M.; Szmaja W.; Grobelny J. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. J. Nanomater. 2013, 2013, 1–10. 10.1155/2013/313081. DOI
Hernandez Y.; Nicolosi V.; Lotya M.; Blighe F. M.; Sun Z.; De S.; McGovern I. T.; Holland B.; Byrne M.; Gun’Ko Y. K.; Boland J. J.; Niraj P.; Duesberg G.; Krishnamurthy S.; Goodhue R.; Hutchison J.; Scardaci V.; Ferrari A. C.; Coleman J. N. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3 (9), 563–568. 10.1038/nnano.2008.215. PubMed DOI
Malacara D. Color Vision and Colorimetry: Theory and Applications. Color Res. Appl. 2003, 28 (1), 77–78. 10.1002/col.10118. DOI
Cohen J.; Wyszecki G.; Stiles W. S. Color Science: Concepts and Methods, Quantitative Data and Formulas. Am. J. Psychol. 1968, 81 (1), 128.10.2307/1420820. DOI
Antognazza M. R.; Scherf U.; Monti P.; Lanzani G. Organic-Based Tristimuli Colorimeter. Appl. Phys. Lett. 2007, 90 (16), 163509.10.1063/1.2723653. DOI
https://www.thorlabs.com/navigation.cfm?guide_id=36 (data accessed on 24/07/2020).
Takata T.; Jiang J.; Sakata Y.; Nakabayashi M.; Shibata N.; Nandal V.; Seki K.; Hisatomi T.; Domen K. Photocatalytic Water Splitting with a Quantum Efficiency of Almost Unity. Nature 2020, 581 (7809), 411–414. 10.1038/s41586-020-2278-9. PubMed DOI
Mauritz K. A.; Moore R. B. State of Understanding of Nafion. Chem. Rev. 2004, 104 (10), 4535–4586. 10.1021/cr0207123. PubMed DOI
Zawodzinski T. A.; Derouin C.; Radzinski S.; Sherman R. J.; Smith V. T.; Springer T. E.; Gottesfeld S. Water Uptake by and Transport Through Nafion 117 Membranes. J. Electrochem. Soc. 1993, 140 (4), 1041–1047. 10.1149/1.2056194. DOI
Jiang C.; Moniz S. J. A.; Wang A.; Zhang T.; Tang J. Photoelectrochemical Devices for Solar Water Splitting – Materials and Challenges. Chem. Soc. Rev. 2017, 46 (15), 4645–4660. 10.1039/C6CS00306K. PubMed DOI
Joe J.; Yang H.; Bae C.; Shin H. Metal Chalcogenides on Silicon Photocathodes for Efficient Water Splitting: A Mini Overview. Catalysts 2019, 9 (2), 149.10.3390/catal9020149. DOI
McGlynn S. P. Concepts in Photoconductivity and Allied Problems. J. Am. Chem. Soc. 1964, 86 (24), 5707–5707. 10.1021/ja01078a086. DOI
Guo F.; Yang B.; Yuan Y.; Xiao Z.; Dong Q.; Bi Y.; Huang J. A Nanocomposite Ultraviolet Photodetector Based on Interfacial Trap-Controlled Charge Injection. Nat. Nanotechnol. 2012, 7 (12), 798–802. 10.1038/nnano.2012.187. PubMed DOI
Wang H.; Zhang X.; Xie Y. Recent Progress in Ultrathin Two-Dimensional Semiconductors for Photocatalysis. Mater. Sci. Eng., R 2018, 130, 1–39. 10.1016/j.mser.2018.04.002. DOI
Kong D.; Cha J. J.; Wang H.; Lee H. R.; Cui Y. First-Row Transition Metal Dichalcogenide Catalysts for Hydrogen Evolution Reaction. Energy Environ. Sci. 2013, 6 (12), 3553–3558. 10.1039/c3ee42413h. DOI
Yang J.; Shin H. S. Recent Advances in Layered Transition Metal Dichalcogenides for Hydrogen Evolution Reaction. J. Mater. Chem. A 2014, 2 (17), 5979–5985. 10.1039/C3TA14151A. DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Martín-García B.; Prato M.; Pasquale L.; Panda J. K.; Marvan P.; Sofer Z.; Bonaccorso F. TaS2, TaSe2, and Their Heterogeneous Films as Catalysts for the Hydrogen Evolution Reaction. ACS Catal. 2020, 10 (5), 3313–3325. 10.1021/acscatal.9b03184. PubMed DOI PMC
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Martín-García B.; Prato M.; Mazánek V.; Debellis D.; Lauciello S.; Brescia R.; Sofer Z.; Bonaccorso F. Niobium Disulphide (NbS2)-Based (Heterogeneous) Electrocatalysts for an Efficient Hydrogen Evolution Reaction. J. Mater. Chem. A 2019, 7 (44), 25593–25608. 10.1039/C9TA07210A. DOI
Lv L.; Yang Z.; Chen K.; Wang C.; Xiong Y. 2D Layered Double Hydroxides for Oxygen Evolution Reaction: From Fundamental Design to Application. Adv. Energy Mater. 2019, 9, 1803358.10.1002/aenm.201803358. DOI
Qin M.; Li S.; Zhao Y.; Lao C. Y.; Zhang Z.; Liu L.; Fang F.; Wu H.; Jia B.; Liu Z.; et al. Unprecedented Synthesis of Holey 2D Layered Double Hydroxide Nanomesh for Enhanced Oxygen Evolution. Adv. Energy Mater. 2019, 9 (1), 1803060.10.1002/aenm.201803060. DOI
Yang H. Bin; Miao J.; Hung S.-F.; Chen J.; Tao H. B.; Wang X.; Zhang L.; Chen R.; Gao J.; Chen H. M.; et al. Identification of Catalytic Sites for Oxygen Reduction and Oxygen Evolution in N-Doped Graphene Materials: Development of Highly Efficient Metal-Free Bifunctional Electrocatalyst. Sci. Adv. 2016, 2 (4), e1501122.10.1126/sciadv.1501122. PubMed DOI PMC
Chai G. L.; Qiu K.; Qiao M.; Titirici M. M.; Shang C.; Guo Z. Active Sites Engineering Leads to Exceptional ORR and OER Bifunctionality in P,N Co-Doped Graphene Frameworks. Energy Environ. Sci. 2017, 10 (5), 1186–1195. 10.1039/C6EE03446B. DOI
Najafi L.; Bellani S.; Castelli A.; Arciniegas M. P.; Brescia R.; Oropesa-Nuñez R.; Martín-García B.; Serri M.; Drago F.; Manna L.; Bonaccorso F. Octapod-Shaped CdSe Nanocrystals Hosting Pt with High Mass Activity for the Hydrogen Evolution Reaction. Chem. Mater. 2020, 32 (6), 2420–2429. 10.1021/acs.chemmater.9b04883. DOI
Next-Generation Self-Powered Photodetectors using 2D Bismuth Oxide Selenide Crystals
Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells
Two-Dimensional Gallium Sulfide Nanoflakes for UV-Selective Photoelectrochemical-type Photodetectors