Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting

. 2020 Oct 28 ; 12 (43) : 48598-48613. [epub] 20201019

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32960559

Photoelectrochemical (PEC) systems represent powerful tools to convert electromagnetic radiation into chemical fuels and electricity. In this context, two-dimensional (2D) materials are attracting enormous interest as potential advanced photo(electro)catalysts and, recently, 2D group-IVA metal monochalcogenides have been theoretically predicted to be water splitting photocatalysts. In this work, we use density functional theory calculations to theoretically investigate the photocatalytic activity of single-/few-layer GeSe nanoflakes for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in pH conditions ranging from 0 to 14. Our simulations show that GeSe nanoflakes with different thickness can be mixed in the form of nanoporous films to act as nanoscale tandem systems, in which the flakes, depending on their thickness, can operate as HER- and/or OER photocatalysts. On the basis of theoretical predictions, we report the first experimental characterization of the photo(electro)catalytic activity of single-/few-layer GeSe flakes in different aqueous media, ranging from acidic to alkaline solutions: 0.5 M H2SO4 (pH 0.3), 1 M KCl (pH 6.5), and 1 M KOH (pH 14). The films of the GeSe nanoflakes are fabricated by spray coating GeSe nanoflakes dispersion in 2-propanol obtained through liquid-phase exfoliation of synthesized orthorhombic (Pnma) GeSe bulk crystals. The PEC properties of the GeSe nanoflakes are used to design PEC-type photodetectors, reaching a responsivity of up to 0.32 AW-1 (external quantum efficiency of 86.3%) under 455 nm excitation wavelength in acidic electrolyte. The obtained performances are superior to those of several self-powered and low-voltage solution-processed photodetectors, approaching that of self-powered commercial UV-Vis photodetectors. The obtained results inspire the use of 2D GeSe in proof-of-concept water photoelectrolysis cells.

Zobrazit více v PubMed

Kim D.; Sakimoto K. K.; Hong D.; Yang P. Artificial Photosynthesis for Sustainable Fuel and Chemical Production. Angew. Chem., Int. Ed. 2015, 54 (11), 3259–3266. 10.1002/anie.201409116. PubMed DOI

Lewis N. S.; Nocera D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (43), 15729–15735. 10.1073/pnas.0603395103. PubMed DOI PMC

Crabtree G. W.; Lewis N. S. Solar Energy Conversion. Phys. Today 2007, 60 (3), 37–42. 10.1063/1.2718755. DOI

Chu S.; Fan S.; Wang Y.; Rossouw D.; Wang Y.; Botton G. A.; Mi Z. Tunable Syngas Production from CO2and H2O in an Aqueous Photoelectrochemical Cell. Angew. Chem., Int. Ed. 2016, 55 (46), 14262–14266. 10.1002/anie.201606424. PubMed DOI

Zhang H.; Chen G.; Bahnemann D. W. Photoelectrocatalytic Materials for Environmental Applications. J. Mater. Chem. 2009, 19 (29), 5089–5121. 10.1039/b821991e. DOI

Meng X.; Zhang Z.; Li X. Synergetic Photoelectrocatalytic Reactors for Environmental Remediation: A Review. J. Photochem. Photobiol., C 2015, 24, 83–101. 10.1016/j.jphotochemrev.2015.07.003. DOI

Daghrir R.; Drogui P.; Robert D. Photoelectrocatalytic Technologies for Environmental Applications. J. Photochem. Photobiol., A 2012, 238, 41–52. 10.1016/j.jphotochem.2012.04.009. DOI

Zhang B.; Guo L.-H. Highly Sensitive and Selective Photoelectrochemical DNA Sensor for the Detection of Hg2+ in Aqueous Solutions. Biosens. Bioelectron. 2012, 37 (1), 112–115. 10.1016/j.bios.2012.04.051. PubMed DOI

Yue Z.; Lisdat F.; Parak W. J.; Hickey S. G.; Tu L.; Sabir N.; Dorfs D.; Bigall N. C. Quantum-Dot-Based Photoelectrochemical Sensors for Chemical and Biological Detection. ACS Appl. Mater. Interfaces 2013, 5 (8), 2800–2814. 10.1021/am3028662. PubMed DOI

Shu J.; Tang D. Current Advances in Quantum-Dots-Based Photoelectrochemical Immunoassays. Chem. - Asian J. 2017, 12 (21), 2780–2789. 10.1002/asia.201701229. PubMed DOI

Zang Y.; Lei J.; Ju H. Principles and Applications of Photoelectrochemical Sensing Strategies Based on Biofunctionalized Nanostructures. Biosens. Bioelectron. 2017, 96, 8–16. 10.1016/j.bios.2017.04.030. PubMed DOI

Zhou J.; Chen L.; Wang Y.; He Y.; Pan X.; Xie E. An Overview on Emerging Photoelectrochemical Self-Powered Ultraviolet Photodetectors. Nanoscale 2016, 8 (1), 50–73. 10.1039/C5NR06167A. PubMed DOI

Tian W.; Wang Y.; Chen L.; Li L. Self-Powered Nanoscale Photodetectors. Small 2017, 13 (45), 1701848.10.1002/smll.201701848. PubMed DOI

Hosseini S. E.; Wahid M. A. Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renewable Sustainable Energy Rev. 2016, 57, 850–866. 10.1016/j.rser.2015.12.112. DOI

Dincer I.; Acar C. Review and Evaluation of Hydrogen Production Methods for Better Sustainability. Int. J. Hydrogen Energy 2015, 40 (34), 11094–11111. 10.1016/j.ijhydene.2014.12.035. DOI

Gregory D. P. The Hydrogen Economy. Sci. Am. 1973, 228 (1), 13–21. 10.1038/scientificamerican0173-13. PubMed DOI

Crabtree G. W.; Dresselhaus M. S.; Buchanan M. V. The Hydrogen Economy. Phys. Today 2004, 57 (12), 39–44. 10.1063/1.1878333. DOI

Chen K.; Wang S.; He C.; Zhu H.; Zhao H.; Guo D.; Chen Z.; Shen J.; Li P.; Liu A.; Li C.; Wu F.; Tang W. Photoelectrochemical Self-Powered Solar-Blind Photodetectors Based on Ga2O3 Nanorod Array/Electrolyte Solid/Liquid Heterojunctions with a Large Separation Interface of Photogenerated Carriers. ACS Appl. Nano Mater. 2019, 2 (10), 6169–6177. 10.1021/acsanm.9b00992. DOI

Chen D.; Wei L.; Meng L.; Wang D.; Chen Y.; Tian Y.; Yan S.; Mei L.; Jiao J.. High-Performance Self-Powered UV Detector Based on SnO2–TiO2 Nanomace Arrays. Nanoscale Res. Lett. 2018, 1310.1186/s11671-018-2501-x. PubMed DOI PMC

Wang B.; Huang Z.; Tang P.; Luo S.; Liu Y.; Li J.; Qi X. One-Pot Synthesized Bi 2 Te 3 /Graphene for a Self-Powered Photoelectrochemical-Type Photodetector. Nanotechnology 2020, 31 (11), 115201.10.1088/1361-6528/ab5970. PubMed DOI

Liu N.; Qiao H.; Xu K.; Xi Y.; Ren L.; Cheng N.; Cui D.; Qi X.; Xu X.; Hao W.; Dou S. X.; Du Y. Hydrogen Terminated Germanene for a Robust Self-Powered Flexible Photoelectrochemical Photodetector. Small 2020, 16 (23), 2000283.10.1002/smll.202000283. PubMed DOI

Li J.; Wu X.; Shirolkar M. M.; Li M.; Xu C.; Wang H. A High Performance ZnO Based Photoelectrochemical Cell Type UV Photodetector with [Co(Bpy)3]3+/2+ Electrolyte and PEDOT/ITO Counter Electrode. RSC Adv. 2017, 7 (31), 18987–18992. 10.1039/C7RA02091K. DOI

Bellani S.; Antognazza M. R.; Bonaccorso F. Carbon-Based Photocathode Materials for Solar Hydrogen Production. Adv. Mater. 2019, 31 (9), 1801446.10.1002/adma.201801446. PubMed DOI

Zhu S.; Wang D. Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Adv. Energy Mater. 2017, 7 (23), 1700841.10.1002/aenm.201700841. DOI

Lianos P. Review of Recent Trends in Photoelectrocatalytic Conversion of Solar Energy to Electricity and Hydrogen. Appl. Catal., B 2017, 210, 235–254. 10.1016/j.apcatb.2017.03.067. DOI

Faraji M.; Yousefi M.; Yousefzadeh S.; Zirak M.; Naseri N.; Jeon T. H.; Choi W.; Moshfegh A. Z. Two-Dimensional Materials in Semiconductor Photoelectrocatalytic Systems for Water Splitting. Energy Environ. Sci. 2019, 12 (1), 59–95. 10.1039/C8EE00886H. DOI

Li Y.; Li Y.-L.; Sa B.; Ahuja R. Review of Two-Dimensional Materials for Photocatalytic Water Splitting from a Theoretical Perspective. Catal. Sci. Technol. 2017, 7 (3), 545–559. 10.1039/C6CY02178F. DOI

Su T.; Shao Q.; Qin Z.; Guo Z.; Wu Z. Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catal. 2018, 8 (3), 2253–2276. 10.1021/acscatal.7b03437. DOI

Gan X.; Lei D.; Wong K.-Y. Two-Dimensional Layered Nanomaterials for Visible-Light-Driven Photocatalytic Water Splitting. Mater. Today Energy 2018, 10, 352–367. 10.1016/j.mtener.2018.10.015. DOI

Matsumoto Y.; Koinuma M.; Ida S.; Hayami S.; Taniguchi T.; Hatakeyama K.; Tateishi H.; Watanabe Y.; Amano S. Photoreaction of Graphene Oxide Nanosheets in Water. J. Phys. Chem. C 2011, 115 (39), 19280–19286. 10.1021/jp206348s. DOI

Yeh T.-F.; Cihlář J.; Chang C.-Y.; Cheng C.; Teng H. Roles of Graphene Oxide in Photocatalytic Water Splitting. Mater. Today 2013, 16 (3), 78–84. 10.1016/j.mattod.2013.03.006. DOI

Xiang Q.; Cheng B.; Yu J. Graphene-Based Photocatalysts for Solar-Fuel Generation. Angew. Chem., Int. Ed. 2015, 54 (39), 11350–11366. 10.1002/anie.201411096. PubMed DOI

Xie G.; Zhang K.; Guo B.; Liu Q.; Fang L.; Gong J. R. Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Adv. Mater. 2013, 25 (28), 3820–3839. 10.1002/adma.201301207. PubMed DOI

Naseri A.; Samadi M.; Pourjavadi A.; Moshfegh A. Z.; Ramakrishna S. Graphitic Carbon Nitride (g-C 3 N 4)-Based Photocatalysts for Solar Hydrogen Generation: Recent Advances and Future Development Directions. J. Mater. Chem. A 2017, 5 (45), 23406–23433. 10.1039/C7TA05131J. DOI

Jorge A. B.; Martin D. J.; Dhanoa M. T. S.; Rahman A. S.; Makwana N.; Tang J.; Sella A.; Corà F.; Firth S.; Darr J. A.; McMillan P. F. H2 and O2 Evolution from Water Half-Splitting Reactions by Graphitic Carbon Nitride Materials. J. Phys. Chem. C 2013, 117 (14), 7178–7185. 10.1021/jp4009338. DOI

Wang X.; Blechert S.; Antonietti M. Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catal. 2012, 2 (8), 1596–1606. 10.1021/cs300240x. DOI

Peng R.; Liang L.; Hood Z. D.; Boulesbaa A.; Puretzky A.; Ievlev A. V.; Come J.; Ovchinnikova O. S.; Wang H.; Ma C.; Chi M.; Sumpter B. G.; Wu Z. In-Plane Heterojunctions Enable Multiphasic Two-Dimensional (2D) MoS2 Nanosheets As Efficient Photocatalysts for Hydrogen Evolution from Water Reduction. ACS Catal. 2016, 6 (10), 6723–6729. 10.1021/acscatal.6b02076. DOI

Qi Y.; Xu Q.; Wang Y.; Yan B.; Ren Y.; Chen Z. CO2-Induced Phase Engineering: Protocol for Enhanced Photoelectrocatalytic Performance of 2D MoS2 Nanosheets. ACS Nano 2016, 10 (2), 2903–2909. 10.1021/acsnano.6b00001. PubMed DOI

Mahler B.; Hoepfner V.; Liao K.; Ozin G. A. Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2014, 136 (40), 14121–14127. 10.1021/ja506261t. PubMed DOI

Andoshe D. M.; Jeon J.-M.; Kim S. Y.; Jang H. W. Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting. Electron. Mater. Lett. 2015, 11 (3), 323–335. 10.1007/s13391-015-4402-9. DOI

Zhang Q.; Wang W.; Zhang J.; Zhu X.; Zhang Q.; Zhang Y.; Ren Z.; Song S.; Wang J.; Ying Z.; Wang R.; Qiu X.; Peng T.; Fu L. Highly Efficient Photocatalytic Hydrogen Evolution by ReS 2 via a Two-Electron Catalytic Reaction. Adv. Mater. 2018, 30 (23), 1707123.10.1002/adma.201707123. PubMed DOI

Liu H.; Xu B.; Liu J. M.; Yin J.; Miao F.; Duan C. G.; Wan X. G. Highly Efficient and Ultrastable Visible-Light Photocatalytic Water Splitting over ReS2. Phys. Chem. Chem. Phys. 2016, 18 (21), 14222–14227. 10.1039/C6CP01007E. PubMed DOI

Ida S.; Ishihara T. Recent Progress in Two-Dimensional Oxide Photocatalysts for Water Splitting. J. Phys. Chem. Lett. 2014, 5 (15), 2533–2542. 10.1021/jz5010957. PubMed DOI

Abe R.; Shinohara K.; Tanaka A.; Hara M.; Kondo J. N.; Domen K. Preparation of Porous Niobium Oxides by Soft-Chemical Process and Their Photocatalytic Activity. Chem. Mater. 1997, 9 (10), 2179–2184. 10.1021/cm970284v. DOI

Compton O. C.; Mullet C. H.; Chiang S.; Osterloh F. E. A Building Block Approach to Photochemical Water-Splitting Catalysts Based on Layered Niobate Nanosheets. J. Phys. Chem. C 2008, 112 (15), 6202–6208. 10.1021/jp711589z. DOI

Rahman M. Z.; Kwong C. W.; Davey K.; Qiao S. Z. 2D Phosphorene as a Water Splitting Photocatalyst: Fundamentals to Applications. Energy Environ. Sci. 2016, 9 (3), 709–728. 10.1039/C5EE03732H. DOI

Zhu M.; Osakada Y.; Kim S.; Fujitsuka M.; Majima T. Black Phosphorus: A Promising Two Dimensional Visible and near-Infrared-Activated Photocatalyst for Hydrogen Evolution. Appl. Catal., B 2017, 217 (217), 285–292. 10.1016/j.apcatb.2017.06.002. DOI

Hu W.; Lin L.; Zhang R.; Yang C.; Yang J. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons. J. Am. Chem. Soc. 2017, 139 (43), 15429–15436. 10.1021/jacs.7b08474. PubMed DOI

Sa B.; Li Y. L.; Qi J.; Ahuja R.; Sun Z. Strain Engineering for Phosphorene: The Potential Application as a Photocatalyst. J. Phys. Chem. C 2014, 118 (46), 26560–26568. 10.1021/jp508618t. DOI

Rupp C. J.; Chakraborty S.; Anversa J.; Baierle R. J.; Ahuja R. Rationalizing the Hydrogen and Oxygen Evolution Reaction Activity of Two-Dimensional Hydrogenated Silicene and Germanene. ACS Appl. Mater. Interfaces 2016, 8 (2), 1536–1544. 10.1021/acsami.5b11513. PubMed DOI

Guo Z.; Zhou J.; Zhu L.; Sun Z. MXene: A Promising Photocatalyst for Water Splitting. J. Mater. Chem. A 2016, 4 (29), 11446–11452. 10.1039/C6TA04414J. DOI

Liu J.; Li X. B.; Wang D.; Liu H.; Peng P.; Liu L. M. Single-Layer Group-IVB Nitride Halides as Promising Photocatalysts. J. Mater. Chem. A 2014, 2 (19), 6755–6761. 10.1039/c3ta15431a. DOI

Zhou J.; Sumpter B. G.; Kent P. R. C.; Huang J. A Novel and Functional Single-Layer Sheet of ZnSe. ACS Appl. Mater. Interfaces 2015, 7 (3), 1458–1464. 10.1021/am505655m. PubMed DOI

Sun Y.; Sun Z.; Gao S.; Cheng H.; Liu Q.; Piao J.; Yao T.; Wu C.; Hu S.; Wei S.; Xie Y. Fabrication of Flexible and Freestanding Zinc Chalcogenide Single Layers. Nat. Commun. 2012, 3 (1), 1057.10.1038/ncomms2066. PubMed DOI

Peng Q.; Xiong R.; Sa B.; Zhou J.; Wen C.; Wu B.; Anpo M.; Sun Z. Computational Mining of Photocatalysts for Water Splitting Hydrogen Production: Two-Dimensional InSe-Family Monolayers. Catal. Sci. Technol. 2017, 7 (13), 2744–2752. 10.1039/C7CY00090A. DOI

Cui Y.; Peng L.; Sun L.; Qian Q.; Huang Y. Two-Dimensional Few-Layer Group-III Metal Monochalcogenides as Effective Photocatalysts for Overall Water Splitting in the Visible Range. J. Mater. Chem. A 2018, 6 (45), 22768–22777. 10.1039/C8TA08103D. DOI

Zhuang H. L.; Hennig R. G. Single-Layer Group-III Monochalcogenide Photocatalysts for Water Splitting. Chem. Mater. 2013, 25 (15), 3232–3238. 10.1021/cm401661x. DOI

Zappia M. I.; Bianca G.; Bellani S.; Serri M.; Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Bouša D.; Sedmidubský D.; Pellegrini V.; Sofer Z.; Cupolillo A.; Bonaccorso F. Solution-Processed GaSe Nanoflake-Based Films for Photoelectrochemical Water Splitting and Photoelectrochemical-Type Photodetectors. Adv. Funct. Mater. 2020, 30 (10), 1909572.10.1002/adfm.201909572. DOI

Kishore M. R. A.; Ravindran P. Te. Doped Indium (II) Selenide Photocatalyst for Water Splitting: A First Principles Study. In AIP Conference Proceedings; 2017; Vol. 1832.

Li Z.; Qiao H.; Guo Z.; Ren X.; Huang Z.; Qi X.; Dhanabalan S. C.; Ponraj J. S.; Zhang D.; Li J.; Zhao J.; Zhong J.; Zhang H. High-Performance Photo-Electrochemical Photodetector Based on Liquid-Exfoliated Few-Layered InSe Nanosheets with Enhanced Stability. Adv. Funct. Mater. 2018, 28 (16), 1705237.10.1002/adfm.201705237. DOI

Chowdhury C.; Karmakar S.; Datta A. Monolayer Group IV-VI Monochalcogenides: Low-Dimensional Materials for Photocatalytic Water Splitting. J. Phys. Chem. C 2017, 121 (14), 7615–7624. 10.1021/acs.jpcc.6b12080. DOI

Lv X.; Wei W.; Sun Q.; Li F.; Huang B.; Dai Y. Two-Dimensional Germanium Monochalcogenides for Photocatalytic Water Splitting with High Carrier Mobility. Appl. Catal., B 2017, 217, 275–284. 10.1016/j.apcatb.2017.05.087. DOI

Sun L.; Cui Y.; Peng L.; Du J.; Wang S.; Huang Y. Two-Dimensional Blue-Phosphorene-Phase Germanium Monochalcogenide Photocatalysts for Water Splitting: From Ultraviolet to Visible Absorption. J. Catal. 2019, 373, 67–74. 10.1016/j.jcat.2019.03.031. DOI

Qiao M.; Chen Y.; Wang Y.; Li Y. The Germanium Telluride Monolayer: A Two Dimensional Semiconductor with High Carrier Mobility for Photocatalytic Water Splitting. J. Mater. Chem. A 2018, 6 (9), 4119–4125. 10.1039/C7TA10360C. DOI

Ji Y.; Yang M.; Dong H.; Hou T.; Wang L.; Li Y. Two-Dimensional Germanium Monochalcogenide Photocatalyst for Water Splitting under Ultraviolet, Visible to near-Infrared Light. Nanoscale 2017, 9 (25), 8608–8615. 10.1039/C7NR00688H. PubMed DOI

Zhu Y. L.; Yuan J. H.; Song Y. Q.; Wang S.; Xue K. H.; Xu M.; Cheng X. M.; Miao X. S. Two-Dimensional Silicon Chalcogenides with High Carrier Mobility for Photocatalytic Water Splitting. J. Mater. Sci. 2019, 54 (17), 11485–11496. 10.1007/s10853-019-03699-y. DOI

Li X.; Zuo X.; Jiang X.; Li D.; Cui B.; Liu D. Enhanced Photocatalysis for Water Splitting in Layered Tin Chalcogenides with High Carrier Mobility. Phys. Chem. Chem. Phys. 2019, 21 (14), 7559–7566. 10.1039/C9CP00088G. PubMed DOI

Ye Y.; Guo Q.; Liu X.; Liu C.; Wang J.; Liu Y.; Qiu J. Two-Dimensional GeSe as an Isostructural and Isoelectronic Analogue of Phosphorene: Sonication-Assisted Synthesis, Chemical Stability, and Optical Properties. Chem. Mater. 2017, 29 (19), 8361–8368. 10.1021/acs.chemmater.7b02784. DOI

Wu M.; Wei S.-H.; Huang L. Origin of Polymorphism of the Two-Dimensional Group-IV Monochalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96 (20), 205411.10.1103/PhysRevB.96.205411. DOI

Singh A. K.; Hennig R. G. Computational Prediction of Two-Dimensional Group-IV Mono-Chalcogenides. Appl. Phys. Lett. 2014, 105 (4), 04210310.1063/1.4891230. DOI

Gomes L. C.; Carvalho A. Phosphorene Analogues: Isoelectronic Two-Dimensional Group-IV Monochalcogenides with Orthorhombic Structure. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92 (8), 08540610.1103/PhysRevB.92.085406. DOI

Zhu Z.; Guan J.; Liu D.; Tománek D. Designing Isoelectronic Counterparts to Layered Group V Semiconductors. ACS Nano 2015, 9 (8), 8284–8290. 10.1021/acsnano.5b02742. PubMed DOI

Pletikosić I.; von Rohr F.; Pervan P.; Das P. K.; Vobornik I.; Cava R. J.; Valla T. Band Structure of the IV-VI Black Phosphorus Analog and Thermoelectric SnSe. Phys. Rev. Lett. 2018, 120 (15), 156403.10.1103/PhysRevLett.120.156403. PubMed DOI

Kamal C.; Chakrabarti A.; Ezawa M. Direct Band Gaps in Group IV-VI Monolayer Materials: Binary Counterparts of Phosphorene. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93 (12), 125428.10.1103/PhysRevB.93.125428. DOI

He H.; Orlando R.; Blanco M. A.; Pandey R.; Amzallag E.; Baraille I.; Rérat M. First-Principles Study of the Structural, Electronic, and Optical Properties of Ga2O3 in its monoclinic and hxagonal phases. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 74 (19), 195123.10.1103/PhysRevB.74.195123. DOI

Gu D.; Tao X.; Chen H.; Zhu W.; Ouyang Y.; Peng Q. Enhanced Photocatalytic Activity for Water Splitting of Blue-Phase GeS and GeSe Monolayers via Biaxial Straining. Nanoscale 2019, 11 (5), 2335–2342. 10.1039/C8NR08908F. PubMed DOI

Yang J. H.; Zhang Y.; Yin W. J.; Gong X. G.; Yakobson B. I.; Wei S. H. Two-Dimensional SiS Layers with Promising Electronic and Optoelectronic Properties: Theoretical Prediction. Nano Lett. 2016, 16 (2), 1110–1117. 10.1021/acs.nanolett.5b04341. PubMed DOI

Wiedemeier H.; Csillag F. J. The Thermal Expansion and High Temperature Transformation of SnS and SnSe. Z. Kristallogr. - Cryst. Mater. 1979, 149 (1–2), 17–29. 10.1524/zkri.1979.149.1-2.17. DOI

Dewandre A.; Hellman O.; Bhattacharya S.; Romero A. H.; Madsen G. K. H.; Verstraete M. J. Two-Step Phase Transition in SnSe and the Origins of Its High Power Factor from First Principles. Phys. Rev. Lett. 2016, 117 (27), 276601.10.1103/PhysRevLett.117.276601. PubMed DOI

Zhao L.-D.; Lo S.-H.; Zhang Y.; Sun H.; Tan G.; Uher C.; Wolverton C.; Dravid V. P.; Kanatzidis M. G. Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals. Nature 2014, 508 (7496), 373–377. 10.1038/nature13184. PubMed DOI

Ul Haq B.; AlFaify S.; Laref A.; Ahmed R.; Taib M. F. M. Dimensionality Reduction of Germanium Selenide for High-Efficiency Thermoelectric Applications. Ceram. Int. 2019, 45 (12), 15122–15127. 10.1016/j.ceramint.2019.04.253. DOI

Zhou X.; Hu X.; Zhou S.; Zhang Q.; Li H.; Zhai T. Ultrathin 2D GeSe 2 Rhombic Flakes with High Anisotropy Realized by Van Der Waals Epitaxy. Adv. Funct. Mater. 2017, 27 (47), 1703858.10.1002/adfm.201703858. DOI

von Rohr F. O.; Ji H.; Cevallos F. A.; Gao T.; Ong N. P.; Cava R. J. High-Pressure Synthesis and Characterization of β-GeSe—A Six-Membered-Ring Semiconductor in an Uncommon Boat Conformation. J. Am. Chem. Soc. 2017, 139 (7), 2771–2777. 10.1021/jacs.6b12828. PubMed DOI

Zhou J.; Zhang S.; Li J. Normal-to-Topological Insulator Martensitic Phase Transition in Group-IV Monochalcogenides Driven by Light. NPG Asia Mater. 2020, 12 (1), 2.10.1038/s41427-019-0188-9. DOI

Wang Z.; Wang J.; Zang Y.; Zhang Q.; Shi J.-A.; Jiang T.; Gong Y.; Song C.-L.; Ji S.-H.; Wang L.-L.; Gu L.; He K.; Duan W.; Ma X.; Chen X.; Xue Q.-K. Molecular Beam Epitaxy-Grown SnSe in the Rock-Salt Structure: An Artificial Topological Crystalline Insulator Material. Adv. Mater. 2015, 27 (28), 4150–4154. 10.1002/adma.201501676. PubMed DOI

Hu Z.-Y.; Li K.-Y.; Lu Y.; Huang Y.; Shao X.-H. High Thermoelectric Performances of Monolayer SnSe Allotropes. Nanoscale 2017, 9 (41), 16093–16100. 10.1039/C7NR04766E. PubMed DOI

Zhang S.; Liu S.; Huang S.; Cai B.; Xie M.; Qu L.; Zou Y.; Hu Z.; Yu X.; Zeng H. Structural and Electronic Properties of Atomically Thin Germanium Selenide Polymorphs. Sci. China Mater. 2015, 58 (12), 929–935. 10.1007/s40843-015-0107-5. DOI

Hu T.; Dong J. Two New Phases of Monolayer Group-IV Monochalcogenides and Their Piezoelectric Properties. Phys. Chem. Chem. Phys. 2016, 18 (47), 32514–32520. 10.1039/C6CP06734D. PubMed DOI

Kagdada H. L.; Jha P. K.; Śpiewak P.; Kurzydłowski K. J.; Singh D. K. Pressure-Induced First Order Phase Transition in Bulk GeSe. J. Appl. Phys. 2020, 127 (17), 175104.10.1063/1.5139952. DOI

Hu Z.; Ding Y.; Hu X.; Zhou W.; Yu X.; Zhang S. Recent Progress in 2D Group IV–IV Monochalcogenides: Synthesis, Properties and Applications. Nanotechnology 2019, 30 (25), 252001.10.1088/1361-6528/ab07d9. PubMed DOI

Hu Y.; Zhang S.; Sun S.; Xie M.; Cai B.; Zeng H. GeSe Monolayer Semiconductor with Tunable Direct Band Gap and Small Carrier Effective Mass. Appl. Phys. Lett. 2015, 107 (12), 122107.10.1063/1.4931459. DOI

Fan Z.-Q.; Jiang X.-W.; Wei Z.; Luo J.-W.; Li S.-S. Tunable Electronic Structures of GeSe Nanosheets and Nanoribbons. J. Phys. Chem. C 2017, 121 (26), 14373–14379. 10.1021/acs.jpcc.7b04607. DOI

Nguyen H. T. T.; Vu T. V.; Binh N. T. T.; Hoat D. M.; Hieu N. V.; Anh N. T. T.; Nguyen C. V.; Phuc H. V.; Jappor H. R.; Obeid M. M.; Hieu N. N. Strain-Tunable Electronic and Optical Properties of Monolayer GeSe: Promising for Photocatalytic Water Splitting Applications. Chem. Phys. 2020, 529, 110543.10.1016/j.chemphys.2019.110543. DOI

Huang L.; Wu F.; Li J. Structural Anisotropy Results in Strain-Tunable Electronic and Optical Properties in Monolayer GeX and SnX (X = S, Se, Te). J. Chem. Phys. 2016, 144 (11), 114708.10.1063/1.4943969. PubMed DOI

Zhao P.; Yang H.; Li J.; Jin H.; Wei W.; Yu L.; Huang B.; Dai Y. Design of New Photovoltaic Systems Based on Two-Dimensional Group-IV Monochalcogenides for High Performance Solar Cells. J. Mater. Chem. A 2017, 5 (46), 24145–24152. 10.1039/C7TA08097B. DOI

Xue D. J.; Liu S. C.; Dai C. M.; Chen S.; He C.; Zhao L.; Hu J. S.; Wan L. J. GeSe Thin-Film Solar Cells Fabricated by Self-Regulated Rapid Thermal Sublimation. J. Am. Chem. Soc. 2017, 139 (2), 958–965. 10.1021/jacs.6b11705. PubMed DOI

Liu S. C.; Mi Y.; Xue D. J.; Chen Y. X.; He C.; Liu X.; Hu J. S.; Wan L. J. Investigation of Physical and Electronic Properties of GeSe for Photovoltaic Applications. Adv. Electron. Mater. 2017, 3 (11), 1700141.10.1002/aelm.201700141. DOI

Cook A. M.; Fregoso B. M.; de Juan F.; Coh S.; Moore J. E. Design Principles for Shift Current Photovoltaics. Nat. Commun. 2017, 8 (1), 14176.10.1038/ncomms14176. PubMed DOI PMC

Mukherjee B.; Cai Y.; Tan H. R.; Feng Y. P.; Tok E. S.; Sow C. H. NIR Schottky Photodetectors Based on Individual Single-Crystalline GeSe Nanosheet. ACS Appl. Mater. Interfaces 2013, 5 (19), 9594–9604. 10.1021/am402550s. PubMed DOI

Xue D.-J.; Tan J.; Hu J.-S.; Hu W.; Guo Y.-G.; Wan L.-J. Anisotropic Photoresponse Properties of Single Micrometer-Sized GeSe Nanosheet. Adv. Mater. 2012, 24 (33), 4528–4533. 10.1002/adma.201201855. PubMed DOI

Ramasamy P.; Kwak D.; Lim D.-H.; Ra H.-S.; Lee J.-S. Solution Synthesis of GeS and GeSe Nanosheets for High-Sensitivity Photodetectors. J. Mater. Chem. C 2016, 4 (3), 479–485. 10.1039/C5TC03667D. DOI

Ma D.; Zhao J.; Wang R.; Xing C.; Li Z.; Huang W.; Jiang X.; Guo Z.; Luo Z.; Li Y.; Li J.; Luo S.; Zhang Y.; Zhang H. Ultrathin GeSe Nanosheets: From Systematic Synthesis to Studies of Carrier Dynamics and Applications for a High-Performance UV–Vis Photodetector. ACS Appl. Mater. Interfaces 2019, 11 (4), 4278–4287. 10.1021/acsami.8b19836. PubMed DOI

Tan D.; Wang X.; Zhang W.; Lim H. E.; Shinokita K.; Miyauchi Y.; Maruyama M.; Okada S.; Matsuda K. Carrier Transport and Photoresponse in GeSe/MoS 2 Heterojunction p–n Diodes. Small 2018, 14 (22), 1704559.10.1002/smll.201704559. PubMed DOI

Zhou X.; Hu X.; Jin B.; Yu J.; Liu K.; Li H.; Zhai T. Highly Anisotropic GeSe Nanosheets for Phototransistors with Ultrahigh Photoresponsivity. Adv. Sci. 2018, 5 (8), 1800478.10.1002/advs.201800478. PubMed DOI PMC

Hu X.; Huang P.; Liu K.; Jin B.; Zhang X.; Zhang X.; Zhou X.; Zhai T. Salt-Assisted Growth of Ultrathin GeSe Rectangular Flakes for Phototransistors with Ultrahigh Responsivity. ACS Appl. Mater. Interfaces 2019, 11 (26), 23353–23360. 10.1021/acsami.9b06425. PubMed DOI

Brahma M.; Kabiraj A.; Saha D.; Mahapatra S. Scalability Assessment of Group-IV Mono-Chalcogenide Based Tunnel FET. Sci. Rep. 2018, 8 (1), 5993.10.1038/s41598-018-24209-1. PubMed DOI PMC

Kang S.-Y.; Yoon Y.-S.; Park N.-W.; Lee W.-Y.; Kim G.-S.; Yoon Y.-G.; Koh J.-H.; Koo S.-M.; Umar A.; Lee S.-K. Electrical Properties of Exfoliated Multilayer Germanium Selenide (GeSe) Nanoflake Field-Effect Transistors. Sci. Adv. Mater. 2018, 10 (11), 1596–1600. 10.1166/sam.2018.3375. DOI

Yap W. C.; Yang Z.; Mehboudi M.; Yan J. A.; Barraza-Lopez S.; Zhu W. Layered Material GeSe and Vertical GeSe/MoS2 p-n Heterojunctions. Nano Res. 2018, 11 (1), 420–430. 10.1007/s12274-017-1646-8. DOI

Alhazmi A.; Amer M. R.. Electron Transport Performance of Germanium Selenide and Germanium Sulfide Field-Effect-Transistors in Dual Gates Configuration. In 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO); IEEE, 2018; pp 1–1.

Liu C.; Guan S.; Yin H.; Wan W.; Wang Y.; Zhang Y. γ-GeSe: A Two-Dimensional Ferroelectric Material with Doping-Induced Ferromagnetism. Appl. Phys. Lett. 2019, 115 (25), 252904.10.1063/1.5133022. DOI

Li Z.; Liu M.; Chen Q.; Huang Y.; Cao C.; He Y. The Electronic Structure of GeSe Monolayer with Light Nonmetallic Elements Decoration. Superlattices Microstruct. 2017, 109, 829–840. 10.1016/j.spmi.2017.05.068. DOI

Fei R.; Li W.; Li J.; Yang L. Giant Piezoelectricity of Monolayer Group IV Monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 2015, 107 (17), 173104.10.1063/1.4934750. DOI

Fei R.; Kang W.; Yang L. Ferroelectricity and Phase Transitions in Monolayer Group-IV Monochalcogenides. Phys. Rev. Lett. 2016, 117 (9), 09760110.1103/PhysRevLett.117.097601. PubMed DOI

Zhou Y.; Zhao M.; Chen Z. W.; Shi X. M.; Jiang Q. Potential Application of 2D Monolayer β-GeSe as an Anode Material in Na/K Ion Batteries. Phys. Chem. Chem. Phys. 2018, 20 (48), 30290–30296. 10.1039/C8CP05484C. PubMed DOI

He C.; Zhang J. H.; Zhang W. X.; Li T. T. GeSe/BP van Der Waals Heterostructures as Promising Anode Materials for Potassium-Ion Batteries. J. Phys. Chem. C 2019, 123 (9), 5157–5163. 10.1021/acs.jpcc.8b08909. DOI

Sannyal A.; Zhang Z.; Gao X.; Jang J. Two-Dimensional Sheet of Germanium Selenide as an Anode Material for Sodium and Potassium Ion Batteries: First-Principles Simulation Study. Comput. Mater. Sci. 2018, 154, 204–211. 10.1016/j.commatsci.2018.08.002. DOI

Zhou Y. MX (M = Ge, Sn; X = S, Se) Sheets: Theoretical Prediction of New Promising Electrode Materials for Li Ion Batteries. J. Mater. Chem. A 2016, 4 (28), 10906–10913. 10.1039/C6TA03076A. DOI

Zacharia R.; Ulbricht H.; Hertel T. Interlayer Cohesive Energy of Graphite from Thermal Desorption of Polyaromatic Hydrocarbons. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 69 (15), 155406-1–155406-7. 10.1103/PhysRevB.69.155406. DOI

Ziambaras E.; Kleis J.; Schröder E.; Hyldgaard P. Potassium Intercalation in Graphite: A van Der Waals Density-Functional Study. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76 (15), 155425.10.1103/PhysRevB.76.155425. DOI

Wang W.; Dai S.; Li X.; Yang J.; Srolovitz D. J.; Zheng Q. Measurement of the Cleavage Energy of Graphite. Nat. Commun. 2015, 6 (1), 7853.10.1038/ncomms8853. PubMed DOI PMC

Björkman T.; Gulans A.; Krasheninnikov A. V.; Nieminen R. M. Van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Phys. Rev. Lett. 2012, 108 (23), 235502.10.1103/PhysRevLett.108.235502. PubMed DOI

Schusteritsch G.; Uhrin M.; Pickard C. J. Single-Layered Hittorf’s Phosphorus: A Wide-Bandgap High Mobility 2D Material. Nano Lett. 2016, 16 (5), 2975–2980. 10.1021/acs.nanolett.5b05068. PubMed DOI

Shulenburger L.; Baczewski A. D.; Zhu Z.; Guan J.; Tománek D. The Nature of the Interlayer Interaction in Bulk and Few-Layer Phosphorus. Nano Lett. 2015, 15 (12), 8170–8175. 10.1021/acs.nanolett.5b03615. PubMed DOI

Bonaccorso F.; Lombardo A.; Hasan T.; Sun Z.; Colombo L.; Ferrari A. C. Production and Processing of Graphene and 2d Crystals. Mater. Today 2012, 15 (12), 564–589. 10.1016/S1369-7021(13)70014-2. DOI

Yi M.; Shen Z. A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A 2015, 3 (22), 11700–11715. 10.1039/C5TA00252D. DOI

Magda G. Z.; Pető J.; Dobrik G.; Hwang C.; Biró L. P.; Tapasztó L. Exfoliation of Large-Area Transition Metal Chalcogenide Single Layers. Sci. Rep. 2015, 5 (1), 14714.10.1038/srep14714. PubMed DOI PMC

Bonaccorso F.; Bartolotta A.; Coleman J. N.; Backes C. 2D-Crystal-Based Functional Inks. Adv. Mater. 2016, 28 (29), 6136–6166. 10.1002/adma.201506410. PubMed DOI

Del Rio Castillo A. E.; Pellegrini V.; Ansaldo A.; Ricciardella F.; Sun H.; Marasco L.; Buha J.; Dang Z.; Gagliani L.; Lago E.; Curreli N.; Gentiluomo S.; Palazon F.; Prato M.; Oropesa-Nuñez R.; Toth P. S.; Mantero E.; Crugliano M.; Gamucci A.; Tomadin A.; Polini M.; Bonaccorso F. High-Yield Production of 2D Crystals by Wet-Jet Milling. Mater. Horiz. 2018, 5 (5), 890–904. 10.1039/C8MH00487K. DOI

Bellani S.; Petroni E.; Del Rio Castillo A. E.; Curreli N.; Martín-García B.; Oropesa-Nuñez R.; Prato M.; Bonaccorso F. Scalable Production of Graphene Inks via Wet-Jet Milling Exfoliation for Screen-Printed Micro-Supercapacitors. Adv. Funct. Mater. 2019, 29 (14), 1807659.10.1002/adfm.201807659. DOI

Ribeiro H. B.; Ramos S. L. L. M.; Seixas L.; de Matos C. J. S.; Pimenta M. A. Edge Phonons in Layered Orthorhombic GeS and GeSe Monochalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 2019, 100 (9), 09430110.1103/PhysRevB.100.094301. DOI

Mao Y.; Mao X.; Zhao H.; Zhang N.; Shi X.; Yuan J. Enhancement of Photoluminescence Efficiency in GeSe Ultrathin Slab by Thermal Treatment and Annealing: Experiment and First-Principles Molecular Dynamics Simulations. Sci. Rep. 2018, 8 (1), 17671.10.1038/s41598-018-36068-x. PubMed DOI PMC

Gomes L. C.; Carvalho A.; Castro Neto A. H. Vacancies and Oxidation of Two-Dimensional Group-IV Monochalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94 (5), 05410310.1103/PhysRevB.94.054103. DOI

Guo Y.; Zhou S.; Bai Y.; Zhao J. Oxidation Resistance of Monolayer Group-IV Monochalcogenides. ACS Appl. Mater. Interfaces 2017, 9 (13), 12013–12020. 10.1021/acsami.6b16786. PubMed DOI

Favron A.; Gaufrès E.; Fossard F.; Phaneuf-L’Heureux A.-L.; Tang N. Y. W.; Lévesque P. L.; Loiseau A.; Leonelli R.; Francoeur S.; Martel R. Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus. Nat. Mater. 2015, 14 (8), 826–832. 10.1038/nmat4299. PubMed DOI

Huang Y.; Qiao J.; He K.; Bliznakov S.; Sutter E.; Chen X.; Luo D.; Meng F.; Su D.; Decker J.; Ji W.; Ruoff R. S.; Sutter P. Interaction of Black Phosphorus with Oxygen and Water. Chem. Mater. 2016, 28 (22), 8330–8339. 10.1021/acs.chemmater.6b03592. DOI

Ho P. H.; Chang Y. R.; Chu Y. C.; Li M. K.; Tsai C. A.; Wang W. H.; Ho C. H.; Chen C. W.; Chiu P. W. High-Mobility InSe Transistors: The Role of Surface Oxides. ACS Nano 2017, 11 (7), 7362–7370. 10.1021/acsnano.7b03531. PubMed DOI

Shi L.; Zhou Q.; Zhao Y.; Ouyang Y.; Ling C.; Li Q.; Wang J. Oxidation Mechanism and Protection Strategy of Ultrathin Indium Selenide: Insight from Theory. J. Phys. Chem. Lett. 2017, 8 (18), 4368–4373. 10.1021/acs.jpclett.7b02059. PubMed DOI

Ma D.; Li T.; Yuan D.; He C.; Lu Z.; Lu Z.; Yang Z.; Wang Y. The Role of the Intrinsic Se and In Vacancies in the Interaction of O 2 and H 2 O Molecules with the InSe Monolayer. Appl. Surf. Sci. 2018, 434, 215–227. 10.1016/j.apsusc.2017.10.204. DOI

Kowalski B. M.; Manz N.; Bethke D.; Shaner E. A.; Serov A.; Kalugin N. G. Role of Humidity in Oxidation of Ultrathin GaSe. Mater. Res. Express 2019, 6 (8), 08590710.1088/2053-1591/ab1dd2. DOI

Bergeron A.; Ibrahim J.; Leonelli R.; Francoeur S. Oxidation Dynamics of Ultrathin GaSe Probed through Raman Spectroscopy. Appl. Phys. Lett. 2017, 110 (24), 241901.10.1063/1.4986189. DOI

Vaughn D. D.; Patel R. J.; Hickner M. A.; Schaak R. E. Single-Crystal Colloidal Nanosheets of GeS and GeSe. J. Am. Chem. Soc. 2010, 132 (43), 15170–15172. 10.1021/ja107520b. PubMed DOI

Elkorashy A. M. Photoconductivity in Germanium Selenide Single Crystals. Phys. Status Solidi B 1989, 152 (1), 249–259. 10.1002/pssb.2221520128. DOI

Kannewurf C. R.; Cashman R. J. Optical Absorption and Photoconductivity in Germanium Selenide. J. Phys. Chem. Solids 1961, 22, 293–298. 10.1016/0022-3697(61)90274-8. DOI

Kumar A.; Ahluwalia P. K. Electronic Structure of Transition Metal Dichalcogenides Monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from Ab-Initio Theory: New Direct Band Gap Semiconductors. Eur. Phys. J. B 2012, 85 (6), 186.10.1140/epjb/e2012-30070-x. DOI

Ellis J. K.; Lucero M. J.; Scuseria G. E. The Indirect to Direct Band Gap Transition in Multilayered MoS2 as Predicted by Screened Hybrid Density Functional Theory. Appl. Phys. Lett. 2011, 99 (26), 261908.10.1063/1.3672219. DOI

Mak K. F.; Lee C.; Hone J.; Shan J.; Heinz T. F. Atomically Thin MoS 2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105 (13), 136805.10.1103/PhysRevLett.105.136805. PubMed DOI

Splendiani A.; Sun L.; Zhang Y.; Li T.; Kim J.; Chim C.-Y.; Galli G.; Wang F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10 (4), 1271–1275. 10.1021/nl903868w. PubMed DOI

Zhang Y.; Chang T. R.; Zhou B.; Cui Y. T.; Yan H.; Liu Z.; Schmitt F.; Lee J.; Moore R.; Chen Y.; Lin H.; Jeng H. T.; Mo S. K.; Hussain Z.; Bansil A.; Shen Z. X. Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe2. Nat. Nanotechnol. 2014, 9 (2), 111–115. 10.1038/nnano.2013.277. PubMed DOI

Shi G.; Kioupakis E. Anisotropic Spin Transport and Strong Visible-Light Absorbance in Few-Layer SnSe and GeSe. Nano Lett. 2015, 15 (10), 6926–6931. 10.1021/acs.nanolett.5b02861. PubMed DOI

Yang M.; Cao S.; You Q.; Shi L.-B.; Qian P. Intrinsic Carrier Mobility of Monolayer GeS and GeSe: First-Principles Calculation. Phys. E 2020, 118, 113877.10.1016/j.physe.2019.113877. PubMed DOI

Xu Y.; Zhang H.; Shao H.; Ni G.; Li J.; Lu H.; Zhang R.; Peng B.; Zhu Y.; Zhu H.; Soukoulis C. M. First-Principles Study on the Electronic, Optical, and Transport Properties of Monolayer α- and β -GeSe. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96 (24), 245421.10.1103/PhysRevB.96.245421. DOI

Shafique A.; Shin Y.-H. Thermoelectric and Phonon Transport Properties of Two-Dimensional IV–VI Compounds. Sci. Rep. 2017, 7 (1), 506.10.1038/s41598-017-00598-7. PubMed DOI PMC

Solanki G. K.; Deshpande M. P.; Agarwal M. K.; Patel P. D.; Vaidya S. N. Thermoelectric Power Factor Measurements in GeSe Single Crystals Grown Using Different Transporting Agents. J. Mater. Sci. Lett. 2003, 22 (14), 985–987. 10.1023/A:1024724922435. DOI

Tran P. D.; Artero V.; Fontecave M. Water Electrolysis and Photoelectrolysis on Electrodes Engineered Using Biological and Bio-Inspired Molecular Systems. Energy Environ. Sci. 2010, 3 (6), 727.10.1039/b926749b. DOI

Brimblecombe R.; Koo A.; Dismukes G. C.; Swiegers G. F.; Spiccia L. Solar Driven Water Oxidation by a Bioinspired Manganese Molecular Catalyst. J. Am. Chem. Soc. 2010, 132 (9), 2892–2894. 10.1021/ja910055a. PubMed DOI

Zhou P.; Yu J.; Jaroniec M. All-Solid-State Z-Scheme Photocatalytic Systems. Adv. Mater. 2014, 26 (29), 4920–4935. 10.1002/adma.201400288. PubMed DOI

Wang W.; Chen S.; Yang P. X.; Duan C. G.; Wang L. W. Si:WO3 Heterostructure for Z-Scheme Water Splitting: An Ab Initio Study. J. Mater. Chem. A 2013, 1 (4), 1078–1085. 10.1039/C2TA00441K. DOI

Kothe T.; Plumeré N.; Badura A.; Nowaczyk M. M.; Guschin D. A.; Rögner M.; Schuhmann W. Combination of a Photosystem 1-Based Photocathode and a Photosystem 2-Based Photoanode to a z-Scheme Mimic for Biophotovoltaic Applications. Angew. Chem., Int. Ed. 2013, 52 (52), 14233–14236. 10.1002/anie.201303671. PubMed DOI PMC

Peerakiatkhajohn P.; Yun J.-H.; Wang S.; Wang L. Review of Recent Progress in Unassisted Photoelectrochemical Water Splitting: From Material Modification to Configuration Design. J. Photonics Energy 2017, 7 (1), 01200610.1117/1.JPE.7.012006. DOI

Tachibana Y.; Vayssieres L.; Durrant J. R. Artificial Photosynthesis for Solar Water-Splitting. Nat. Photonics 2012, 6 (8), 511–518. 10.1038/nphoton.2012.175. DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Heyd J.; Scuseria G. E.; Ernzerhof M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118 (18), 8207–8215. 10.1063/1.1564060. DOI

Galy J.; Vignoles G. L. The Role of P 3s2 Lone Pair (E) in Structure. Solid State Sci. 2020, 100, 106068.10.1016/j.solidstatesciences.2019.106068. DOI

Boukhvalov D. W.; Rudenko A. N.; Prishchenko D. A.; Mazurenko V. G.; Katsnelson M. I. Chemical Modifications and Stability of Phosphorene with Impurities: A First Principles Study. Phys. Chem. Chem. Phys. 2015, 17 (23), 15209–15217. 10.1039/C5CP01901J. PubMed DOI

Zhang H.; Yang G.; Zuo X.; Tang H.; Yang Q.; Li G. Computational Studies on the Structural, Electronic and Optical Properties of Graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and Their Potential Applications as Visible-Light Driven Photocatalysts. J. Mater. Chem. A 2016, 4 (33), 12913–12920. 10.1039/C6TA04628B. DOI

Novoselov K. S.; Mishchenko A.; Carvalho A.; Castro Neto A. H. 2D Materials and van Der Waals Heterostructures. Science (Washington, DC, U. S.) 2016, 353 (6298), aac9439.10.1126/science.aac9439. PubMed DOI

Das S.; Robinson J. A.; Dubey M.; Terrones H.; Terrones M. Beyond Graphene: Progress in Novel Two-Dimensional Materials and van Der Waals Solids. Annu. Rev. Mater. Res. 2015, 45 (1), 1–27. 10.1146/annurev-matsci-070214-021034. DOI

Tan S. M.; Chua C. K.; Sedmidubský D.; Sofer Z.; Pumera M. Electrochemistry of Layered GaSe and GeS: Applications to ORR, OER and HER. Phys. Chem. Chem. Phys. 2016, 18 (3), 1699–1711. 10.1039/C5CP06682D. PubMed DOI

Dutta S. N.; Jeffrey G. A. On the Structure of Germanium Selenide and Related Binary IV/VI Compounds. Inorg. Chem. 1965, 4 (9), 1363–1366. 10.1021/ic50031a032. DOI

Schmeisser D.; Schnell R. D.; Bogen A.; Himpsel F. J.; Rieger D.; Landgren G.; Morar J. F. Surface Oxidation States of Germanium. Surf. Sci. 1986, 172 (2), 455–465. 10.1016/0039-6028(86)90767-3. DOI

Prabhakaran K.; Ogino T. Oxidation of Ge(100) and Ge(111) Surfaces: An UPS and XPS Study. Surf. Sci. 1995, 325 (3), 263–271. 10.1016/0039-6028(94)00746-2. DOI

Lam D.; Chen K.-S.; Kang J.; Liu X.; Hersam M. C. Anhydrous Liquid-Phase Exfoliation of Pristine Electrochemically Active GeS Nanosheets. Chem. Mater. 2018, 30 (7), 2245–2250. 10.1021/acs.chemmater.7b04652. DOI

Harvey A.; Backes C.; Gholamvand Z.; Hanlon D.; McAteer D.; Nerl H. C.; McGuire E.; Seral-Ascaso A.; Ramasse Q. M.; McEvoy N.; Winters S.; Berner N. C.; McCloskey D.; Donegan J. F.; Duesberg G. S.; Nicolosi V.; Coleman J. N. Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application As Hydrogen Evolution Catalysts. Chem. Mater. 2015, 27 (9), 3483–3493. 10.1021/acs.chemmater.5b00910. DOI

Petroni E.; Lago E.; Bellani S.; Boukhvalov D. W.; Politano A.; Gürbulak B.; Duman S.; Prato M.; Gentiluomo S.; Oropesa-Nuñez R.; Panda J.-K.; Toth P. S.; Del Rio Castillo A. E.; Pellegrini V.; Bonaccorso F. Liquid-Phase Exfoliated Indium–Selenide Flakes and Their Application in Hydrogen Evolution Reaction. Small 2018, 14 (26), 1800749.10.1002/smll.201800749. PubMed DOI

Curreli N.; Serri M.; Spirito D.; Lago E.; Petroni E.; Martín-García B.; Politano A.; Gürbulak B.; Duman S.; Krahne R.; Pellegrini V.; Bonaccorso F. Liquid Phase Exfoliated Indium Selenide Based Highly Sensitive Photodetectors. Adv. Funct. Mater. 2020, 30 (13), 1908427.10.1002/adfm.201908427. DOI

Najafi L.; Bellani S.; Martín-García B.; Oropesa-Nuñez R.; Del Rio Castillo A. E.; Prato M.; Moreels I.; Bonaccorso F. Solution-Processed Hybrid Graphene Flake/2H-MoS2 Quantum Dot Heterostructures for Efficient Electrochemical Hydrogen Evolution. Chem. Mater. 2017, 29 (14), 5782–5786. 10.1021/acs.chemmater.7b01897. DOI

Najafi L.; Bellani S.; Oropesa-Nuñez R.; Ansaldo A.; Prato M.; Del Rio Castillo A. E.; Bonaccorso F. Doped-MoSe2 Nanoflakes/3d Metal Oxide–Hydr(Oxy)Oxides Hybrid Catalysts for PH-Universal Electrochemical Hydrogen Evolution Reaction. Adv. Energy Mater. 2018, 8 (27), 1801764.10.1002/aenm.201801764. DOI

Bellani S.; Martín-García B.; Oropesa-Nuñez R.; Romano V.; Najafi L.; Demirci C.; Prato M.; Del Rio Castillo A. E.; Marasco L.; Mantero E.; D’Angelo G.; Bonaccorso F. Ion Sliding” on Graphene: A Novel Concept to Boost Supercapacitor Performance. Nanoscale Horizons 2019, 4 (5), 1077–1091. 10.1039/C8NH00446C. DOI

Ansaldo A.; Bondavalli P.; Bellani S.; Del Rio Castillo A. E.; Prato M.; Pellegrini V.; Pognon G.; Bonaccorso F. High-Power Graphene–Carbon Nanotube Hybrid Supercapacitors. ChemNanoMat 2017, 3 (6), 436–446. 10.1002/cnma.201700093. DOI

Jawaid A.; Nepal D.; Park K.; Jespersen M.; Qualley A.; Mirau P.; Drummy L. F.; Vaia R. A. Mechanism for Liquid Phase Exfoliation of MoS2. Chem. Mater. 2016, 28 (1), 337–348. 10.1021/acs.chemmater.5b04224. DOI

Capasso A.; Matteocci F.; Najafi L.; Prato M.; Buha J.; Cina L.; Pellegrini V.; Di Carlo A.; Bonaccorso F. Few-Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells. Adv. Energy Mater. 2016, 6 (16), 1600920.10.1002/aenm.201600920. DOI

Tsikritzis D.; Rogdakis K.; Chatzimanolis K.; Petrović M.; Tzoganakis N.; Najafi L.; Martín-García B.; Oropesa-Nuñez R.; Bellani S.; Del Rio Castillo A. E.; Prato M.; Stylianakis M. M.; Bonaccorso F.; Kymakis E. A Two-Fold Engineering Approach Based on Bi 2 Te 3 Flakes towards Efficient and Stable Inverted Perovskite Solar Cells. Mater. Adv. 2020, 1 (3), 450–462. 10.1039/D0MA00162G. DOI

Kang J.; Sangwan V. K.; Wood J. D.; Hersam M. C. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials. Acc. Chem. Res. 2017, 50 (4), 943–951. 10.1021/acs.accounts.6b00643. PubMed DOI

Najafi L.; Bellani S.; Oropesa-Nuñez R.; Ansaldo A.; Prato M.; Del Rio Castillo A. E.; Bonaccorso F. Engineered MoSe2-Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Adv. Energy Mater. 2018, 8 (16), 1703212.10.1002/aenm.201703212. DOI

Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Drago F.; Prato M.; Pellegrini V.; Bonaccorso F.; Bellani S. Water-Dispersible Few-Layer Graphene Flakes for Selective and Rapid Ion Mercury (Hg 2+)-Rejecting Membranes. Mater. Adv. 2020, 1 (3), 387–402. 10.1039/D0MA00060D. DOI

Zhao H.; Mao Y.; Mao X.; Shi X.; Xu C.; Wang C.; Zhang S.; Zhou D. Band Structure and Photoelectric Characterization of GeSe Monolayers. Adv. Funct. Mater. 2018, 28, 1704855.10.1002/adfm.201704855. DOI

Wiedemeier H.; Von Schnering H. G. Refinement of the Structures of GeS, GeSe, SnS and SnSe. Zeitschrift fur Krist. - New Cryst. Struct. 1978, 148 (3–4), 295–303. 10.1524/zkri.1978.148.3-4.295. DOI

Chandrasekhar H. R.; Zwick U. Raman Scattering and Infrared Reflectivity in GeSe. Solid State Commun. 1976, 18 (11–12), 1509–1513. 10.1016/0038-1098(76)90381-1. DOI

Fukunaga T.; Sugai S.; Kinosada T.; Murase K. Observation of New Raman Lines in GeSe and SnSe at Low Temperatures. Solid State Commun. 1981, 38 (11), 1049–1052. 10.1016/0038-1098(81)90015-6. DOI

Zhang X.; Tan Q.-H.; Wu J.-B.; Shi W.; Tan P.-H. Review on the Raman Spectroscopy of Different Types of Layered Materials. Nanoscale 2016, 8 (12), 6435–6450. 10.1039/C5NR07205K. PubMed DOI

Taube A.; Łapińska A.; Judek J.; Wochtman N.; Zdrojek M. Temperature Induced Phonon Behaviour in Germanium Selenide Thin Films Probed by Raman Spectroscopy. J. Phys. D: Appl. Phys. 2016, 49 (31), 315301.10.1088/0022-3727/49/31/315301. DOI

Liu J.; Zhou Y.; Lin Y.; Li M.; Cai H.; Liang Y.; Liu M.; Huang Z.; Lai F.; Huang F.; Zheng W. Anisotropic Photoresponse of the Ultrathin GeSe Nanoplates Grown by Rapid Physical Vapor Deposition. ACS Appl. Mater. Interfaces 2019, 11 (4), 4123–4130. 10.1021/acsami.8b19306. PubMed DOI

Feng Y.; Zhou J.; Du Y.; Miao F.; Duan C.-G.; Wang B.; Wan X. Raman Spectra of Few-Layer Phosphorene Studied from First-Principles Calculations. J. Phys.: Condens. Matter 2015, 27 (18), 185302.10.1088/0953-8984/27/18/185302. PubMed DOI

Guo Z.; Zhang H.; Lu S.; Wang Z.; Tang S.; Shao J.; Sun Z.; Xie H.; Wang H.; Yu X.-F.; Chu P. K. From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics. Adv. Funct. Mater. 2015, 25 (45), 6996–7002. 10.1002/adfm.201502902. DOI

Ferrari A. C.; Basko D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8 (4), 235–246. 10.1038/nnano.2013.46. PubMed DOI

Bonaccorso F.; Tan P.-H.; Ferrari A. C. Multiwall Nanotubes, Multilayers, and Hybrid Nanostructures: New Frontiers for Technology and Raman Spectroscopy. ACS Nano 2013, 7 (3), 1838–1844. 10.1021/nn400758r. PubMed DOI

Najafi L.; Bellani S.; Oropesa-Nuñez R.; Martín-García B.; Prato M.; Bonaccorso F. Single-/Few-Layer Graphene as Long-Lasting Electrocatalyst for Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2019, 2 (8), 5373–5379. 10.1021/acsaem.9b00949. DOI

Galeener F. L.; Mikkelsen J. C.; Geils R. H.; Mosby W. J. The Relative Raman Cross Sections of Vitreous SiO2, GeO 2, B 2 O 3, and P 2 O 5. Appl. Phys. Lett. 1978, 32 (1), 34–36. 10.1063/1.89823. DOI

Durben D. J.; Wolf G. H. Raman Spectroscopic Study of the Pressure-Induced Coordination Change in GeO2 Glass. Phys. Rev. B: Condens. Matter Mater. Phys. 1991, 43 (3), 2355–2363. 10.1103/PhysRevB.43.2355. PubMed DOI

Carroll P. J.; Lannin J. S. Raman Scattering of Amorphous Selenium Films. Solid State Commun. 1981, 40 (1), 81–84. 10.1016/0038-1098(81)90716-X. DOI

Yang L.; Miklavcic S. J. Revised Kubelka–Munk Theory III A General Theory of Light Propagation in Scattering and Absorptive Media. J. Opt. Soc. Am. A 2005, 22 (9), 1866.10.1364/JOSAA.22.001866. PubMed DOI

Vargas W. E.; Niklasson G. A. Applicability Conditions of the Kubelka–Munk Theory. Appl. Opt. 1997, 36 (22), 5580.10.1364/AO.36.005580. PubMed DOI

Najafi L.; Taheri B.; Martin-Garcia B.; Bellani S.; Di Girolamo D.; Agresti A.; Oropesa-Nunez R.; Pescetelli S.; Vesce L.; Calabro E.; et al. MoS2 Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH3NH3PbI3 Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano 2018, 12 (11), 10736–10754. 10.1021/acsnano.8b05514. PubMed DOI

Antunez P. D.; Torelli D. A.; Yang F.; Rabuffetti F. A.; Lewis N. S.; Brutchey R. L. Low Temperature Solution-Phase Deposition of SnS Thin Films. Chem. Mater. 2014, 26 (19), 5444–5446. 10.1021/cm503124u. DOI

Patel M.; Chavda A.; Mukhopadhyay I.; Kim J.; Ray A. Nanostructured SnS with Inherent Anisotropic Optical Properties for High Photoactivity. Nanoscale 2016, 8 (4), 2293–2303. 10.1039/C5NR06731F. PubMed DOI

Woomer A. H.; Farnsworth T. W.; Hu J.; Wells R. A.; Donley C. L.; Warren S. C. Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. ACS Nano 2015, 9 (9), 8869–8884. 10.1021/acsnano.5b02599. PubMed DOI

Tomaszewska E.; Soliwoda K.; Kadziola K.; Tkacz-Szczesna B.; Celichowski G.; Cichomski M.; Szmaja W.; Grobelny J. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. J. Nanomater. 2013, 2013, 1–10. 10.1155/2013/313081. DOI

Hernandez Y.; Nicolosi V.; Lotya M.; Blighe F. M.; Sun Z.; De S.; McGovern I. T.; Holland B.; Byrne M.; Gun’Ko Y. K.; Boland J. J.; Niraj P.; Duesberg G.; Krishnamurthy S.; Goodhue R.; Hutchison J.; Scardaci V.; Ferrari A. C.; Coleman J. N. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3 (9), 563–568. 10.1038/nnano.2008.215. PubMed DOI

Malacara D. Color Vision and Colorimetry: Theory and Applications. Color Res. Appl. 2003, 28 (1), 77–78. 10.1002/col.10118. DOI

Cohen J.; Wyszecki G.; Stiles W. S. Color Science: Concepts and Methods, Quantitative Data and Formulas. Am. J. Psychol. 1968, 81 (1), 128.10.2307/1420820. DOI

Antognazza M. R.; Scherf U.; Monti P.; Lanzani G. Organic-Based Tristimuli Colorimeter. Appl. Phys. Lett. 2007, 90 (16), 163509.10.1063/1.2723653. DOI

https://www.thorlabs.com/navigation.cfm?guide_id=36 (data accessed on 24/07/2020).

Takata T.; Jiang J.; Sakata Y.; Nakabayashi M.; Shibata N.; Nandal V.; Seki K.; Hisatomi T.; Domen K. Photocatalytic Water Splitting with a Quantum Efficiency of Almost Unity. Nature 2020, 581 (7809), 411–414. 10.1038/s41586-020-2278-9. PubMed DOI

Mauritz K. A.; Moore R. B. State of Understanding of Nafion. Chem. Rev. 2004, 104 (10), 4535–4586. 10.1021/cr0207123. PubMed DOI

Zawodzinski T. A.; Derouin C.; Radzinski S.; Sherman R. J.; Smith V. T.; Springer T. E.; Gottesfeld S. Water Uptake by and Transport Through Nafion 117 Membranes. J. Electrochem. Soc. 1993, 140 (4), 1041–1047. 10.1149/1.2056194. DOI

Jiang C.; Moniz S. J. A.; Wang A.; Zhang T.; Tang J. Photoelectrochemical Devices for Solar Water Splitting – Materials and Challenges. Chem. Soc. Rev. 2017, 46 (15), 4645–4660. 10.1039/C6CS00306K. PubMed DOI

Joe J.; Yang H.; Bae C.; Shin H. Metal Chalcogenides on Silicon Photocathodes for Efficient Water Splitting: A Mini Overview. Catalysts 2019, 9 (2), 149.10.3390/catal9020149. DOI

McGlynn S. P. Concepts in Photoconductivity and Allied Problems. J. Am. Chem. Soc. 1964, 86 (24), 5707–5707. 10.1021/ja01078a086. DOI

Guo F.; Yang B.; Yuan Y.; Xiao Z.; Dong Q.; Bi Y.; Huang J. A Nanocomposite Ultraviolet Photodetector Based on Interfacial Trap-Controlled Charge Injection. Nat. Nanotechnol. 2012, 7 (12), 798–802. 10.1038/nnano.2012.187. PubMed DOI

Wang H.; Zhang X.; Xie Y. Recent Progress in Ultrathin Two-Dimensional Semiconductors for Photocatalysis. Mater. Sci. Eng., R 2018, 130, 1–39. 10.1016/j.mser.2018.04.002. DOI

Kong D.; Cha J. J.; Wang H.; Lee H. R.; Cui Y. First-Row Transition Metal Dichalcogenide Catalysts for Hydrogen Evolution Reaction. Energy Environ. Sci. 2013, 6 (12), 3553–3558. 10.1039/c3ee42413h. DOI

Yang J.; Shin H. S. Recent Advances in Layered Transition Metal Dichalcogenides for Hydrogen Evolution Reaction. J. Mater. Chem. A 2014, 2 (17), 5979–5985. 10.1039/C3TA14151A. DOI

Najafi L.; Bellani S.; Oropesa-Nuñez R.; Martín-García B.; Prato M.; Pasquale L.; Panda J. K.; Marvan P.; Sofer Z.; Bonaccorso F. TaS2, TaSe2, and Their Heterogeneous Films as Catalysts for the Hydrogen Evolution Reaction. ACS Catal. 2020, 10 (5), 3313–3325. 10.1021/acscatal.9b03184. PubMed DOI PMC

Najafi L.; Bellani S.; Oropesa-Nuñez R.; Martín-García B.; Prato M.; Mazánek V.; Debellis D.; Lauciello S.; Brescia R.; Sofer Z.; Bonaccorso F. Niobium Disulphide (NbS2)-Based (Heterogeneous) Electrocatalysts for an Efficient Hydrogen Evolution Reaction. J. Mater. Chem. A 2019, 7 (44), 25593–25608. 10.1039/C9TA07210A. DOI

Lv L.; Yang Z.; Chen K.; Wang C.; Xiong Y. 2D Layered Double Hydroxides for Oxygen Evolution Reaction: From Fundamental Design to Application. Adv. Energy Mater. 2019, 9, 1803358.10.1002/aenm.201803358. DOI

Qin M.; Li S.; Zhao Y.; Lao C. Y.; Zhang Z.; Liu L.; Fang F.; Wu H.; Jia B.; Liu Z.; et al. Unprecedented Synthesis of Holey 2D Layered Double Hydroxide Nanomesh for Enhanced Oxygen Evolution. Adv. Energy Mater. 2019, 9 (1), 1803060.10.1002/aenm.201803060. DOI

Yang H. Bin; Miao J.; Hung S.-F.; Chen J.; Tao H. B.; Wang X.; Zhang L.; Chen R.; Gao J.; Chen H. M.; et al. Identification of Catalytic Sites for Oxygen Reduction and Oxygen Evolution in N-Doped Graphene Materials: Development of Highly Efficient Metal-Free Bifunctional Electrocatalyst. Sci. Adv. 2016, 2 (4), e1501122.10.1126/sciadv.1501122. PubMed DOI PMC

Chai G. L.; Qiu K.; Qiao M.; Titirici M. M.; Shang C.; Guo Z. Active Sites Engineering Leads to Exceptional ORR and OER Bifunctionality in P,N Co-Doped Graphene Frameworks. Energy Environ. Sci. 2017, 10 (5), 1186–1195. 10.1039/C6EE03446B. DOI

Najafi L.; Bellani S.; Castelli A.; Arciniegas M. P.; Brescia R.; Oropesa-Nuñez R.; Martín-García B.; Serri M.; Drago F.; Manna L.; Bonaccorso F. Octapod-Shaped CdSe Nanocrystals Hosting Pt with High Mass Activity for the Hydrogen Evolution Reaction. Chem. Mater. 2020, 32 (6), 2420–2429. 10.1021/acs.chemmater.9b04883. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...