Hydrogen-Terminated Two-Dimensional Germanane/Silicane Alloys as Self-Powered Photodetectors and Sensors

. 2023 May 31 ; 15 (21) : 25693-25703. [epub] 20230516

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37192133

2D monoelemental materials, particularly germanene and silicene (the single layer of germanium and silicon), which are the base materials for modern electronic devices demonstrated tremendous attraction for their 2D layer structure along with the tuneable electronics and optical band gap. The major shortcoming of synthesized thermodynamically very unstable layered germanene and silicene with their inclination toward oxidation was overcome by topochemical deintercalation of a Zintl phase (CaGe2, CaGe1.5Si0.5, and CaGeSi) in a protic environment. The exfoliated Ge-H, Ge0.75Si0.25H, and Ge0.5Si0.5H were successfully synthesized and employed as the active layer for photoelectrochemical photodetectors, which showed broad response (420-940 nm), unprecedented responsivity, and detectivity on the order of 168 μA W-1 and 3.45 × 108 cm Hz1/2 W-1, respectively. The sensing capability of exfoliated germanane and silicane composites was explored using electrochemical impedance spectroscopy with ultrafast response and recovery time of less than 1 s. These positive findings serve as the application of exfoliated germanene and silicene composites and can pave a new path to practical applications in efficient future devices.

Zobrazit více v PubMed

Nguyen V.-H.; Nguyen T. P.; Le T.-H.; Vo D.-V. N.; Nguyen D. L.; Trinh Q. T.; Kim I. T.; Le Q. V. Recent Advances in Two-Dimensional Transition Metal Dichalcogenides as Photoelectrocatalyst for Hydrogen Evolution Reaction. J. Chem. Technol. Biotechnol. 2020, 95, 2597.10.1002/jctb.6335. DOI

Liu H.; Hu K.; Yan D.; Chen R.; Zou Y.; Liu H.; Wang S. Recent Advances on Black Phosphorus for Energy Storage, Catalysis, and Sensor Applications. Adv. Mater. 2018, 30, 1800295.10.1002/adma.201800295. PubMed DOI

Kumar Roy P.; Ganguly A.; Yang W.-H.; Wu C.-T.; Hwang J.-S.; Tai Y.; Chen K.-H.; Chen L.-C.; Chattopadhyay S. Edge Promoted Ultrasensitive Electrochemical Detection of Organic Bio-Molecules on Epitaxial Graphene Nanowalls. Biosens. Bioelectron. 2015, 70, 137–144. 10.1016/j.bios.2015.03.027. PubMed DOI

Kang D.-H.; Pae S. R.; Shim J.; Yoo G.; Jeon J.; Leem J. W.; Yu J. S.; Lee S.; Shin B.; Park J.-H. An Ultrahigh-Performance Photodetector based on a Perovskite–Transition-Metal-Dichalcogenide Hybrid Structure. Adv. Mater. 2016, 28, 7799–7806. 10.1002/adma.201600992. PubMed DOI

Nair R. R.; Blake P.; Grigorenko A. N.; Novoselov K. S.; Booth T. J.; Stauber T.; Peres N. M. R.; Geim A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308.10.1126/science.1156965. PubMed DOI

Hu S.; Zhu M. Ultrathin Two-Dimensional Semiconductors for Photocatalysis in Energy and Environment Applications. Chem Cat Chem 2019, 11, 6147–6165. 10.1002/cctc.201901597. DOI

Liu X.; Li S.; Li Z.; Cao F.; Su L.; Shtansky D. V.; Fang X. Enhanced Response Speed in 2D Perovskite Oxides-Based Photodetectors for UV Imaging through Surface/Interface Carrier-Transport Modulation. ACS Appl. Mater. Interfaces 2022, 14, 48936–48947. 10.1021/acsami.2c15946. PubMed DOI

Roy P. K.; Haider G.; Chou T.-C.; Chen K.-H.; Chen L.-C.; Chen Y.-F.; Liang C.-T. Ultrasensitive Gas Sensors Based on Vertical Graphene Nanowalls/SiC/Si Heterostructure. ACS Sens. 2019, 4, 406–412. 10.1021/acssensors.8b01312. PubMed DOI

Roy P. K.; Haider G.; Lin H.-I.; Liao Y.-M.; Lu C.-H.; Chen K.-H.; Chen L.-C.; Shih W.-H.; Liang C.-T.; Chen Y.-F. Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network. Adv. Opt. Mater. 2018, 6, 1800382.10.1002/adom.201800382. DOI

Zhu M.; Huang K.; Zhou K.-G. Lifting the Mist of Flatland: The Recent Progress in The Characterizations of Two-Dimensional Materials. Prog. Cryst. Growth Charact. Mater. 2017, 63, 72–93. 10.1016/j.pcrysgrow.2017.06.001. DOI

Mikulics M.; Adam R.; Sobolewski R.; Heidtfeld S.; Cao D.; Bürgler D. E.; Schneider C. M.; Mayer J.; Hardtdegen H. H. Nano-LED Driven Phase Change Evolution of Layered Chalcogenides for Raman Spectroscopy Investigations. FlatChem 2022, 36, 100447.10.1016/j.flatc.2022.100447. DOI

Chen J.; Li L.; Gong P.; Zhang H.; Yin S.; Li M.; Wu L.; Gao W.; Long M.; Shan L.; Yan F.; Li G. A Submicrosecond-Response Ultraviolet–Visible–Near-Infrared Broadband Photodetector Based on 2D Tellurosilicate InSiTe3. ACS Nano 2022, 16, 7745–7754. 10.1021/acsnano.1c11628. PubMed DOI

Roy P. K.; Antonatos N.; Li T.; Jing Y.; Luxa J.; Azadmanjiri J.; Marvan P.; Heine T.; Sofer Z. 2D Few-Layered PdPS: Toward High-Efficient Self-Powered Broadband Photodetector and Sensors. ACS Appl. Mater. Interfaces 2023, 15, 1859–1870. 10.1021/acsami.2c18125. PubMed DOI

Fowler J. D.; Allen M. J.; Tung V. C.; Yang Y.; Kaner R. B.; Weiller B. H. Practical Chemical Sensors from Chemically Derived Graphene. ACS Nano 2009, 3, 301–306. 10.1021/nn800593m. PubMed DOI

Jayachandran D.; Oberoi A.; Sebastian A.; Choudhury T. H.; Shankar B.; Redwing J. M.; Das S. A Low-Power Biomimetic Collision Detector Based on An In-Memory Molybdenum Disulfide Photodetector. Nat. Electron. 2020, 3, 646–655. 10.1038/s41928-020-00466-9. DOI

Nasr J. R.; Simonson N.; Oberoi A.; Horn M. W.; Robinson J. A.; Das S. Low-Power and Ultra-Thin MoS2 Photodetectors on Glass. ACS Nano 2020, 14, 15440–15449. 10.1021/acsnano.0c06064. PubMed DOI

Li L.; Yu Y.; Ye G. J.; Ge Q.; Ou X.; Wu H.; Feng D.; Chen X. H.; Zhang Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. 10.1038/nnano.2014.35. PubMed DOI

Ling X.; Wang H.; Huang S.; Xia F.; Dresselhaus M. S. The Renaissance Of Black Phosphorus. PNAS 2015, 112, 4523–4530. 10.1073/pnas.1416581112. PubMed DOI PMC

Long M.; Wang P.; Fang H.; Hu W. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.10.1002/adfm.201803807. DOI

Ma D.; Zhao J.; Wang R.; Xing C.; Li Z.; Huang W.; Jiang X.; Guo Z.; Luo Z.; Li Y.; Li J.; Luo S.; Zhang Y.; Zhang H. Ultrathin GeSe Nanosheets: From Systematic Synthesis to Studies of Carrier Dynamics and Applications for a High-Performance UV–Vis Photodetector. ACS Appl. Mater. Interfaces 2019, 11, 4278–4287. 10.1021/acsami.8b19836. PubMed DOI

Castellanos-Gomez A.; Vicarelli L.; Prada E.; Island J. O.; Narasimha-Acharya K. L.; Blanter S. I.; Groenendijk D. J.; Buscema M.; Steele G. A.; Alvarez J. V.; Zandbergen H. W.; Palacios J. J.; van der Zant H. S. J. Isolation and Characterization of Few-Layer Black Phosphorus. 2D Mater 2014, 1, 025001.10.1088/2053-1583/1/2/025001. DOI

Molle A.; Goldberger J.; Houssa M.; Xu Y.; Zhang S.-C.; Akinwande D. Buckled Two-Dimensional Xene Sheets. Nat. Mater. 2017, 16, 163–169. 10.1038/nmat4802. PubMed DOI

Vishnoi P.; Pramoda K.; Rao C. N. R. 2D Elemental Nanomaterials Beyond Graphene. ChemNanoMat 2019, 5, 1062–1091. 10.1002/cnma.201900176. DOI

Balendhran S.; Walia S.; Nili H.; Sriram S.; Bhaskaran M. Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene. Small 2015, 11, 640–652. 10.1002/smll.201402041. PubMed DOI

Lew Yan Voon L. C.; Sandberg E.; Aga R. S.; Farajian A. A. Hydrogen Compounds of Group-IV Nanosheets. Appl. Phys. Lett. 2010, 97, 163114.10.1063/1.3495786. DOI

Ni Z.; Liu Q.; Tang K.; Zheng J.; Zhou J.; Qin R.; Gao Z.; Yu D.; Lu J. Tunable Bandgap in Silicene and Germanene. Nano Lett. 2012, 12, 113–118. 10.1021/nl203065e. PubMed DOI

Bianco E.; Butler S.; Jiang S.; Restrepo O. D.; Windl W.; Goldberger J. E. Stability and Exfoliation of Germanane: A Germanium Graphane Analogue. ACS Nano 2013, 7, 4414–4421. 10.1021/nn4009406. PubMed DOI

Zhang Y.; Rubio A.; Lay G. L. Emergent Elemental Two-Dimensional Materials Beyond Graphene. J. Phys. D: Appl. Phys. 2017, 50, 053004.10.1088/1361-6463/aa4e8b. DOI

Nijamudheen A.; Bhattacharjee R.; Choudhury S.; Datta A. Electronic and Chemical Properties of Germanene: The Crucial Role of Buckling. J. Phys. Chem. C . 2015, 119, 3802–3809. 10.1021/jp511488m. DOI

Vogg G.; Brandt M. S.; Stutzmann M. Polygermyne—A Prototype System for Layered Germanium Polymers. Adv. Mater. 2000, 12, 1278–1281. 10.1002/1521-4095(200009)12:17<1278::aid-adma1278>3.0.co;2-y. DOI

Liu Z.; Dai Y.; Zheng Z.; Huang B. Covalently-Terminated Germanane GeH and GeCH3 for Hydrogen Generation from Catalytic Hydrolysis of Ammonia Borane under Visible Light Irradiation. Catal. Commun. 2019, 118, 46–50. 10.1016/j.catcom.2018.09.016. DOI

Liu Z.; Lou Z.; Li Z.; Wang G.; Wang Z.; Liu Y.; Huang B.; Xia S.; Qin X.; Zhang X.; Dai Y. GeH: A Novel Material as A Visible-Light Driven Photocatalyst for Hydrogen Evolution. Chem. Commun. 2014, 50, 11046–11048. 10.1039/c4cc03636k. PubMed DOI

Song Z.; Ang W. L.; Sturala J.; Mazanek V.; Marvan P.; Sofer Z.; Ambrosi A.; Ding C.; Luo X.; Bonanni A. Functionalized Germanene-Based Nanomaterials for the Detection of Single Nucleotide Polymorphism. ACS Appl. Nano Mater. 2021, 4, 5164–5175. 10.1021/acsanm.1c00606. DOI

Serino A. C.; Ko J. S.; Yeung M. T.; Schwartz J. J.; Kang C. B.; Tolbert S. H.; Kaner R. B.; Dunn B. S.; Weiss P. S. Lithium-Ion Insertion Properties of Solution-Exfoliated Germanane. ACS Nano 2017, 11, 7995–8001. 10.1021/acsnano.7b02589. PubMed DOI

Maric T.; Beladi-Mousavi S. M.; Khezri B.; Sturala J.; Nasir M. Z. M.; Webster R. D.; Sofer Z. k.; Pumera M. Functional 2D Germanene Fluorescent Coating of Microrobots for Micromachines Multiplexing. Small 2020, 16, 1902365.10.1002/smll.201902365. PubMed DOI

Vogg G.; Meyer A. J.-P.; Miesner C.; Brandt M. S.; Stutzmann M. Efficient Tunable Luminescence of Sige Alloy Sheet Polymers. Appl. Phys. Lett. 2001, 78, 3956–3958. 10.1063/1.1378315. DOI

Hartman T.; Sturala J.; Plutnar J.; Sofer Z. Alkali Metal Arenides as a Universal Synthetic Tool for Layered 2D Germanene Modification. Angew. Chem., Int. Ed. 2019, 58, 16517–16522. 10.1002/anie.201910654. PubMed DOI

Bermejo D.; Cardona M. Infrared Absorption in Hydrogenated Amorphous and Crystallized Germanium. J. Non-Cryst. Solids 1979, 32, 421–430. 10.1016/0022-3093(79)90086-3. DOI

Cardona M. J. P. S. S. B. Basic Research, Vibrational Spectra of Hydrogen in Silicon and Germanium. Phys. Status Solidi B 1983, 118, 463–481. 10.1002/pssb.2221180202. DOI

Rivillon S.; Chabal Y. J.; Amy F.; Kahn A. Hydrogen Passivation of Germanium (100) Surface Using Wet Chemical Preparation. Appl. Phys. Lett. 2005, 87, 253101.10.1063/1.2142084. DOI

Liu N.; Qiao H.; Xu K.; Xi Y.; Ren L.; Cheng N.; Cui D.; Qi X.; Xu X.; Hao W.; Dou S. X.; Du Y. Hydrogen Terminated Germanene for a Robust Self-Powered Flexible Photoelectrochemical Photodetector. Small 2020, 16, 2000283.10.1002/smll.202000283. PubMed DOI

Zappia M. I.; Bianca G.; Bellani S.; Serri M.; Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Bouša D.; Sedmidubský D.; Pellegrini V.; Sofer Z.; Cupolillo A.; Bonaccorso F. Solution-Processed GaSe Nanoflake-Based Films for Photoelectrochemical Water Splitting and Photoelectrochemical-Type Photodetectors. Adv. Funct. Mater. 2020, 30, 1909572.10.1002/adfm.201909572. DOI

Yang X.; Liu X.; Qu L.; Gao F.; Xu Y.; Cui M.; Yu H.; Wang Y.; Hu P.; Feng W. Boosting Photoresponse of Self-Powered InSe-Based Photoelectrochemical Photodetectors via Suppression of Interface Doping. ACS Nano 2022, 16, 8440–8448. 10.1021/acsnano.2c02986. PubMed DOI

Bianca G.; Zappia M. I.; Bellani S.; Sofer Z.; Serri M.; Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Hartman T.; Leoncino L.; Sedmidubský D.; Pellegrini V.; Chiarello G.; Bonaccorso F. Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 48598–48613. 10.1021/acsami.0c14201. PubMed DOI PMC

Cui M.; Shao Z.; Qu L.; Liu X.; Yu H.; Wang Y.; Zhang Y.; Fu Z.; Huang Y.; Feng W. MOF-Derived In2O3 Microrods for High-Performance Photoelectrochemical Ultraviolet Photodetectors. ACS Appl. Mater. Interfaces 2022, 14, 39046–39052. 10.1021/acsami.2c09968. PubMed DOI

Li Z.; Qiao H.; Guo Z.; Ren X.; Huang Z.; Qi X.; Dhanabalan S. C.; Ponraj J. S.; Zhang D.; Li J.; Zhao J.; Zhong J.; Zhang H. High-Performance Photo-Electrochemical Photodetector Based on Liquid-Exfoliated Few-Layered InSe Nanosheets with Enhanced Stability. Adv. Funct. Mater. 2018, 28, 1705237.10.1002/adfm.201705237. DOI

Ren X.; Li Z.; Huang Z.; Sang D.; Qiao H.; Qi X.; Li J.; Zhong J.; Zhang H. Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Self-Powered Photodetector. Adv. Funct. Mater. 2017, 27, 1606834.10.1002/adfm.201606834. DOI

Fang H.; Li J.; Ding J.; Sun Y.; Li Q.; Sun J.-L.; Wang L.; Yan Q. An Origami Perovskite Photodetector with Spatial Recognition Ability. ACS Appl. Mater. Interfaces 2017, 9, 10921–10928. 10.1021/acsami.7b02213. PubMed DOI

Huang W.; Xie Z.; Fan T.; Li J.; Wang Y.; Wu L.; Ma D.; Li Z.; Ge Y.; Huang Z. N.; Dai X.; Xiang Y.; Li J.; Zhu X.; Zhang H. Black-Phosphorus-Analogue Tin Monosulfide: An Emerging Optoelectronic Two-Dimensional Material for High-Performance Photodetection with Improved Stability Under Ambient/Harsh Conditions. J. Mater. Chem. C 2018, 6, 9582–9593. 10.1039/c8tc03284j. DOI

Tong S.; Yuan J.; Zhang C.; Wang C.; Liu B.; Shen J.; Xia H.; Zou Y.; Xie H.; Sun J.; Xiao S.; He J.; Gao Y.; Yang J. Large-Scale Roll-To-Roll Printed, Flexible and Stable Organic Bulk Heterojunction Photodetector. npj Flexible Electron. 2018, 2, 7.10.1038/s41528-017-0020-y. DOI

Zhuo R.; Zuo S.; Quan W.; Yan D.; Geng B.; Wang J.; Men X. Large-Size and High Performance Visible-Light Photodetectors Based on Two-Dimensional Hybrid Materials SnS/RGO. RSC Adv. 2018, 8, 761–766. 10.1039/c7ra11269f. PubMed DOI PMC

Long M.; Gao A.; Wang P.; Xia H.; Ott C.; Pan C.; Fu Y.; Liu E.; Chen X.; Lu W.; Nilges T.; Xu J.; Wang X.; Hu W.; Miao F. Room Temperature High-Detectivity Mid-Infrared Photodetectors Based on Black Arsenic Phosphorus. Sci. Adv. 2017, 3, e170058910.1126/sciadv.1700589. PubMed DOI PMC

Bera K. P.; Haider G.; Huang Y.-T.; Roy P. K.; Paul Inbaraj C. R.; Liao Y.-M.; Lin H.-I.; Lu C.-H.; Shen C.; Shih W. Y.; Shih W.-H.; Chen Y.-F. Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano 2019, 13, 12540–12552. 10.1021/acsnano.9b03165. PubMed DOI

Hou C.; Yang L.; Li B.; Zhang Q.; Li Y.; Yue Q.; Wang Y.; Yang Z.; Dong L. Multilayer Black Phosphorus Near-Infrared Photodetectors. Sensors 2018, 18, 1668.10.3390/s18061668. PubMed DOI PMC

Roy P. K.; Marvan P.; Mazánek V.; Antonatos N.; Bouša D.; Kovalska E.; Sedmidubský D.; Sofer Z. Self-Powered Broadband Photodetector and Sensor Based on Novel Few-Layered Pd3(PS4)2 Nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 30806–30817. 10.1021/acsami.1c05974. PubMed DOI

Hisatomi T.; Kubota J.; Domen K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. 10.1039/c3cs60378d. PubMed DOI

Xu X.-T.; Pan L.; Zhang X.; Wang L.; Zou J.-J. Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review. Adv. Sci. 2019, 6, 1801505.10.1002/advs.201801505. PubMed DOI PMC

Mayorga-Martinez C. C.; Chamorro-Garcia A.; Merkoçi A. Electrochemical Impedance Spectroscopy (Bio)Sensing Through Hydrogen Evolution Reaction Induced by Gold Nanoparticles. Biosens. Bioelectron. 2015, 67, 53–58. 10.1016/j.bios.2014.05.066. PubMed DOI

Fattah A.; Khatami S.; Mayorga-Martinez C. C.; Medina-Sánchez M.; Baptista-Pires L.; Merkoçi A. Graphene/Silicon Heterojunction Schottky Diode for Vapors Sensing Using Impedance Spectroscopy. Small 2014, 10, 4193.10.1002/smll.201400691. PubMed DOI

Gaude E.; Nakhleh M. K.; Patassini S.; Boschmans J.; Allsworth M.; Boyle B.; van der Schee M. P. Targeted Breath Analysis: Exogenous Volatile Organic Compounds (Evoc) As Metabolic Pathway-Specific Probes. J. Breath Res. 2019, 13, 032001.10.1088/1752-7163/ab1789. PubMed DOI

Miekisch W.; Schubert J. K.; Noeldge-Schomburg G. F. E. Diagnostic Potential of Breath Analysis—Focus on Volatile Organic Compounds. Clin. Chim. Acta 2004, 347, 25–39. 10.1016/j.cccn.2004.04.023. PubMed DOI

Smidstrup S.; Markussen T.; Vancraeyveld P.; Wellendorff J.; Schneider J.; Gunst T.; Verstichel B.; Stradi D.; Khomyakov P. A.; Vej-Hansen U. G.; Lee M.-E.; Chill S. T.; Rasmussen F.; Penazzi G.; Corsetti F.; Ojanperä A.; Jensen K.; Palsgaard M. L. N.; Martinez U.; Blom A.; Brandbyge M.; Stokbro K. Quantum ATK: An Integrated Platform of Electronic and Atomic-Scale Modelling Tools. J. Phys. Condens. Matter 2020, 32, 015901.10.1088/1361-648x/ab4007. PubMed DOI

Van Setten M. J.; Giantomassi M.; Bousquet E.; Verstraete M. J.; Hamann D. R.; Gonze X.; Rignanese G. M. The Pseudo Dojo: Training and Grading A 85 Element Optimized Norm-Conserving Pseudopotential Table. Comput. Phys. Commun. 2018, 226, 39–54. 10.1016/j.cpc.2018.01.012. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Next-Generation Self-Powered Photodetectors using 2D Bismuth Oxide Selenide Crystals

. 2024 Nov 08 ; 7 (21) : 24377-24387. [epub] 20241023

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...