Hydrogen-Terminated Two-Dimensional Germanane/Silicane Alloys as Self-Powered Photodetectors and Sensors
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37192133
PubMed Central
PMC10236439
DOI
10.1021/acsami.3c01971
Knihovny.cz E-zdroje
- Klíčová slova
- band bending, germanane and silicane, photoelectrochemical (PEC) photodetector, self-powered, vapor sensor,
- Publikační typ
- časopisecké články MeSH
2D monoelemental materials, particularly germanene and silicene (the single layer of germanium and silicon), which are the base materials for modern electronic devices demonstrated tremendous attraction for their 2D layer structure along with the tuneable electronics and optical band gap. The major shortcoming of synthesized thermodynamically very unstable layered germanene and silicene with their inclination toward oxidation was overcome by topochemical deintercalation of a Zintl phase (CaGe2, CaGe1.5Si0.5, and CaGeSi) in a protic environment. The exfoliated Ge-H, Ge0.75Si0.25H, and Ge0.5Si0.5H were successfully synthesized and employed as the active layer for photoelectrochemical photodetectors, which showed broad response (420-940 nm), unprecedented responsivity, and detectivity on the order of 168 μA W-1 and 3.45 × 108 cm Hz1/2 W-1, respectively. The sensing capability of exfoliated germanane and silicane composites was explored using electrochemical impedance spectroscopy with ultrafast response and recovery time of less than 1 s. These positive findings serve as the application of exfoliated germanene and silicene composites and can pave a new path to practical applications in efficient future devices.
Zobrazit více v PubMed
Nguyen V.-H.; Nguyen T. P.; Le T.-H.; Vo D.-V. N.; Nguyen D. L.; Trinh Q. T.; Kim I. T.; Le Q. V. Recent Advances in Two-Dimensional Transition Metal Dichalcogenides as Photoelectrocatalyst for Hydrogen Evolution Reaction. J. Chem. Technol. Biotechnol. 2020, 95, 2597.10.1002/jctb.6335. DOI
Liu H.; Hu K.; Yan D.; Chen R.; Zou Y.; Liu H.; Wang S. Recent Advances on Black Phosphorus for Energy Storage, Catalysis, and Sensor Applications. Adv. Mater. 2018, 30, 1800295.10.1002/adma.201800295. PubMed DOI
Kumar Roy P.; Ganguly A.; Yang W.-H.; Wu C.-T.; Hwang J.-S.; Tai Y.; Chen K.-H.; Chen L.-C.; Chattopadhyay S. Edge Promoted Ultrasensitive Electrochemical Detection of Organic Bio-Molecules on Epitaxial Graphene Nanowalls. Biosens. Bioelectron. 2015, 70, 137–144. 10.1016/j.bios.2015.03.027. PubMed DOI
Kang D.-H.; Pae S. R.; Shim J.; Yoo G.; Jeon J.; Leem J. W.; Yu J. S.; Lee S.; Shin B.; Park J.-H. An Ultrahigh-Performance Photodetector based on a Perovskite–Transition-Metal-Dichalcogenide Hybrid Structure. Adv. Mater. 2016, 28, 7799–7806. 10.1002/adma.201600992. PubMed DOI
Nair R. R.; Blake P.; Grigorenko A. N.; Novoselov K. S.; Booth T. J.; Stauber T.; Peres N. M. R.; Geim A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308.10.1126/science.1156965. PubMed DOI
Hu S.; Zhu M. Ultrathin Two-Dimensional Semiconductors for Photocatalysis in Energy and Environment Applications. Chem Cat Chem 2019, 11, 6147–6165. 10.1002/cctc.201901597. DOI
Liu X.; Li S.; Li Z.; Cao F.; Su L.; Shtansky D. V.; Fang X. Enhanced Response Speed in 2D Perovskite Oxides-Based Photodetectors for UV Imaging through Surface/Interface Carrier-Transport Modulation. ACS Appl. Mater. Interfaces 2022, 14, 48936–48947. 10.1021/acsami.2c15946. PubMed DOI
Roy P. K.; Haider G.; Chou T.-C.; Chen K.-H.; Chen L.-C.; Chen Y.-F.; Liang C.-T. Ultrasensitive Gas Sensors Based on Vertical Graphene Nanowalls/SiC/Si Heterostructure. ACS Sens. 2019, 4, 406–412. 10.1021/acssensors.8b01312. PubMed DOI
Roy P. K.; Haider G.; Lin H.-I.; Liao Y.-M.; Lu C.-H.; Chen K.-H.; Chen L.-C.; Shih W.-H.; Liang C.-T.; Chen Y.-F. Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network. Adv. Opt. Mater. 2018, 6, 1800382.10.1002/adom.201800382. DOI
Zhu M.; Huang K.; Zhou K.-G. Lifting the Mist of Flatland: The Recent Progress in The Characterizations of Two-Dimensional Materials. Prog. Cryst. Growth Charact. Mater. 2017, 63, 72–93. 10.1016/j.pcrysgrow.2017.06.001. DOI
Mikulics M.; Adam R.; Sobolewski R.; Heidtfeld S.; Cao D.; Bürgler D. E.; Schneider C. M.; Mayer J.; Hardtdegen H. H. Nano-LED Driven Phase Change Evolution of Layered Chalcogenides for Raman Spectroscopy Investigations. FlatChem 2022, 36, 100447.10.1016/j.flatc.2022.100447. DOI
Chen J.; Li L.; Gong P.; Zhang H.; Yin S.; Li M.; Wu L.; Gao W.; Long M.; Shan L.; Yan F.; Li G. A Submicrosecond-Response Ultraviolet–Visible–Near-Infrared Broadband Photodetector Based on 2D Tellurosilicate InSiTe3. ACS Nano 2022, 16, 7745–7754. 10.1021/acsnano.1c11628. PubMed DOI
Roy P. K.; Antonatos N.; Li T.; Jing Y.; Luxa J.; Azadmanjiri J.; Marvan P.; Heine T.; Sofer Z. 2D Few-Layered PdPS: Toward High-Efficient Self-Powered Broadband Photodetector and Sensors. ACS Appl. Mater. Interfaces 2023, 15, 1859–1870. 10.1021/acsami.2c18125. PubMed DOI
Fowler J. D.; Allen M. J.; Tung V. C.; Yang Y.; Kaner R. B.; Weiller B. H. Practical Chemical Sensors from Chemically Derived Graphene. ACS Nano 2009, 3, 301–306. 10.1021/nn800593m. PubMed DOI
Jayachandran D.; Oberoi A.; Sebastian A.; Choudhury T. H.; Shankar B.; Redwing J. M.; Das S. A Low-Power Biomimetic Collision Detector Based on An In-Memory Molybdenum Disulfide Photodetector. Nat. Electron. 2020, 3, 646–655. 10.1038/s41928-020-00466-9. DOI
Nasr J. R.; Simonson N.; Oberoi A.; Horn M. W.; Robinson J. A.; Das S. Low-Power and Ultra-Thin MoS2 Photodetectors on Glass. ACS Nano 2020, 14, 15440–15449. 10.1021/acsnano.0c06064. PubMed DOI
Li L.; Yu Y.; Ye G. J.; Ge Q.; Ou X.; Wu H.; Feng D.; Chen X. H.; Zhang Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. 10.1038/nnano.2014.35. PubMed DOI
Ling X.; Wang H.; Huang S.; Xia F.; Dresselhaus M. S. The Renaissance Of Black Phosphorus. PNAS 2015, 112, 4523–4530. 10.1073/pnas.1416581112. PubMed DOI PMC
Long M.; Wang P.; Fang H.; Hu W. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.10.1002/adfm.201803807. DOI
Ma D.; Zhao J.; Wang R.; Xing C.; Li Z.; Huang W.; Jiang X.; Guo Z.; Luo Z.; Li Y.; Li J.; Luo S.; Zhang Y.; Zhang H. Ultrathin GeSe Nanosheets: From Systematic Synthesis to Studies of Carrier Dynamics and Applications for a High-Performance UV–Vis Photodetector. ACS Appl. Mater. Interfaces 2019, 11, 4278–4287. 10.1021/acsami.8b19836. PubMed DOI
Castellanos-Gomez A.; Vicarelli L.; Prada E.; Island J. O.; Narasimha-Acharya K. L.; Blanter S. I.; Groenendijk D. J.; Buscema M.; Steele G. A.; Alvarez J. V.; Zandbergen H. W.; Palacios J. J.; van der Zant H. S. J. Isolation and Characterization of Few-Layer Black Phosphorus. 2D Mater 2014, 1, 025001.10.1088/2053-1583/1/2/025001. DOI
Molle A.; Goldberger J.; Houssa M.; Xu Y.; Zhang S.-C.; Akinwande D. Buckled Two-Dimensional Xene Sheets. Nat. Mater. 2017, 16, 163–169. 10.1038/nmat4802. PubMed DOI
Vishnoi P.; Pramoda K.; Rao C. N. R. 2D Elemental Nanomaterials Beyond Graphene. ChemNanoMat 2019, 5, 1062–1091. 10.1002/cnma.201900176. DOI
Balendhran S.; Walia S.; Nili H.; Sriram S.; Bhaskaran M. Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene. Small 2015, 11, 640–652. 10.1002/smll.201402041. PubMed DOI
Lew Yan Voon L. C.; Sandberg E.; Aga R. S.; Farajian A. A. Hydrogen Compounds of Group-IV Nanosheets. Appl. Phys. Lett. 2010, 97, 163114.10.1063/1.3495786. DOI
Ni Z.; Liu Q.; Tang K.; Zheng J.; Zhou J.; Qin R.; Gao Z.; Yu D.; Lu J. Tunable Bandgap in Silicene and Germanene. Nano Lett. 2012, 12, 113–118. 10.1021/nl203065e. PubMed DOI
Bianco E.; Butler S.; Jiang S.; Restrepo O. D.; Windl W.; Goldberger J. E. Stability and Exfoliation of Germanane: A Germanium Graphane Analogue. ACS Nano 2013, 7, 4414–4421. 10.1021/nn4009406. PubMed DOI
Zhang Y.; Rubio A.; Lay G. L. Emergent Elemental Two-Dimensional Materials Beyond Graphene. J. Phys. D: Appl. Phys. 2017, 50, 053004.10.1088/1361-6463/aa4e8b. DOI
Nijamudheen A.; Bhattacharjee R.; Choudhury S.; Datta A. Electronic and Chemical Properties of Germanene: The Crucial Role of Buckling. J. Phys. Chem. C . 2015, 119, 3802–3809. 10.1021/jp511488m. DOI
Vogg G.; Brandt M. S.; Stutzmann M. Polygermyne—A Prototype System for Layered Germanium Polymers. Adv. Mater. 2000, 12, 1278–1281. 10.1002/1521-4095(200009)12:17<1278::aid-adma1278>3.0.co;2-y. DOI
Liu Z.; Dai Y.; Zheng Z.; Huang B. Covalently-Terminated Germanane GeH and GeCH3 for Hydrogen Generation from Catalytic Hydrolysis of Ammonia Borane under Visible Light Irradiation. Catal. Commun. 2019, 118, 46–50. 10.1016/j.catcom.2018.09.016. DOI
Liu Z.; Lou Z.; Li Z.; Wang G.; Wang Z.; Liu Y.; Huang B.; Xia S.; Qin X.; Zhang X.; Dai Y. GeH: A Novel Material as A Visible-Light Driven Photocatalyst for Hydrogen Evolution. Chem. Commun. 2014, 50, 11046–11048. 10.1039/c4cc03636k. PubMed DOI
Song Z.; Ang W. L.; Sturala J.; Mazanek V.; Marvan P.; Sofer Z.; Ambrosi A.; Ding C.; Luo X.; Bonanni A. Functionalized Germanene-Based Nanomaterials for the Detection of Single Nucleotide Polymorphism. ACS Appl. Nano Mater. 2021, 4, 5164–5175. 10.1021/acsanm.1c00606. DOI
Serino A. C.; Ko J. S.; Yeung M. T.; Schwartz J. J.; Kang C. B.; Tolbert S. H.; Kaner R. B.; Dunn B. S.; Weiss P. S. Lithium-Ion Insertion Properties of Solution-Exfoliated Germanane. ACS Nano 2017, 11, 7995–8001. 10.1021/acsnano.7b02589. PubMed DOI
Maric T.; Beladi-Mousavi S. M.; Khezri B.; Sturala J.; Nasir M. Z. M.; Webster R. D.; Sofer Z. k.; Pumera M. Functional 2D Germanene Fluorescent Coating of Microrobots for Micromachines Multiplexing. Small 2020, 16, 1902365.10.1002/smll.201902365. PubMed DOI
Vogg G.; Meyer A. J.-P.; Miesner C.; Brandt M. S.; Stutzmann M. Efficient Tunable Luminescence of Sige Alloy Sheet Polymers. Appl. Phys. Lett. 2001, 78, 3956–3958. 10.1063/1.1378315. DOI
Hartman T.; Sturala J.; Plutnar J.; Sofer Z. Alkali Metal Arenides as a Universal Synthetic Tool for Layered 2D Germanene Modification. Angew. Chem., Int. Ed. 2019, 58, 16517–16522. 10.1002/anie.201910654. PubMed DOI
Bermejo D.; Cardona M. Infrared Absorption in Hydrogenated Amorphous and Crystallized Germanium. J. Non-Cryst. Solids 1979, 32, 421–430. 10.1016/0022-3093(79)90086-3. DOI
Cardona M. J. P. S. S. B. Basic Research, Vibrational Spectra of Hydrogen in Silicon and Germanium. Phys. Status Solidi B 1983, 118, 463–481. 10.1002/pssb.2221180202. DOI
Rivillon S.; Chabal Y. J.; Amy F.; Kahn A. Hydrogen Passivation of Germanium (100) Surface Using Wet Chemical Preparation. Appl. Phys. Lett. 2005, 87, 253101.10.1063/1.2142084. DOI
Liu N.; Qiao H.; Xu K.; Xi Y.; Ren L.; Cheng N.; Cui D.; Qi X.; Xu X.; Hao W.; Dou S. X.; Du Y. Hydrogen Terminated Germanene for a Robust Self-Powered Flexible Photoelectrochemical Photodetector. Small 2020, 16, 2000283.10.1002/smll.202000283. PubMed DOI
Zappia M. I.; Bianca G.; Bellani S.; Serri M.; Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Bouša D.; Sedmidubský D.; Pellegrini V.; Sofer Z.; Cupolillo A.; Bonaccorso F. Solution-Processed GaSe Nanoflake-Based Films for Photoelectrochemical Water Splitting and Photoelectrochemical-Type Photodetectors. Adv. Funct. Mater. 2020, 30, 1909572.10.1002/adfm.201909572. DOI
Yang X.; Liu X.; Qu L.; Gao F.; Xu Y.; Cui M.; Yu H.; Wang Y.; Hu P.; Feng W. Boosting Photoresponse of Self-Powered InSe-Based Photoelectrochemical Photodetectors via Suppression of Interface Doping. ACS Nano 2022, 16, 8440–8448. 10.1021/acsnano.2c02986. PubMed DOI
Bianca G.; Zappia M. I.; Bellani S.; Sofer Z.; Serri M.; Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Hartman T.; Leoncino L.; Sedmidubský D.; Pellegrini V.; Chiarello G.; Bonaccorso F. Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 48598–48613. 10.1021/acsami.0c14201. PubMed DOI PMC
Cui M.; Shao Z.; Qu L.; Liu X.; Yu H.; Wang Y.; Zhang Y.; Fu Z.; Huang Y.; Feng W. MOF-Derived In2O3 Microrods for High-Performance Photoelectrochemical Ultraviolet Photodetectors. ACS Appl. Mater. Interfaces 2022, 14, 39046–39052. 10.1021/acsami.2c09968. PubMed DOI
Li Z.; Qiao H.; Guo Z.; Ren X.; Huang Z.; Qi X.; Dhanabalan S. C.; Ponraj J. S.; Zhang D.; Li J.; Zhao J.; Zhong J.; Zhang H. High-Performance Photo-Electrochemical Photodetector Based on Liquid-Exfoliated Few-Layered InSe Nanosheets with Enhanced Stability. Adv. Funct. Mater. 2018, 28, 1705237.10.1002/adfm.201705237. DOI
Ren X.; Li Z.; Huang Z.; Sang D.; Qiao H.; Qi X.; Li J.; Zhong J.; Zhang H. Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Self-Powered Photodetector. Adv. Funct. Mater. 2017, 27, 1606834.10.1002/adfm.201606834. DOI
Fang H.; Li J.; Ding J.; Sun Y.; Li Q.; Sun J.-L.; Wang L.; Yan Q. An Origami Perovskite Photodetector with Spatial Recognition Ability. ACS Appl. Mater. Interfaces 2017, 9, 10921–10928. 10.1021/acsami.7b02213. PubMed DOI
Huang W.; Xie Z.; Fan T.; Li J.; Wang Y.; Wu L.; Ma D.; Li Z.; Ge Y.; Huang Z. N.; Dai X.; Xiang Y.; Li J.; Zhu X.; Zhang H. Black-Phosphorus-Analogue Tin Monosulfide: An Emerging Optoelectronic Two-Dimensional Material for High-Performance Photodetection with Improved Stability Under Ambient/Harsh Conditions. J. Mater. Chem. C 2018, 6, 9582–9593. 10.1039/c8tc03284j. DOI
Tong S.; Yuan J.; Zhang C.; Wang C.; Liu B.; Shen J.; Xia H.; Zou Y.; Xie H.; Sun J.; Xiao S.; He J.; Gao Y.; Yang J. Large-Scale Roll-To-Roll Printed, Flexible and Stable Organic Bulk Heterojunction Photodetector. npj Flexible Electron. 2018, 2, 7.10.1038/s41528-017-0020-y. DOI
Zhuo R.; Zuo S.; Quan W.; Yan D.; Geng B.; Wang J.; Men X. Large-Size and High Performance Visible-Light Photodetectors Based on Two-Dimensional Hybrid Materials SnS/RGO. RSC Adv. 2018, 8, 761–766. 10.1039/c7ra11269f. PubMed DOI PMC
Long M.; Gao A.; Wang P.; Xia H.; Ott C.; Pan C.; Fu Y.; Liu E.; Chen X.; Lu W.; Nilges T.; Xu J.; Wang X.; Hu W.; Miao F. Room Temperature High-Detectivity Mid-Infrared Photodetectors Based on Black Arsenic Phosphorus. Sci. Adv. 2017, 3, e170058910.1126/sciadv.1700589. PubMed DOI PMC
Bera K. P.; Haider G.; Huang Y.-T.; Roy P. K.; Paul Inbaraj C. R.; Liao Y.-M.; Lin H.-I.; Lu C.-H.; Shen C.; Shih W. Y.; Shih W.-H.; Chen Y.-F. Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano 2019, 13, 12540–12552. 10.1021/acsnano.9b03165. PubMed DOI
Hou C.; Yang L.; Li B.; Zhang Q.; Li Y.; Yue Q.; Wang Y.; Yang Z.; Dong L. Multilayer Black Phosphorus Near-Infrared Photodetectors. Sensors 2018, 18, 1668.10.3390/s18061668. PubMed DOI PMC
Roy P. K.; Marvan P.; Mazánek V.; Antonatos N.; Bouša D.; Kovalska E.; Sedmidubský D.; Sofer Z. Self-Powered Broadband Photodetector and Sensor Based on Novel Few-Layered Pd3(PS4)2 Nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 30806–30817. 10.1021/acsami.1c05974. PubMed DOI
Hisatomi T.; Kubota J.; Domen K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. 10.1039/c3cs60378d. PubMed DOI
Xu X.-T.; Pan L.; Zhang X.; Wang L.; Zou J.-J. Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review. Adv. Sci. 2019, 6, 1801505.10.1002/advs.201801505. PubMed DOI PMC
Mayorga-Martinez C. C.; Chamorro-Garcia A.; Merkoçi A. Electrochemical Impedance Spectroscopy (Bio)Sensing Through Hydrogen Evolution Reaction Induced by Gold Nanoparticles. Biosens. Bioelectron. 2015, 67, 53–58. 10.1016/j.bios.2014.05.066. PubMed DOI
Fattah A.; Khatami S.; Mayorga-Martinez C. C.; Medina-Sánchez M.; Baptista-Pires L.; Merkoçi A. Graphene/Silicon Heterojunction Schottky Diode for Vapors Sensing Using Impedance Spectroscopy. Small 2014, 10, 4193.10.1002/smll.201400691. PubMed DOI
Gaude E.; Nakhleh M. K.; Patassini S.; Boschmans J.; Allsworth M.; Boyle B.; van der Schee M. P. Targeted Breath Analysis: Exogenous Volatile Organic Compounds (Evoc) As Metabolic Pathway-Specific Probes. J. Breath Res. 2019, 13, 032001.10.1088/1752-7163/ab1789. PubMed DOI
Miekisch W.; Schubert J. K.; Noeldge-Schomburg G. F. E. Diagnostic Potential of Breath Analysis—Focus on Volatile Organic Compounds. Clin. Chim. Acta 2004, 347, 25–39. 10.1016/j.cccn.2004.04.023. PubMed DOI
Smidstrup S.; Markussen T.; Vancraeyveld P.; Wellendorff J.; Schneider J.; Gunst T.; Verstichel B.; Stradi D.; Khomyakov P. A.; Vej-Hansen U. G.; Lee M.-E.; Chill S. T.; Rasmussen F.; Penazzi G.; Corsetti F.; Ojanperä A.; Jensen K.; Palsgaard M. L. N.; Martinez U.; Blom A.; Brandbyge M.; Stokbro K. Quantum ATK: An Integrated Platform of Electronic and Atomic-Scale Modelling Tools. J. Phys. Condens. Matter 2020, 32, 015901.10.1088/1361-648x/ab4007. PubMed DOI
Van Setten M. J.; Giantomassi M.; Bousquet E.; Verstraete M. J.; Hamann D. R.; Gonze X.; Rignanese G. M. The Pseudo Dojo: Training and Grading A 85 Element Optimized Norm-Conserving Pseudopotential Table. Comput. Phys. Commun. 2018, 226, 39–54. 10.1016/j.cpc.2018.01.012. DOI
Next-Generation Self-Powered Photodetectors using 2D Bismuth Oxide Selenide Crystals