Next-Generation Self-Powered Photodetectors using 2D Bismuth Oxide Selenide Crystals
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39539807
PubMed Central
PMC11555640
DOI
10.1021/acsanm.4c03594
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The concept of self-powered photodetectors has attracted significant attention due to their versatile applications in areas such as intelligent systems and hazardous substance detection. Among these, p-n junction and Schottky junction photodetectors are the most widely studied types; however, their fabrication processes are often complex and costly. To overcome these challenges, we focused on the emerging self-powered, ultrasensitive photodetector platform based on photoelectrochemical (PEC) principles. This platform leverages the unique properties of the emerging material bismuth oxide selenide (Bi2O2Se), which features a wide bandgap (∼2 eV) and a high absorption coefficient. We utilized chemical exfoliation to obtain thin layers of Bi2O2Se, enabling highly efficient photodetection. The device characterization demonstrated impressive performance metrics, including a responsivity of 97.1 μA W-1 and a specific detectivity of 2 × 108 cm Hz 1/2 W-1. The PEC photodetector also exhibits broad-spectrum sensitivity, from blue to infrared wavelengths, and features an ultrafast response time of ∼82 ms and a recovery time of ∼86 ms, highlighting its practical potential. Moreover, these self-powered photodetectors show excellent stability in electrochemical environments, positioning them promising candidates for integration into future high-efficiency devices.
Zobrazit více v PubMed
Yu R.; Wu W.; Pan C.; Wang Z.; Ding Y.; Wang Z. L. Piezo-Phototronic Boolean Logic and Computation Using Photon and Strain Dual-Gated Nanowire Transistors. Adv. Mater. 2015, 27, 940–947. 10.1002/adma.201404589. PubMed DOI
Geim A. K.; Novoselov K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. 10.1038/nmat1849. PubMed DOI
Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Katsnelson M. I.; Grigorieva I. V.; Dubonos S. V.; Firsov A. A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197–200. 10.1038/nature04233. PubMed DOI
Chhowalla M.; Shin H. S.; Eda G.; Li L.-J.; Loh K. P.; Zhang H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263–275. 10.1038/nchem.1589. PubMed DOI
Li X. J.; Yu J. H.; Luo K.; Wu Z. H.; Yang W. Tuning The Electrical and Optical Anisotropy of A Monolayer Black Phosphorus Magnetic Superlattice. Nanotechnol. 2018, 29, 174001.10.1088/1361-6528/aaaf0f. PubMed DOI
Wu J.; Yuan H.; Meng M.; Chen C.; Sun Y.; Chen Z.; Dang W.; Tan C.; Liu Y.; Yin J.; Zhou Y.; Huang S.; Xu H. Q.; Cui Y.; Hwang H. Y.; Liu Z.; Chen Y.; Yan B.; Peng H. High Electron Mobility and Quantum Oscillations in Non-Encapsulated Ultrathin Semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534. 10.1038/nnano.2017.43. PubMed DOI
Chen C.; Wang M.; Wu J.; Fu H.; Yang H.; Tian Z.; Tu T.; Peng H.; Sun Y.; Xu X.; Jiang J.; Schröter N. B. M.; Li Y.; Pei D.; Liu S.; Ekahana S. A.; Yuan H.; Xue J.; Li G.; Jia J.; Liu Z.; Yan B.; Peng H.; Chen Y. Electronic Structures and Unusually Robust Bandgap in an Ultrahigh-Mobility Layered Oxide Semiconductor, Bi2O2Se. Sci. Adv. 2018, 4, eaat835510.1126/sciadv.aat8355. PubMed DOI PMC
Xue X.; Ling C.; Ji H.; Wang J.; Wang C.; Lu H.; Liu W. Self-Powered and Broadband Bismuth Oxyselenide/p-Silicon Heterojunction Photodetectors with Low Dark Current and Fast Response. ACS Appl. Mater. Interfaces 2023, 15, 5411–5419. 10.1021/acsami.2c15947. PubMed DOI
Khan U.; Tang L.; Ding B.; Yuting L.; Feng S.; Chen W.; Khan M. J.; Liu B.; Cheng H.-M. Catalyst-Free Growth of Atomically Thin Bi2O2Se Nanoribbons for High-Performance Electronics and Optoelectronics. Adv. Funct. Mater. 2021, 31, 210117010.1002/adfm.202101170. DOI
Yin J.; Tan Z.; Hong H.; Wu J.; Yuan H.; Liu Y.; Chen C.; Tan C.; Yao F.; Li T.; Chen Y.; Liu Z.; Liu K.; Peng H. Ultrafast and Highly Sensitive Infrared Photodetectors Based on Two-Dimensional Oxyselenide Crystals. Nat. Commun. 2018, 9, 3311.10.1038/s41467-018-05874-2. PubMed DOI PMC
Li M.-Q.; Dang L.-Y.; Wang G.-G.; Li F.; Han M.; Wu Z.-P.; Li G.-Z.; Liu Z.; Han J.-C. Bismuth Oxychalcogenide Nanosheet: Facile Synthesis, Characterization, and Photodetector Application. Adv.Mater. Technol. 2020, 5, 200018010.1002/admt.202000180. DOI
Wu J.; Liu Y.; Tan Z.; Tan C.; Yin J.; Li T.; Tu T.; Peng H. Chemical Patterning of High-Mobility Semiconducting 2D Bi2O2Se Crystals for Integrated Optoelectronic Devices. Adv. Mater. 2017, 29, 170406010.1002/adma.201704060. PubMed DOI
Khan U.; Luo Y.; Tang L.; Teng C.; Liu J.; Liu B.; Cheng H.-M. Controlled Vapor–Solid Deposition of Millimeter-Size Single Crystal 2D Bi2O2Se for High-Performance Phototransistors. Adv. Funct. Mater. 2019, 29, 180797910.1002/adfm.201807979. DOI
Yang X.; Zhang Q.; Song Y.; Fan Y.; He Y.; Zhu Z.; Bai Z.; Luo Q.; Wang G.; Peng G.; Zhu M.; Qin S.; Novoselov K. High Mobility Two-Dimensional Bismuth Oxyselenide Single Crystals with Large Grain Size Grown by Reverse-Flow Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2021, 13, 49153–49162. 10.1021/acsami.1c13491. PubMed DOI
Wu J.; Tan C.; Tan Z.; Liu Y.; Yin J.; Dang W.; Wang M.; Peng H. Controlled Synthesis of High-Mobility Atomically Thin Bismuth Oxyselenide Crystals. Nano Lett. 2017, 17, 3021–3026. 10.1021/acs.nanolett.7b00335. PubMed DOI
Tian X.; Luo H.; Wei R.; Zhu C.; Guo Q.; Yang D.; Wang F.; Li J.; Qiu J. An Ultrabroadband Mid-Infrared Pulsed Optical Switch Employing Solution-Processed Bismuth Oxyselenide. Adv. Mater. 2018, 30, 180102110.1002/adma.201801021. PubMed DOI
Li J.; Wang Z.; Wen Y.; Chu J.; Yin L.; Cheng R.; Lei L.; He P.; Jiang C.; Feng L.; He J. High-Performance Near-Infrared Photodetector Based on Ultrathin Bi2O2Se Nanosheets. Adv. Funct. Mater. 2018, 28, 170643710.1002/adfm.201706437. DOI
Luo P.; Zhuge F.; Wang F.; Lian L.; Liu K.; Zhang J.; Zhai T. PbSe Quantum Dots Sensitized High-Mobility Bi2O2Se Nanosheets for High-Performance and Broadband Photodetection Beyond 2 μm. ACS Nano 2019, 13, 9028–9037. 10.1021/acsnano.9b03124. PubMed DOI
Chen G.; Zhou Y.; Zhang G.; Li J.; Qi X. Flexible, Self-Powered Bi2O2Se/Graphene Photoeletrochemical Photodetector Based on Solid-State Electrolytes. Ceram. Int. 2021, 47, 25255–25263. 10.1016/j.ceramint.2021.05.246. DOI
Du X.; Tian W.; Pan J.; Hui B.; Sun J.; Zhang K.; Xia Y. Piezo-Phototronic Effect Promoted Carrier Separation in Coaxial P-N Junctions for Self-Powered Photodetector. Nano Energy 2022, 92, 10669410.1016/j.nanoen.2021.106694. DOI
Cheng R.; Wang F.; Yin L.; Wang Z.; Wen Y.; Shifa T. A.; He J. High-Performance, Multifunctional Devices Based on Asymmetric Van Der Waals Heterostructures. Nat. Electron. 2018, 1, 356–361. 10.1038/s41928-018-0086-0. DOI
Hardee K. L.; Bard A. J. Semiconductor Electrodes: X. Photoelectrochemical Behavior of Several Polycrystalline Metal Oxide Electrodes in Aqueous Solutions. J. Electrochem. Soc. 1977, 124, 215.10.1149/1.2133269. DOI
Liu D.; Kamat P. V. Photoelectrochemical Behavior of Thin Cadmium Selenide and Coupled Titania/Cadmium Selenide Semiconductor Films. J. Phys. Chem. 1993, 97, 10769–10773. 10.1021/j100143a041. DOI
Cheng W.; Wu S.; Lu J.; Li G.; Li S.; Tian W.; Li L. Self-Powered Wide-Narrow Bandgap-Laminated Perovskite Photodetector with Bipolar Photoresponse for Secure Optical Communication. Adv. Mater. 2024, 36, 230753410.1002/adma.202307534. PubMed DOI
Li S.; Meng L.; Tian W.; Li L. Engineering Interfacial Band Bending over ZnIn2S4/SnS2 by Interface Chemical Bond for Efficient Solar-Driven Photoelectrochemical Water Splitting. Adv. Energy Mater. 2022, 12, 220062910.1002/aenm.202200629. DOI
Zappia M. I.; Bianca G.; Bellani S.; Serri M.; Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Bouša D.; Sedmidubský D.; Pellegrini V.; Sofer Z.; Cupolillo A.; Bonaccorso F. Solution-Processed GaSe Nanoflake-Based Films for Photoelectrochemical Water Splitting and Photoelectrochemical-Type Photodetectors. Adv. Funct. Mater. 2020, 30, 190957210.1002/adfm.201909572. DOI
Roy P. K.; Antonatos N.; Li T.; Jing Y.; Luxa J.; Azadmanjiri J.; Marvan P.; Heine T.; Sofer Z. 2D Few-Layered PdPS: Toward High-Efficient Self-Powered Broadband Photodetector and Sensors. ACS Appl. Mater. Interfaces 2023, 15, 1859–1870. 10.1021/acsami.2c18125. PubMed DOI
Roy P. K.; Hartman T.; Šturala J.; Luxa J.; Melle-Franco M.; Sofer Z. Hydrogen-Terminated Two-Dimensional Germanane/Silicane Alloys as Self-Powered Photodetectors and Sensors. ACS Appl. Mater. Interfaces 2023, 15, 25693–25703. 10.1021/acsami.3c01971. PubMed DOI PMC
Han M.; Wu S.; Zhao X.; He Q.; Zhang B.; Xiong W.; Luo X.; Zheng Y. Raman Spectroscopy of the Trapezoidal Bi2O2Se. Adv. Opt. Mater. 2023, 11, 230034410.1002/adom.202300344. DOI
Cheng T.; Tan C.; Zhang S.; Tu T.; Peng H.; Liu Z. Raman Spectra and Strain Effects in Bismuth Oxychalcogenides. J. Phys. Chem. C 2018, 122, 19970–19980. 10.1021/acs.jpcc.8b05475. DOI
Ma D.; Zhao J.; Wang R.; Xing C.; Li Z.; Huang W.; Jiang X.; Guo Z.; Luo Z.; Li Y.; Li J.; Luo S.; Zhang Y.; Zhang H. Ultrathin GeSe Nanosheets: From Systematic Synthesis to Studies of Carrier Dynamics and Applications for a High-Performance UV–Vis Photodetector. ACS Appl. Mater. Interfaces 2019, 11, 4278–4287. 10.1021/acsami.8b19836. PubMed DOI
Liu X.; Wang D.; Shao P.; Sun H.; Fang S.; Kang Y.; Liang K.; Jia H.; Luo Y.; Xue J.; Wang J.; Zhi T.; Chen D.; Liu B.; Long S.; Zhang R. Achieving Record High External Quantum Efficiency > 86.7% in Solar-Blind Photoelectrochemical Photodetection. Adv. Funct. Mater. 2022, 32, 220160410.1002/adfm.202201604. DOI
Wang R.; Su W.; Zhang S.; Jin L.; Zhang J.; Bian H.; Zhang Y. Application of Lignin-Derived Graphene Quantum Dots in Visible Light-Driven Photoelectrochemical Photodetector. Adv. Opt. Mater. 2023, 11, 220294410.1002/adom.202202944. DOI
Lu C.; Dong W.; Zou Y.; Wang Z.; Tan J.; Bai X.; Ma N.; Ge Y.; Zhao Q.; Xu X. Direct Z-Scheme SnSe2/SnSe Heterostructure Passivated by Al2O3 for Highly Stable and Sensitive Photoelectrochemical Photodetectors. ACS Appl. Mater. Interfaces 2023, 15, 6156–6168. 10.1021/acsami.2c19762. PubMed DOI
Yang X.; Liu X.; Qu L.; Gao F.; Xu Y.; Cui M.; Yu H.; Wang Y.; Hu P.; Feng W. Boosting Photoresponse of Self-Powered InSe-Based Photoelectrochemical Photodetectors via Suppression of Interface Doping. ACS Nano 2022, 16, 8440–8448. 10.1021/acsnano.2c02986. PubMed DOI
Bianca G.; Zappia M. I.; Bellani S.; Sofer Z.; Serri M.; Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Hartman T.; Leoncino L.; Sedmidubský D.; Pellegrini V.; Chiarello G.; Bonaccorso F. Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 48598–48613. 10.1021/acsami.0c14201. PubMed DOI PMC
Cui M.; Shao Z.; Qu L.; Liu X.; Yu H.; Wang Y.; Zhang Y.; Fu Z.; Huang Y.; Feng W. MOF-Derived In2O3 Microrods for High-Performance Photoelectrochemical Ultraviolet Photodetectors. ACS Appl. Mater. Interfaces 2022, 14, 39046–39052. 10.1021/acsami.2c09968. PubMed DOI
Li Z.; Qiao H.; Guo Z.; Ren X.; Huang Z.; Qi X.; Dhanabalan S. C.; Ponraj J. S.; Zhang D.; Li J.; Zhao J.; Zhong J.; Zhang H. High-Performance Photo-Electrochemical Photodetector Based on Liquid-Exfoliated Few-Layered InSe Nanosheets with Enhanced Stability. Adv. Funct. Mater. 2018, 28, 170523710.1002/adfm.201705237. DOI
Ren X.; Li Z.; Huang Z.; Sang D.; Qiao H.; Qi X.; Li J.; Zhong J.; Zhang H. Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Self-Powered Photodetector. Adv. Funct. Mater. 2017, 27, 160683410.1002/adfm.201606834. DOI
Fang H.; Li J.; Ding J.; Sun Y.; Li Q.; Sun J.-L.; Wang L.; Yan Q. An Origami Perovskite Photodetector with Spatial Recognition Ability. ACS Appl. Mater. Interfaces. 2017, 9, 10921–10928. 10.1021/acsami.7b02213. PubMed DOI
Huang W.; Xie Z.; Fan T.; Li J.; Wang Y.; Wu L.; Ma D.; Li Z.; Ge Y.; Huang Z. N.; Dai X.; Xiang Y.; Li J.; Zhu X.; Zhang H. Black-Phosphorus-Analogue Tin Monosulfide: An Emerging Optoelectronic Two-Dimensional Material for High-Performance Photodetection with Improved Stability under Ambient/Harsh Conditions. J. Mater. Chem. C 2018, 6, 9582–9593. 10.1039/C8TC03284J. DOI
Tong S.; Yuan J.; Zhang C.; Wang C.; Liu B.; Shen J.; Xia H.; Zou Y.; Xie H.; Sun J.; Xiao S.; He J.; Gao Y.; Yang J. Large-Scale Roll-To-Roll Printed, Flexible and Stable Organic Bulk Heterojunction Photodetector. npj Flex. Electron. 2018, 2, 7.10.1038/s41528-017-0020-y. DOI
Zhuo R.; Zuo S.; Quan W.; Yan D.; Geng B.; Wang J.; Men X. Large-Size and High Performance Visible-Light Photodetectors Based on Two-Dimensional Hybrid Materials SnS/RGO. RSC Advances 2018, 8, 761–766. 10.1039/C7RA11269F. PubMed DOI PMC
Long M.; Gao A.; Wang P.; Xia H.; Ott C.; Pan C.; Fu Y.; Liu E.; Chen X.; Lu W.; Nilges T.; Xu J.; Wang X.; Hu W.; Miao F. Room Temperature High-Detectivity Mid-Infrared Photodetectors Based on Black Arsenic Phosphorus. Sci. Adv. 2017, 3, e170058910.1126/sciadv.1700589. PubMed DOI PMC
Ulaganathan R. K.; Roy P. K.; Mhatre S. M.; Murugesan R. C.; Chen W.-L.; Lai M.-H.; Subramanian A.; Lin C.-Y.; Chang Y.-M.; Canulescu S.; Rozhin A.; Liang C.-T.; Sankar R. High-Performance Photodetector and Angular-Dependent Random Lasing from Long-Chain Organic Diammonium Sandwiched 2D Hybrid Perovskite Non-Linear Optical Single Crystal. Adv. Funct. Mater. 2023, 33, 221407810.1002/adfm.202214078. DOI
Bera K. P.; Haider G.; Huang Y.-T.; Roy P. K.; Paul Inbaraj C. R.; Liao Y.-M.; Lin H.-I.; Lu C.-H.; Shen C.; Shih W. Y.; Shih W.-H.; Chen Y.-F. Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano 2019, 13, 12540–12552. 10.1021/acsnano.9b03165. PubMed DOI
Hou C.; Yang L.; Li B.; Zhang Q.; Li Y.; Yue Q.; Wang Y.; Yang Z.; Dong L. Multilayer Black Phosphorus Near-Infrared Photodetectors. Sensors 2018, 18, 1668.10.3390/s18061668. PubMed DOI PMC
Roy P. K.; Marvan P.; Mazánek V.; Antonatos N.; Bouša D.; Kovalska E.; Sedmidubský D.; Sofer Z. Self-Powered Broadband Photodetector and Sensor Based on Novel Few-Layered Pd3(PS4)2 Nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 30806–30817. 10.1021/acsami.1c05974. PubMed DOI
Hisatomi T.; Kubota J.; Domen K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. 10.1039/C3CS60378D. PubMed DOI
Xu X.-T.; Pan L.; Zhang X.; Wang L.; Zou J.-J. Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review. Adv. Sci. 2019, 6, 180150510.1002/advs.201801505. PubMed DOI PMC