TaS2, TaSe2, and Their Heterogeneous Films as Catalysts for the Hydrogen Evolution Reaction
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33815892
PubMed Central
PMC8016161
DOI
10.1021/acscatal.9b03184
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Metallic two-dimensional transition-metal dichalcogenides (TMDs) of the group 5 metals are emerging as catalysts for an efficient hydrogen evolution reaction (HER). The HER activity of the group 5 TMDs originates from the unsaturated chalcogen edges and the highly active surface basal planes, whereas the HER activity of the widely studied group 6 TMDs originates solely from the chalcogen- or metal-unsaturated edges. However, the batch production of such nanomaterials and their scalable processing into high-performance electrocatalysts is still challenging. Herein, we report the liquid-phase exfoliation of the 2H-TaS2 crystals by using 2-propanol to produce single/few-layer (1H/2H) flakes, which are afterward deposited as catalytic films. A thermal treatment-aided texturization of the catalytic films is used to increase their porosity, promoting the ion access to the basal planes of the flakes, as well as the number of catalytic edges of the flakes. The hybridization of the H-TaS2 flakes and H-TaSe2 flakes tunes the Gibbs free energy of the adsorbed atomic hydrogen onto the H-TaS2 basal planes to the optimal thermo-neutral value. In 0.5 M H2SO4, the heterogeneous catalysts exhibit a low overpotential (versus RHE, reversible hydrogen electrode) at the cathodic current of 10 mA cm-2 (η10) of 120 mV and high mass activity of 314 A g-1 at an overpotential of 200 mV. In 1 M KOH, they show a η10 of 230 mV and a mass activity of 220 A g-1 at an overpotential of 300 mV. Our results provide new insight into the usage of the metallic group 5 TMDs for the HER through scalable material preparation and electrode processing.
BeDimensional Spa via Albisola 121 16163 Genova Italy
Graphene Labs Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy
Materials Characterization Facility Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy
Zobrazit více v PubMed
Momirlan M.; Veziroglu T. N. The Properties of Hydrogen as Fuel Tomorrow in Sustainable Energy System for a Cleaner Planet. Int. J. Hydrogen Energy 2005, 30, 795–802. 10.1016/j.ijhydene.2004.10.011. DOI
Lewis N. S.; Nocera D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (43), 15729–15735. 10.1073/pnas.0603395103. PubMed DOI PMC
Edwards P. P.; Kuznetsov V. L.; David W. I. F.; Brandon N. P. Hydrogen and Fuel Cells: Towards a Sustainable Energy Future. Energy Policy 2008, 36, 4356–4362. 10.1016/j.enpol.2008.09.036. DOI
Ball M.; Weeda M. The Hydrogen Economy - Vision or Reality?. Int. J. Hydrogen Energy 2015, 40, 7903.10.1016/j.ijhydene.2015.04.032. DOI
Moliner R.; Lázaro M. J.; Suelves I. Analysis of the Strategies for Bridging the Gap towards the Hydrogen Economy. Int. J. Hydrogen Energy 2016, 41, 19500–19508. 10.1016/j.ijhydene.2016.06.202. DOI
Cherevko S.; Geiger S.; Kasian O.; Kulyk N.; Grote J.-P.; Savan A.; Shrestha B. R.; Merzlikin S.; Breitbach B.; Ludwig A.; MayrhoferK J. J. Oxygen and Hydrogen Evolution Reactions on Ru, RuO2, Ir, and IrO2 Thin Film Electrodes in Acidic and Alkaline Electrolytes: A Comparative Study on Activity and Stability. Catal. Today 2016, 262, 170–180. 10.1016/j.cattod.2015.08.014. DOI
You B.; Sun Y. Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571–1580. 10.1021/acs.accounts.8b00002. PubMed DOI
Sheng W.; Zhuang Z.; Gao M.; Zheng J.; Chen J. G.; Yan Y. Correlating Hydrogen Oxidation and Evolution Activity on Platinum at Different PH with Measured Hydrogen Binding Energy. Nat. Commun. 2015, 6, 5848.10.1038/ncomms6848. PubMed DOI
Durst J.; Simon C.; Hasche F.; Gasteiger H. A. Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media. J. Electrochem. Soc. 2015, 162, F190–F203. 10.1149/2.0981501jes. DOI
Dubouis N.; Grimaud A. The Hydrogen Evolution Reaction: From Material to Interfacial Descriptors. Chem. Sci. 2019, 10, 9165–9181. 10.1039/C9SC03831K. PubMed DOI PMC
Morales-Guio C. G.; Stern L.-A.; Hu X. Nanostructured Hydrotreating Catalysts for Electrochemical Hydrogen Evolution. Chem. Soc. Rev. 2014, 43, 6555–6569. 10.1039/C3CS60468C. PubMed DOI
Zeng M.; Li Y. Recent Advances in Heterogeneous Electrocatalysts for the Hydrogen Evolution Reaction. J. Mater. Chem. A 2015, 3, 14942–14962. 10.1039/C5TA02974K. DOI
Zou X.; Zhang Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. 10.1039/C4CS00448E. PubMed DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Martín-García B.; Prato M.; Bonaccorso F. Single-/Few-Layer Graphene as Long-Lasting Electrocatalyst for Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2019, 2, 5373–5379. 10.1021/acsaem.9b00949. DOI
Cao Z.; Chen Q.; Zhang J.; Li H.; Jiang Y.; Shen S.; Fu G.; Lu B.; Xie Z.; Zheng L. Platinum-Nickel Alloy Excavated Nano-Multipods with Hexagonal Close-Packed Structure and Superior Activity towards Hydrogen Evolution Reaction. Nat. Commun. 2017, 8, 15131.10.1038/ncomms15131. PubMed DOI PMC
Liu Z.; Qi J.; Liu M.; Zhang S.; Fan Q.; Liu H.; Liu K.; Zheng H.; Yin Y.; Gao C. Aqueous Synthesis of Ultrathin Platinum/Non-Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angew. Chem., Int. Ed. 2018, 57, 11678–11682. 10.1002/anie.201806194. PubMed DOI
Greeley J.; Jaramillo T. F.; Bonde J.; Chorkendorff I. B.; Nørskov J. K. Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nat. Mater. 2006, 5, 909–913. 10.1038/nmat1752. PubMed DOI
Xu H.; Wei J.; Zhang K.; Shiraishi Y.; Du Y. Hierarchical NiMo Phosphide Nanosheets Strongly Anchored on Carbon Nanotubes as Robust Electrocatalysts for Overall Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 29647–29655. 10.1021/acsami.8b10314. PubMed DOI
Chhowalla M.; Liu Z.; Zhang H. Two-Dimensional Transition Metal Dichalcogenide (TMD) Nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586. 10.1039/C5CS90037A. PubMed DOI
Chhowalla M.; Shin H. S.; Eda G.; Li L.-J.; Loh K. P.; Zhang H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263.10.1038/nchem.1589. PubMed DOI
Merki D.; Hu X. Recent Developments of Molybdenum and Tungsten Sulfides as Hydrogen Evolution Catalysts. Energy Environ. Sci. 2011, 4, 3878–3888. 10.1039/c1ee01970h. DOI
Pumera M.; Sofer Z.; Ambrosi A. Layered Transition Metal Dichalcogenides for Electrochemical Energy Generation and Storage. J. Mater. Chem. A 2014, 2, 8981–8987. 10.1039/C4TA00652F. DOI
Shi X.; Fields M.; Park J.; McEnaney J. M.; Yan H.; Zhang Y.; Tsai C.; Jaramillo T. F.; Sinclair R.; Nørskov J. K.; et al. Rapid Flame Doping of Co to WS2 for Efficient Hydrogen Evolution. Energy Environ. Sci. 2018, 11, 2270–2277. 10.1039/C8EE01111G. DOI
Martín-García B.; Spirito D.; Bellani S.; Prato M.; Romano V.; Polovitsyn A.; Brescia R.; Oropesa-Nuñez R.; Najafi L.; Ansaldo A.; D’Angelo G.; Pellegrini V.; Krahne R.; Moreels I.; Bonaccorso F. Extending the Colloidal Transition Metal Dichalcogenide Library to ReS2 Nanosheets for Application in Gas Sensing and Electrocatalysis. Small 2019, 15, 1904670.10.1002/smll.201904670. PubMed DOI
Tsai C.; Chan K.; Nørskov J. K.; Abild-Pedersen F. Theoretical Insights into the Hydrogen Evolution Activity of Layered Transition Metal Dichalcogenides. Surf. Sci. 2015, 640, 133–140. 10.1016/j.susc.2015.01.019. DOI
Hinnemann B.; Moses P. G.; Bonde J.; Jørgensen K. P.; Nielsen J. H.; Horch S.; Chorkendorff I.; Nørskov J. K. Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309. 10.1021/ja0504690. PubMed DOI
Jaramillo T. F.; Jørgensen K. P.; Bonde J.; Nielsen J. H.; Horch S.; Chorkendorff I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2; Nanocatalysts. Science 2007, 317, 100–102. 10.1126/science.1141483. PubMed DOI
Xie J.; Zhang H.; Li S.; Wang R.; Sun X.; Zhou M.; Zhou J.; Lou X. W. D.; Xie Y. Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Mater. 2013, 25, 5807–5813. 10.1002/adma.201302685. PubMed DOI
Kibsgaard J.; Chen Z.; Reinecke B. N.; Jaramillo T. F. Engineering the Surface Structure of MoS2 to Preferentially Expose Active Edge Sites for Electrocatalysis. Nat. Mater. 2012, 11, 963.10.1038/nmat3439. PubMed DOI
Miao M.; Pan J.; He T.; Yan Y.; Xia B. Y.; Wang X. Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction. Chem. - Eur. J. 2017, 23, 10947–10961. 10.1002/chem.201701064. PubMed DOI
Seh Z. W.; Fredrickson K. D.; Anasori B.; Kibsgaard J.; Strickler A. L.; Lukatskaya M. R.; Gogotsi Y.; Jaramillo T. F.; Vojvodic A. Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Lett. 2016, 1, 589–594. 10.1021/acsenergylett.6b00247. DOI
Huang Y.; Miao Y.-E.; Fu J.; Mo S.; Wei C.; Liu T. Perpendicularly Oriented Few-Layer MoSe2 on SnO2 Nanotubes for Efficient Hydrogen Evolution Reaction. J. Mater. Chem. A 2015, 3, 16263–16271. 10.1039/C5TA03704B. DOI
Ye G.; Gong Y.; Lin J.; Li B.; He Y.; Pantelides S. T.; Zhou W.; Vajtai R.; Ajayan P. M. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. Nano Lett. 2016, 16, 1097–1103. 10.1021/acs.nanolett.5b04331. PubMed DOI
Najafi L.; Bellani S.; Martín-García B.; Oropesa-Nuñez R.; Del Rio Castillo A. E.; Prato M.; Moreels I.; Bonaccorso F. Solution-Processed Hybrid Graphene Flake/2H-MoS2 Quantum Dot Heterostructures for Efficient Electrochemical Hydrogen Evolution. Chem. Mater. 2017, 29, 5782–5786. 10.1021/acs.chemmater.7b01897. DOI
Li L.; Qin Z.; Ries L.; Hong S.; Michel T.; Yang J.; Salameh C.; Bechelany M.; Miele P.; Kaplan D.; Chhowalla M. Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS2 Nanosheets Towards the Evolution of Hydrogen. ACS Nano 2019, 13, 6824–6834. 10.1021/acsnano.9b01583. PubMed DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Ansaldo A.; Prato M.; Del Rio Castillo A. E.; Bonaccorso F. Doped-MoSe2 Nanoflakes/3d Metal Oxide–Hydr(Oxy)Oxides Hybrid Catalysts for PH-Universal Electrochemical Hydrogen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1801764.10.1002/aenm.201801764. DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Prato M.; Martín-García B.; Brescia R.; Bonaccorso F. Carbon Nanotube-Supported MoSe2 Holey Flake:Mo2C Ball Hybrids for Bifunctional PH-Universal Water Splitting. ACS Nano 2019, 13, 3162–3176. 10.1021/acsnano.8b08670. PubMed DOI
Zhu C.; Gao D.; Ding J.; Chao D.; Wang J. TMD-Based Highly Efficient Electrocatalysts Developed by Combined Computational and Experimental Approaches. Chem. Soc. Rev. 2018, 47, 4332–4356. 10.1039/C7CS00705A. PubMed DOI
Huan Y.; Shi J.; Zou X.; Gong Y.; Zhang Z.; Li M.; Zhao L.; Xu R.; Jiang S.; Zhou X.; Hong M.; Xie C.; Li H.; Lang X.; Zhang Q.; Gu L.; Yan X.; Zhang Y. Vertical 1T-TaS2 Synthesis on Nanoporous Gold for High-Performance Electrocatalytic Applications. Adv. Mater. 2018, 30, 1705916.10.1002/adma.201705916. PubMed DOI
Liu Y.; Wu J.; Hackenberg K. P.; Zhang J.; Wang Y. M.; Yang Y.; Keyshar K.; Gu J.; Ogitsu T.; Vajtai R.; Lou J.; Ajayan P. M.; Wood B. C.; Yakobson B. I. Self-Optimizing, Highly Surface-Active Layered Metal Dichalcogenide Catalysts for Hydrogen Evolution. Nat. Energy 2017, 2, 17127.10.1038/nenergy.2017.127. DOI
Shi J.; Wang X.; Zhang S.; Xiao L.; Huan Y.; Gong Y.; Zhang Z.; Li Y.; Zhou X.; Hong M.; Fang Q.; Zhang Q.; Liu X.; Gu L.; Liu Z.; Zhang Y. Two-Dimensional Metallic Tantalum Disulfide as a Hydrogen Evolution Catalyst. Nat. Commun. 2017, 8, 958.10.1038/s41467-017-01089-z. PubMed DOI PMC
Han B.; Noh S. H.; Choi D.; Seo M. H.; Kang J.; Hwang J. Tuning the Catalytic Activity of Heterogeneous Two-Dimensional Transition Metal Dichalcogenides for Hydrogen Evolution. J. Mater. Chem. A 2018, 6, 20005–20014. 10.1039/C8TA07141A. DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Martín-García B.; Prato M.; Mazánek V.; Debellis D.; Lauciello S.; Brescia R.; Sofer Z.; Bonaccorso F. Niobium Disulphide (NbS2)-Based (Heterogeneous) Electrocatalysts for an Efficient Hydrogen Evolution Reaction. J. Mater. Chem. A 2019, 7, 25593–25608. 10.1039/C9TA07210A. DOI
Zhang J.; Wu J.; Zou X.; Hackenberg K.; Zhou W.; Chen W.; Yuan J.; Keyshar K.; Gupta G.; Mohite A.; Ajayan P. M.; Lou J. Discovering Superior Basal Plane Active Two-Dimensional Catalysts for Hydrogen Evolution. Mater. Today 2019, 25, 28–34. 10.1016/j.mattod.2019.02.014. DOI
Chia X.; Ambrosi A.; Lazar P.; Sofer Z.; Pumera M. Electrocatalysis of Layered Group 5 Metallic Transition Metal Dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te). J. Mater. Chem. A 2016, 4, 14241–14253. 10.1039/C6TA05110C. DOI
Chirdon D. N.; Wu Y. Hydrogen Evolution: Not Living on the Edge. Nat. Energy 2017, 2, 17132.10.1038/nenergy.2017.132. DOI
Hackenberg K.; Keyshar K.; Wu J.; Liu Y.; Ajayan P.; Wood B.; Yakobson B.. Self-Improving Electrocatalysists for Gas Evolution Reactions. US 2016/0153098 A1, 2016.
Bonaccorso F.; Bartolotta A.; Coleman J. N.; Backes C. 2D-Crystal-Based Functional Inks. Adv. Mater. 2016, 28, 6136–6166. 10.1002/adma.201506410. PubMed DOI
Nicolosi V.; Chhowalla M.; Kanatzidis M. G.; Strano M. S.; Coleman J. N. Liquid Exfoliation of Layered Materials. Science 2013, 340, 1226419.10.1126/science.1226419. DOI
Bonaccorso F.; Hasan T.; Tan P. H.; Sciascia C.; Privitera G.; Di Marco G.; Gucciardi P. G.; Ferrari A. C. Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation. J. Phys. Chem. C 2010, 114, 17267–17285. 10.1021/jp1030174. DOI
Hasan T.; Tan P. H.; Bonaccorso F.; Rozhin A. G.; Scardaci V.; Milne W. I.; Ferrari A. C. Polymer-Assisted Isolation of Single Wall Carbon Nanotubes in Organic Solvents for Optical-Quality Nanotube-Polymer Composites. J. Phys. Chem. C 2008, 112, 20227–20232. 10.1021/jp807036w. DOI
Luxa J.; Mazánek V.; Pumera M.; Lazar P.; Sedmidubský D.; Callisti M.; Polcar T.; Sofer Z. 2H→1T Phase Engineering of Layered Tantalum Disulfides in Electrocatalysis: Oxygen Reduction Reaction. Chem. - Eur. J. 2017, 23, 8082–8091. 10.1002/chem.201701494. PubMed DOI
Capasso A.; Del Rio Castillo A. E.; Sun H.; Ansaldo A.; Pellegrini V.; Bonaccorso F. Ink-Jet Printing of Graphene for Flexible Electronics: An Environmentally-Friendly Approach. Solid State Commun. 2015, 224, 53–63. 10.1016/j.ssc.2015.08.011. DOI
Maragó O. M.; Bonaccorso F.; Saija R.; Privitera G.; Gucciardi P. G.; Iatì M. A.; Calogero G.; Jones P. H.; Borghese F.; Denti P.; Nicolosi V.; Ferrari A. C. Brownian Motion of Graphene. ACS Nano 2010, 4, 7515–7523. 10.1021/nn1018126. PubMed DOI
Bonaccorso F.; Lombardo A.; Hasan T.; Sun Z.; Colombo L.; Ferrari A. C. Production and Processing of Graphene and 2d Crystals. Mater. Today 2012, 15, 564–589. 10.1016/S1369-7021(13)70014-2. DOI
Hu Y.; Hao Q.; Zhu B.; Li B.; Gao Z.; Wang Y.; Tang K. Toward Exploring the Structure of Monolayer to Few-Layer TaS2 by Efficient Ultrasound-Free Exfoliation. Nanoscale Res. Lett. 2018, 13, 20.10.1186/s11671-018-2439-z. PubMed DOI PMC
Navarro-Moratalla E.; Island J. O.; Mañas-Valero S.; Pinilla-Cienfuegos E.; Castellanos-Gomez A.; Quereda J.; Rubio-Bollinger G.; Chirolli L.; Silva-Guillén J. A.; Agraït N.; Steele G. A.; Guinea F.; van der Zant H. S. J.; Coronado E. Enhanced Superconductivity in Atomically Thin TaS2. Nat. Commun. 2016, 7, 11043.10.1038/ncomms11043. PubMed DOI PMC
Zeng Z.; Tan C.; Huang X.; Bao S.; Zhang H. Growth of Noble Metal Nanoparticles on Single-Layer TiS2 and TaS2 Nanosheets for Hydrogen Evolution Reaction. Energy Environ. Sci. 2014, 7, 797–803. 10.1039/C3EE42620C. DOI
Patterson A. L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. 10.1103/PhysRev.56.978. DOI
Yue N.; Weicheng J.; Rongguo W.; Guomin D.; Yifan H. Hybrid Nanostructures Combining Graphene–MoS2 Quantum Dots for Gas Sensing. J. Mater. Chem. A 2016, 4, 8198–8203. 10.1039/C6TA03267B. DOI
Sugai S.; Murase K.; Uchida S.; Tanaka S. Studies of Lattice Dynamics in 2H-TaS2 by Raman Scattering. Solid State Commun. 1981, 40, 399–401. 10.1016/0038-1098(81)90847-4. DOI
Hangyo M.; Nakashima S.-I.; Mitsuishi A. Raman Spectroscopic Studies of MX2-Type Layered Compounds. Ferroelectrics 1983, 52, 151–159. 10.1080/00150198308208248. DOI
Petroni E.; Lago E.; Bellani S.; Boukhvalov D. W.; Politano A.; Gürbulak B.; Duman S.; Prato M.; Gentiluomo S.; Oropesa-Nuñez R.; Panda J. K.; Toth P. S.; Del Rio Castillo A. E.; Pellegrini V.; Bonaccorso F. Liquid-Phase Exfoliated Indium–Selenide Flakes and Their Application in Hydrogen Evolution Reaction. Small 2018, 14, 1800749.10.1002/smll.201800749. PubMed DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Ansaldo A.; Prato M.; Del Rio Castillo A. E.; Bonaccorso F. Engineered MoSe2-Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1703212.10.1002/aenm.201703212. DOI
Kiriya D.; Lobaccaro P.; Nyein H. Y. Y.; Taheri P.; Hettick M.; Shiraki H.; Sutter-Fella C. M.; Zhao P.; Gao W.; Maboudian R.; Ager J. W. General Thermal Texturization Process of MoS2 for Efficient Electrocatalytic Hydrogen Evolution Reaction. Nano Lett. 2016, 16, 4047–4053. 10.1021/acs.nanolett.6b00569. PubMed DOI
Staszak-Jirkovský J.; Malliakas C. D.; Lopes P. P.; Danilovic N.; Kota S. S.; Chang K.-C.; Genorio B.; Strmcnik D.; Stamenkovic V. R.; Kanatzidis M. G.; Markovic N. M. Design of Active and Stable Co–Mo–Sx Chalcogels as PH-Universal Catalysts for the Hydrogen Evolution Reaction. Nat. Mater. 2016, 15, 197.10.1038/nmat4481. PubMed DOI
Shinagawa T.; Garcia-Esparza A. T.; Takanabe K. Insight on Tafel Slopes from a Microkinetic Analysis of Aqueous Electrocatalysis for Energy Conversion. Sci. Rep. 2015, 5, 13801.10.1038/srep13801. PubMed DOI PMC
Yang J.; Mohmad A. R.; Wang Y.; Fullon R.; Song X.; Zhao F.; Bozkurt I.; Augustin M.; Santos E. J. G.; Shin H. S.; Zhang W.; Voiry D.; Jeong H. Y.; Chhowalla M. Ultrahigh-Current-Density Niobium Disulfide Catalysts for Hydrogen Evolution. Nat. Mater. 2019, 18, 1309–1314. 10.1038/s41563-019-0463-8. PubMed DOI
Murphy K. E.; Altman M. B.; Wunderlich B. The Monoclinic□to□trigonal Transformation in Selenium. J. Appl. Phys. 1977, 48, 4122–4131. 10.1063/1.323439. DOI
Cheng B.; Samulski E. T. Rapid, High Yield, Solution-Mediated Transformation of Polycrystalline Selenium Powder into Single-Crystal Nanowires. Chem. Commun. 2003, 16, 2024–2025. 10.1039/b303755j. PubMed DOI
Lu J.; Xie Y.; Xu F.; Zhu L. Study of the Dissolution Behavior of Selenium and Tellurium in Different Solvents - A Novel Route to Se, Te Tubular Bulk Single Crystals. J. Mater. Chem. 2002, 12, 2755–2761. 10.1039/B204092A. DOI
Lu J.; Xiong T.; Zhou W.; Yang L.; Tang Z.; Chen S. Metal Nickel Foam as an Efficient and Stable Electrode for Hydrogen Evolution Reaction in Acidic Electrolyte under Reasonable Overpotentials. ACS Appl. Mater. Interfaces 2016, 8, 5065–5069. 10.1021/acsami.6b00233. PubMed DOI
Voiry D.; Chhowalla M.; Gogotsi Y.; Kotov N. A.; Li Y.; Penner R. M.; Schaak R. E.; Weiss P. S. Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano 2018, 12, 9635–9638. 10.1021/acsnano.8b07700. PubMed DOI
Zhu Z.; Yin H.; He C.-T.; Al-Mamun M.; Liu P.; Jiang L.; Zhao Y.; Wang Y.; Yang H.-G.; Tang Z.; et al. Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity. Adv. Mater. 2018, 30, 1801171.10.1002/adma.201801171. PubMed DOI
Xiong P.; Zhang X.; Wan H.; Wang S.; Zhao Y.; Zhang J.; Zhou D.; Gao W.; Ma R.; Sasaki T.; Wang G. Interface Modulation of Two-Dimensional Superlattices for Efficient Overall Water Splitting. Nano Lett. 2019, 19, 4518–4526. 10.1021/acs.nanolett.9b01329. PubMed DOI
Subbaraman R.; Tripkovic D.; Chang K.-C.; Strmcnik D.; Paulikas A. P.; Hirunsit P.; Chan M.; Greeley J.; Stamenkovic V.; Markovic N. M. Trends in Activity for the Water Electrolyser Reactions on 3d M(Ni,Co,Fe,Mn) Hydr(Oxy)Oxide Catalysts. Nat. Mater. 2012, 11, 550.10.1038/nmat3313. PubMed DOI
Subbaraman R.; Tripkovic D.; Strmcnik D.; Chang K.-C.; Uchimura M.; Paulikas A. P.; Stamenkovic V.; Markovic N. M. Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces. Science 2011, 334, 1256–1260. 10.1126/science.1211934. PubMed DOI
Danilovic N.; Subbaraman R.; Strmcnik D.; Chang K.-C.; Paulikas A. P.; Stamenkovic V. R.; Markovic N. M. Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH)2/Metal Catalysts. Angew. Chem. 2012, 124, 12663–12666. 10.1002/ange.201204842. PubMed DOI
Wang L.; Lin C.; Huang D.; Chen J.; Jiang L.; Wang M.; Chi L.; Shi L.; Jin J. Optimizing the Volmer Step by Single-Layer Nickel Hydroxide Nanosheets in Hydrogen Evolution Reaction of Platinum. ACS Catal. 2015, 5, 3801–3806. 10.1021/cs501835c. DOI
Zhang J.; Wang T.; Liu P.; Liu S.; Dong R.; Zhuang X.; Chen M.; Feng X. Engineering Water Dissociation Sites in MoS2 Nanosheets for Accelerated Electrocatalytic Hydrogen Production. Energy Environ. Sci. 2016, 9, 2789–2793. 10.1039/C6EE01786J. DOI
Anantharaj S.; Kundu S. Do the Evaluation Parameters Reflect Intrinsic Activity of Electrocatalysts in Electrochemical Water Splitting?. ACS Energy Lett. 2019, 4, 1260–1264. 10.1021/acsenergylett.9b00686. DOI
Anantharaj S.; Ede S. R.; Karthick K.; Sam Sankar S.; Sangeetha K.; Karthik P. E.; Kundu S. Precision and Correctness in the Evaluation of Electrocatalytic Water Splitting: Revisiting Activity Parameters with a Critical Assessment. Energy Environ. Sci. 2018, 11, 744–771. 10.1039/C7EE03457A. DOI
Trasatti S.; Petrii O. A. Real Surface Area Measurements in Electrochemistry. J. Electroanal. Chem. 1992, 327, 353–376. 10.1016/0022-0728(92)80162-W. DOI
Li D.; Batchelor-McAuley C.; Compton R. G. Some Thoughts about Reporting the Electrocatalytic Performance of Nanomaterials. Appl. Mater. Today 2020, 18, 100404.10.1016/j.apmt.2019.05.011. DOI
Gopalakrishnan D.; Lee A.; Thangavel N. K.; Reddy Arava L. M. Facile Synthesis of Electrocatalytically Active NbS2 Nanoflakes for an Enhanced Hydrogen Evolution Reaction (HER). Sustain. Energy Fuels 2018, 2, 96–102. 10.1039/C7SE00376E. DOI
Si J.; Zheng Q.; Chen H.; Lei C.; Suo Y.; Yang B.; Zhang Z.; Li Z.; Lei L.; Hou Y.; Ostrikov K. (Ken) Scalable Production of Few-Layer Niobium Disulfide Nanosheets via Electrochemical Exfoliation for Energy-Efficient Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2019, 11, 13205–13213. 10.1021/acsami.8b22052. PubMed DOI
Huang C.; Wang X.; Wang D.; Zhao W.; Bu K.; Xu J.; Huang X.; Bi Q.; Huang J.; Huang F. Atomic-Pillar Effect in PdxNbS2 to Boost Basal-Plane Activity for Stable Hydrogen Evolution. Chem. Mater. 2019, 31, 4726–4731. 10.1021/acs.chemmater.9b00821. DOI
Zhang M.; He Y.; Yan D.; Xu H.; Wang A.; Chen Z.; Wang S.; Luo H.; Yan K. Multifunctional 2H-TaS2 Nanoflakes for Efficient Supercapacitors and Electrocatalytic Evolution of Hydrogen and Oxygen. Nanoscale 2019, 11, 22255–22260. 10.1039/C9NR07564J. PubMed DOI
Raj I.; Duan Y.; Kigen D.; Yang W.; Hou L.; Yang F.; Li Y. Catalytically Enhanced Thin and Uniform TaS2 Nanosheets for Hydrogen Evolution Reaction. Front. Mater. Sci. 2018, 12, 239–246. 10.1007/s11706-018-0425-0. DOI
Feng Y.; Gong S.; Du E.; Chen X.; Qi R.; Yu K.; Zhu Z. 3R TaS2 Surpasses the Corresponding 1T and 2H Phases for the Hydrogen Evolution Reaction. J. Phys. Chem. C 2018, 122, 2382–2390. 10.1021/acs.jpcc.7b10833. DOI
Yu Q.; Luo Y.; Qiu S.; Li Q.; Cai Z.; Zhang Z.; Liu J.; Sun C.; Liu B. Tuning the Hydrogen Evolution Performance of Metallic 2D Tantalum Disulfide by Interfacial Engineering. ACS Nano 2019, 13, 11874–11881. 10.1021/acsnano.9b05933. PubMed DOI
Li H.; Tan Y.; Liu P.; Guo C.; Luo M.; Han J.; Lin T.; Huang F.; Chen M. Atomic-Sized Pores Enhanced Electrocatalysis of TaS2 Nanosheets for Hydrogen Evolution. Adv. Mater. 2016, 28, 8945–8949. 10.1002/adma.201602502. PubMed DOI
Voiry D.; Salehi M.; Silva R.; Fujita T.; Chen M.; Asefa T.; Shenoy V. B.; Eda G.; Chhowalla M. Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Lett. 2013, 13, 6222–6227. 10.1021/nl403661s. PubMed DOI
Wang D.; Wang X.; Lu Y.; Song C.; Pan J.; Li C.; Sui M.; Zhao W.; Huang F. Atom-Scale Dispersed Palladium in a Conductive Pd0.1TaS2 Lattice with a Unique Electronic Structure for Efficient Hydrogen Evolution. J. Mater. Chem. A 2017, 5, 22618–22624. 10.1039/C7TA06447K. DOI