TaS2, TaSe2, and Their Heterogeneous Films as Catalysts for the Hydrogen Evolution Reaction

. 2020 Mar 06 ; 10 (5) : 3313-3325. [epub] 20200210

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33815892

Metallic two-dimensional transition-metal dichalcogenides (TMDs) of the group 5 metals are emerging as catalysts for an efficient hydrogen evolution reaction (HER). The HER activity of the group 5 TMDs originates from the unsaturated chalcogen edges and the highly active surface basal planes, whereas the HER activity of the widely studied group 6 TMDs originates solely from the chalcogen- or metal-unsaturated edges. However, the batch production of such nanomaterials and their scalable processing into high-performance electrocatalysts is still challenging. Herein, we report the liquid-phase exfoliation of the 2H-TaS2 crystals by using 2-propanol to produce single/few-layer (1H/2H) flakes, which are afterward deposited as catalytic films. A thermal treatment-aided texturization of the catalytic films is used to increase their porosity, promoting the ion access to the basal planes of the flakes, as well as the number of catalytic edges of the flakes. The hybridization of the H-TaS2 flakes and H-TaSe2 flakes tunes the Gibbs free energy of the adsorbed atomic hydrogen onto the H-TaS2 basal planes to the optimal thermo-neutral value. In 0.5 M H2SO4, the heterogeneous catalysts exhibit a low overpotential (versus RHE, reversible hydrogen electrode) at the cathodic current of 10 mA cm-2 (η10) of 120 mV and high mass activity of 314 A g-1 at an overpotential of 200 mV. In 1 M KOH, they show a η10 of 230 mV and a mass activity of 220 A g-1 at an overpotential of 300 mV. Our results provide new insight into the usage of the metallic group 5 TMDs for the HER through scalable material preparation and electrode processing.

Zobrazit více v PubMed

Momirlan M.; Veziroglu T. N. The Properties of Hydrogen as Fuel Tomorrow in Sustainable Energy System for a Cleaner Planet. Int. J. Hydrogen Energy 2005, 30, 795–802. 10.1016/j.ijhydene.2004.10.011. DOI

Lewis N. S.; Nocera D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (43), 15729–15735. 10.1073/pnas.0603395103. PubMed DOI PMC

Edwards P. P.; Kuznetsov V. L.; David W. I. F.; Brandon N. P. Hydrogen and Fuel Cells: Towards a Sustainable Energy Future. Energy Policy 2008, 36, 4356–4362. 10.1016/j.enpol.2008.09.036. DOI

Ball M.; Weeda M. The Hydrogen Economy - Vision or Reality?. Int. J. Hydrogen Energy 2015, 40, 7903.10.1016/j.ijhydene.2015.04.032. DOI

Moliner R.; Lázaro M. J.; Suelves I. Analysis of the Strategies for Bridging the Gap towards the Hydrogen Economy. Int. J. Hydrogen Energy 2016, 41, 19500–19508. 10.1016/j.ijhydene.2016.06.202. DOI

Cherevko S.; Geiger S.; Kasian O.; Kulyk N.; Grote J.-P.; Savan A.; Shrestha B. R.; Merzlikin S.; Breitbach B.; Ludwig A.; MayrhoferK J. J. Oxygen and Hydrogen Evolution Reactions on Ru, RuO2, Ir, and IrO2 Thin Film Electrodes in Acidic and Alkaline Electrolytes: A Comparative Study on Activity and Stability. Catal. Today 2016, 262, 170–180. 10.1016/j.cattod.2015.08.014. DOI

You B.; Sun Y. Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571–1580. 10.1021/acs.accounts.8b00002. PubMed DOI

Sheng W.; Zhuang Z.; Gao M.; Zheng J.; Chen J. G.; Yan Y. Correlating Hydrogen Oxidation and Evolution Activity on Platinum at Different PH with Measured Hydrogen Binding Energy. Nat. Commun. 2015, 6, 5848.10.1038/ncomms6848. PubMed DOI

Durst J.; Simon C.; Hasche F.; Gasteiger H. A. Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media. J. Electrochem. Soc. 2015, 162, F190–F203. 10.1149/2.0981501jes. DOI

Dubouis N.; Grimaud A. The Hydrogen Evolution Reaction: From Material to Interfacial Descriptors. Chem. Sci. 2019, 10, 9165–9181. 10.1039/C9SC03831K. PubMed DOI PMC

Morales-Guio C. G.; Stern L.-A.; Hu X. Nanostructured Hydrotreating Catalysts for Electrochemical Hydrogen Evolution. Chem. Soc. Rev. 2014, 43, 6555–6569. 10.1039/C3CS60468C. PubMed DOI

Zeng M.; Li Y. Recent Advances in Heterogeneous Electrocatalysts for the Hydrogen Evolution Reaction. J. Mater. Chem. A 2015, 3, 14942–14962. 10.1039/C5TA02974K. DOI

Zou X.; Zhang Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. 10.1039/C4CS00448E. PubMed DOI

Najafi L.; Bellani S.; Oropesa-Nuñez R.; Martín-García B.; Prato M.; Bonaccorso F. Single-/Few-Layer Graphene as Long-Lasting Electrocatalyst for Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2019, 2, 5373–5379. 10.1021/acsaem.9b00949. DOI

Cao Z.; Chen Q.; Zhang J.; Li H.; Jiang Y.; Shen S.; Fu G.; Lu B.; Xie Z.; Zheng L. Platinum-Nickel Alloy Excavated Nano-Multipods with Hexagonal Close-Packed Structure and Superior Activity towards Hydrogen Evolution Reaction. Nat. Commun. 2017, 8, 15131.10.1038/ncomms15131. PubMed DOI PMC

Liu Z.; Qi J.; Liu M.; Zhang S.; Fan Q.; Liu H.; Liu K.; Zheng H.; Yin Y.; Gao C. Aqueous Synthesis of Ultrathin Platinum/Non-Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angew. Chem., Int. Ed. 2018, 57, 11678–11682. 10.1002/anie.201806194. PubMed DOI

Greeley J.; Jaramillo T. F.; Bonde J.; Chorkendorff I. B.; Nørskov J. K. Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nat. Mater. 2006, 5, 909–913. 10.1038/nmat1752. PubMed DOI

Xu H.; Wei J.; Zhang K.; Shiraishi Y.; Du Y. Hierarchical NiMo Phosphide Nanosheets Strongly Anchored on Carbon Nanotubes as Robust Electrocatalysts for Overall Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 29647–29655. 10.1021/acsami.8b10314. PubMed DOI

Chhowalla M.; Liu Z.; Zhang H. Two-Dimensional Transition Metal Dichalcogenide (TMD) Nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586. 10.1039/C5CS90037A. PubMed DOI

Chhowalla M.; Shin H. S.; Eda G.; Li L.-J.; Loh K. P.; Zhang H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263.10.1038/nchem.1589. PubMed DOI

Merki D.; Hu X. Recent Developments of Molybdenum and Tungsten Sulfides as Hydrogen Evolution Catalysts. Energy Environ. Sci. 2011, 4, 3878–3888. 10.1039/c1ee01970h. DOI

Pumera M.; Sofer Z.; Ambrosi A. Layered Transition Metal Dichalcogenides for Electrochemical Energy Generation and Storage. J. Mater. Chem. A 2014, 2, 8981–8987. 10.1039/C4TA00652F. DOI

Shi X.; Fields M.; Park J.; McEnaney J. M.; Yan H.; Zhang Y.; Tsai C.; Jaramillo T. F.; Sinclair R.; Nørskov J. K.; et al. Rapid Flame Doping of Co to WS2 for Efficient Hydrogen Evolution. Energy Environ. Sci. 2018, 11, 2270–2277. 10.1039/C8EE01111G. DOI

Martín-García B.; Spirito D.; Bellani S.; Prato M.; Romano V.; Polovitsyn A.; Brescia R.; Oropesa-Nuñez R.; Najafi L.; Ansaldo A.; D’Angelo G.; Pellegrini V.; Krahne R.; Moreels I.; Bonaccorso F. Extending the Colloidal Transition Metal Dichalcogenide Library to ReS2 Nanosheets for Application in Gas Sensing and Electrocatalysis. Small 2019, 15, 1904670.10.1002/smll.201904670. PubMed DOI

Tsai C.; Chan K.; Nørskov J. K.; Abild-Pedersen F. Theoretical Insights into the Hydrogen Evolution Activity of Layered Transition Metal Dichalcogenides. Surf. Sci. 2015, 640, 133–140. 10.1016/j.susc.2015.01.019. DOI

Hinnemann B.; Moses P. G.; Bonde J.; Jørgensen K. P.; Nielsen J. H.; Horch S.; Chorkendorff I.; Nørskov J. K. Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309. 10.1021/ja0504690. PubMed DOI

Jaramillo T. F.; Jørgensen K. P.; Bonde J.; Nielsen J. H.; Horch S.; Chorkendorff I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2; Nanocatalysts. Science 2007, 317, 100–102. 10.1126/science.1141483. PubMed DOI

Xie J.; Zhang H.; Li S.; Wang R.; Sun X.; Zhou M.; Zhou J.; Lou X. W. D.; Xie Y. Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Mater. 2013, 25, 5807–5813. 10.1002/adma.201302685. PubMed DOI

Kibsgaard J.; Chen Z.; Reinecke B. N.; Jaramillo T. F. Engineering the Surface Structure of MoS2 to Preferentially Expose Active Edge Sites for Electrocatalysis. Nat. Mater. 2012, 11, 963.10.1038/nmat3439. PubMed DOI

Miao M.; Pan J.; He T.; Yan Y.; Xia B. Y.; Wang X. Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction. Chem. - Eur. J. 2017, 23, 10947–10961. 10.1002/chem.201701064. PubMed DOI

Seh Z. W.; Fredrickson K. D.; Anasori B.; Kibsgaard J.; Strickler A. L.; Lukatskaya M. R.; Gogotsi Y.; Jaramillo T. F.; Vojvodic A. Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Lett. 2016, 1, 589–594. 10.1021/acsenergylett.6b00247. DOI

Huang Y.; Miao Y.-E.; Fu J.; Mo S.; Wei C.; Liu T. Perpendicularly Oriented Few-Layer MoSe2 on SnO2 Nanotubes for Efficient Hydrogen Evolution Reaction. J. Mater. Chem. A 2015, 3, 16263–16271. 10.1039/C5TA03704B. DOI

Ye G.; Gong Y.; Lin J.; Li B.; He Y.; Pantelides S. T.; Zhou W.; Vajtai R.; Ajayan P. M. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. Nano Lett. 2016, 16, 1097–1103. 10.1021/acs.nanolett.5b04331. PubMed DOI

Najafi L.; Bellani S.; Martín-García B.; Oropesa-Nuñez R.; Del Rio Castillo A. E.; Prato M.; Moreels I.; Bonaccorso F. Solution-Processed Hybrid Graphene Flake/2H-MoS2 Quantum Dot Heterostructures for Efficient Electrochemical Hydrogen Evolution. Chem. Mater. 2017, 29, 5782–5786. 10.1021/acs.chemmater.7b01897. DOI

Li L.; Qin Z.; Ries L.; Hong S.; Michel T.; Yang J.; Salameh C.; Bechelany M.; Miele P.; Kaplan D.; Chhowalla M. Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS2 Nanosheets Towards the Evolution of Hydrogen. ACS Nano 2019, 13, 6824–6834. 10.1021/acsnano.9b01583. PubMed DOI

Najafi L.; Bellani S.; Oropesa-Nuñez R.; Ansaldo A.; Prato M.; Del Rio Castillo A. E.; Bonaccorso F. Doped-MoSe2 Nanoflakes/3d Metal Oxide–Hydr(Oxy)Oxides Hybrid Catalysts for PH-Universal Electrochemical Hydrogen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1801764.10.1002/aenm.201801764. DOI

Najafi L.; Bellani S.; Oropesa-Nuñez R.; Prato M.; Martín-García B.; Brescia R.; Bonaccorso F. Carbon Nanotube-Supported MoSe2 Holey Flake:Mo2C Ball Hybrids for Bifunctional PH-Universal Water Splitting. ACS Nano 2019, 13, 3162–3176. 10.1021/acsnano.8b08670. PubMed DOI

Zhu C.; Gao D.; Ding J.; Chao D.; Wang J. TMD-Based Highly Efficient Electrocatalysts Developed by Combined Computational and Experimental Approaches. Chem. Soc. Rev. 2018, 47, 4332–4356. 10.1039/C7CS00705A. PubMed DOI

Huan Y.; Shi J.; Zou X.; Gong Y.; Zhang Z.; Li M.; Zhao L.; Xu R.; Jiang S.; Zhou X.; Hong M.; Xie C.; Li H.; Lang X.; Zhang Q.; Gu L.; Yan X.; Zhang Y. Vertical 1T-TaS2 Synthesis on Nanoporous Gold for High-Performance Electrocatalytic Applications. Adv. Mater. 2018, 30, 1705916.10.1002/adma.201705916. PubMed DOI

Liu Y.; Wu J.; Hackenberg K. P.; Zhang J.; Wang Y. M.; Yang Y.; Keyshar K.; Gu J.; Ogitsu T.; Vajtai R.; Lou J.; Ajayan P. M.; Wood B. C.; Yakobson B. I. Self-Optimizing, Highly Surface-Active Layered Metal Dichalcogenide Catalysts for Hydrogen Evolution. Nat. Energy 2017, 2, 17127.10.1038/nenergy.2017.127. DOI

Shi J.; Wang X.; Zhang S.; Xiao L.; Huan Y.; Gong Y.; Zhang Z.; Li Y.; Zhou X.; Hong M.; Fang Q.; Zhang Q.; Liu X.; Gu L.; Liu Z.; Zhang Y. Two-Dimensional Metallic Tantalum Disulfide as a Hydrogen Evolution Catalyst. Nat. Commun. 2017, 8, 958.10.1038/s41467-017-01089-z. PubMed DOI PMC

Han B.; Noh S. H.; Choi D.; Seo M. H.; Kang J.; Hwang J. Tuning the Catalytic Activity of Heterogeneous Two-Dimensional Transition Metal Dichalcogenides for Hydrogen Evolution. J. Mater. Chem. A 2018, 6, 20005–20014. 10.1039/C8TA07141A. DOI

Najafi L.; Bellani S.; Oropesa-Nuñez R.; Martín-García B.; Prato M.; Mazánek V.; Debellis D.; Lauciello S.; Brescia R.; Sofer Z.; Bonaccorso F. Niobium Disulphide (NbS2)-Based (Heterogeneous) Electrocatalysts for an Efficient Hydrogen Evolution Reaction. J. Mater. Chem. A 2019, 7, 25593–25608. 10.1039/C9TA07210A. DOI

Zhang J.; Wu J.; Zou X.; Hackenberg K.; Zhou W.; Chen W.; Yuan J.; Keyshar K.; Gupta G.; Mohite A.; Ajayan P. M.; Lou J. Discovering Superior Basal Plane Active Two-Dimensional Catalysts for Hydrogen Evolution. Mater. Today 2019, 25, 28–34. 10.1016/j.mattod.2019.02.014. DOI

Chia X.; Ambrosi A.; Lazar P.; Sofer Z.; Pumera M. Electrocatalysis of Layered Group 5 Metallic Transition Metal Dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te). J. Mater. Chem. A 2016, 4, 14241–14253. 10.1039/C6TA05110C. DOI

Chirdon D. N.; Wu Y. Hydrogen Evolution: Not Living on the Edge. Nat. Energy 2017, 2, 17132.10.1038/nenergy.2017.132. DOI

Hackenberg K.; Keyshar K.; Wu J.; Liu Y.; Ajayan P.; Wood B.; Yakobson B.. Self-Improving Electrocatalysists for Gas Evolution Reactions. US 2016/0153098 A1, 2016.

Bonaccorso F.; Bartolotta A.; Coleman J. N.; Backes C. 2D-Crystal-Based Functional Inks. Adv. Mater. 2016, 28, 6136–6166. 10.1002/adma.201506410. PubMed DOI

Nicolosi V.; Chhowalla M.; Kanatzidis M. G.; Strano M. S.; Coleman J. N. Liquid Exfoliation of Layered Materials. Science 2013, 340, 1226419.10.1126/science.1226419. DOI

Bonaccorso F.; Hasan T.; Tan P. H.; Sciascia C.; Privitera G.; Di Marco G.; Gucciardi P. G.; Ferrari A. C. Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation. J. Phys. Chem. C 2010, 114, 17267–17285. 10.1021/jp1030174. DOI

Hasan T.; Tan P. H.; Bonaccorso F.; Rozhin A. G.; Scardaci V.; Milne W. I.; Ferrari A. C. Polymer-Assisted Isolation of Single Wall Carbon Nanotubes in Organic Solvents for Optical-Quality Nanotube-Polymer Composites. J. Phys. Chem. C 2008, 112, 20227–20232. 10.1021/jp807036w. DOI

Luxa J.; Mazánek V.; Pumera M.; Lazar P.; Sedmidubský D.; Callisti M.; Polcar T.; Sofer Z. 2H→1T Phase Engineering of Layered Tantalum Disulfides in Electrocatalysis: Oxygen Reduction Reaction. Chem. - Eur. J. 2017, 23, 8082–8091. 10.1002/chem.201701494. PubMed DOI

Capasso A.; Del Rio Castillo A. E.; Sun H.; Ansaldo A.; Pellegrini V.; Bonaccorso F. Ink-Jet Printing of Graphene for Flexible Electronics: An Environmentally-Friendly Approach. Solid State Commun. 2015, 224, 53–63. 10.1016/j.ssc.2015.08.011. DOI

Maragó O. M.; Bonaccorso F.; Saija R.; Privitera G.; Gucciardi P. G.; Iatì M. A.; Calogero G.; Jones P. H.; Borghese F.; Denti P.; Nicolosi V.; Ferrari A. C. Brownian Motion of Graphene. ACS Nano 2010, 4, 7515–7523. 10.1021/nn1018126. PubMed DOI

Bonaccorso F.; Lombardo A.; Hasan T.; Sun Z.; Colombo L.; Ferrari A. C. Production and Processing of Graphene and 2d Crystals. Mater. Today 2012, 15, 564–589. 10.1016/S1369-7021(13)70014-2. DOI

Hu Y.; Hao Q.; Zhu B.; Li B.; Gao Z.; Wang Y.; Tang K. Toward Exploring the Structure of Monolayer to Few-Layer TaS2 by Efficient Ultrasound-Free Exfoliation. Nanoscale Res. Lett. 2018, 13, 20.10.1186/s11671-018-2439-z. PubMed DOI PMC

Navarro-Moratalla E.; Island J. O.; Mañas-Valero S.; Pinilla-Cienfuegos E.; Castellanos-Gomez A.; Quereda J.; Rubio-Bollinger G.; Chirolli L.; Silva-Guillén J. A.; Agraït N.; Steele G. A.; Guinea F.; van der Zant H. S. J.; Coronado E. Enhanced Superconductivity in Atomically Thin TaS2. Nat. Commun. 2016, 7, 11043.10.1038/ncomms11043. PubMed DOI PMC

Zeng Z.; Tan C.; Huang X.; Bao S.; Zhang H. Growth of Noble Metal Nanoparticles on Single-Layer TiS2 and TaS2 Nanosheets for Hydrogen Evolution Reaction. Energy Environ. Sci. 2014, 7, 797–803. 10.1039/C3EE42620C. DOI

Patterson A. L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. 10.1103/PhysRev.56.978. DOI

Yue N.; Weicheng J.; Rongguo W.; Guomin D.; Yifan H. Hybrid Nanostructures Combining Graphene–MoS2 Quantum Dots for Gas Sensing. J. Mater. Chem. A 2016, 4, 8198–8203. 10.1039/C6TA03267B. DOI

Sugai S.; Murase K.; Uchida S.; Tanaka S. Studies of Lattice Dynamics in 2H-TaS2 by Raman Scattering. Solid State Commun. 1981, 40, 399–401. 10.1016/0038-1098(81)90847-4. DOI

Hangyo M.; Nakashima S.-I.; Mitsuishi A. Raman Spectroscopic Studies of MX2-Type Layered Compounds. Ferroelectrics 1983, 52, 151–159. 10.1080/00150198308208248. DOI

Petroni E.; Lago E.; Bellani S.; Boukhvalov D. W.; Politano A.; Gürbulak B.; Duman S.; Prato M.; Gentiluomo S.; Oropesa-Nuñez R.; Panda J. K.; Toth P. S.; Del Rio Castillo A. E.; Pellegrini V.; Bonaccorso F. Liquid-Phase Exfoliated Indium–Selenide Flakes and Their Application in Hydrogen Evolution Reaction. Small 2018, 14, 1800749.10.1002/smll.201800749. PubMed DOI

Najafi L.; Bellani S.; Oropesa-Nuñez R.; Ansaldo A.; Prato M.; Del Rio Castillo A. E.; Bonaccorso F. Engineered MoSe2-Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1703212.10.1002/aenm.201703212. DOI

Kiriya D.; Lobaccaro P.; Nyein H. Y. Y.; Taheri P.; Hettick M.; Shiraki H.; Sutter-Fella C. M.; Zhao P.; Gao W.; Maboudian R.; Ager J. W. General Thermal Texturization Process of MoS2 for Efficient Electrocatalytic Hydrogen Evolution Reaction. Nano Lett. 2016, 16, 4047–4053. 10.1021/acs.nanolett.6b00569. PubMed DOI

Staszak-Jirkovský J.; Malliakas C. D.; Lopes P. P.; Danilovic N.; Kota S. S.; Chang K.-C.; Genorio B.; Strmcnik D.; Stamenkovic V. R.; Kanatzidis M. G.; Markovic N. M. Design of Active and Stable Co–Mo–Sx Chalcogels as PH-Universal Catalysts for the Hydrogen Evolution Reaction. Nat. Mater. 2016, 15, 197.10.1038/nmat4481. PubMed DOI

Shinagawa T.; Garcia-Esparza A. T.; Takanabe K. Insight on Tafel Slopes from a Microkinetic Analysis of Aqueous Electrocatalysis for Energy Conversion. Sci. Rep. 2015, 5, 13801.10.1038/srep13801. PubMed DOI PMC

Yang J.; Mohmad A. R.; Wang Y.; Fullon R.; Song X.; Zhao F.; Bozkurt I.; Augustin M.; Santos E. J. G.; Shin H. S.; Zhang W.; Voiry D.; Jeong H. Y.; Chhowalla M. Ultrahigh-Current-Density Niobium Disulfide Catalysts for Hydrogen Evolution. Nat. Mater. 2019, 18, 1309–1314. 10.1038/s41563-019-0463-8. PubMed DOI

Murphy K. E.; Altman M. B.; Wunderlich B. The Monoclinic□to□trigonal Transformation in Selenium. J. Appl. Phys. 1977, 48, 4122–4131. 10.1063/1.323439. DOI

Cheng B.; Samulski E. T. Rapid, High Yield, Solution-Mediated Transformation of Polycrystalline Selenium Powder into Single-Crystal Nanowires. Chem. Commun. 2003, 16, 2024–2025. 10.1039/b303755j. PubMed DOI

Lu J.; Xie Y.; Xu F.; Zhu L. Study of the Dissolution Behavior of Selenium and Tellurium in Different Solvents - A Novel Route to Se, Te Tubular Bulk Single Crystals. J. Mater. Chem. 2002, 12, 2755–2761. 10.1039/B204092A. DOI

Lu J.; Xiong T.; Zhou W.; Yang L.; Tang Z.; Chen S. Metal Nickel Foam as an Efficient and Stable Electrode for Hydrogen Evolution Reaction in Acidic Electrolyte under Reasonable Overpotentials. ACS Appl. Mater. Interfaces 2016, 8, 5065–5069. 10.1021/acsami.6b00233. PubMed DOI

Voiry D.; Chhowalla M.; Gogotsi Y.; Kotov N. A.; Li Y.; Penner R. M.; Schaak R. E.; Weiss P. S. Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano 2018, 12, 9635–9638. 10.1021/acsnano.8b07700. PubMed DOI

Zhu Z.; Yin H.; He C.-T.; Al-Mamun M.; Liu P.; Jiang L.; Zhao Y.; Wang Y.; Yang H.-G.; Tang Z.; et al. Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity. Adv. Mater. 2018, 30, 1801171.10.1002/adma.201801171. PubMed DOI

Xiong P.; Zhang X.; Wan H.; Wang S.; Zhao Y.; Zhang J.; Zhou D.; Gao W.; Ma R.; Sasaki T.; Wang G. Interface Modulation of Two-Dimensional Superlattices for Efficient Overall Water Splitting. Nano Lett. 2019, 19, 4518–4526. 10.1021/acs.nanolett.9b01329. PubMed DOI

Subbaraman R.; Tripkovic D.; Chang K.-C.; Strmcnik D.; Paulikas A. P.; Hirunsit P.; Chan M.; Greeley J.; Stamenkovic V.; Markovic N. M. Trends in Activity for the Water Electrolyser Reactions on 3d M(Ni,Co,Fe,Mn) Hydr(Oxy)Oxide Catalysts. Nat. Mater. 2012, 11, 550.10.1038/nmat3313. PubMed DOI

Subbaraman R.; Tripkovic D.; Strmcnik D.; Chang K.-C.; Uchimura M.; Paulikas A. P.; Stamenkovic V.; Markovic N. M. Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces. Science 2011, 334, 1256–1260. 10.1126/science.1211934. PubMed DOI

Danilovic N.; Subbaraman R.; Strmcnik D.; Chang K.-C.; Paulikas A. P.; Stamenkovic V. R.; Markovic N. M. Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH)2/Metal Catalysts. Angew. Chem. 2012, 124, 12663–12666. 10.1002/ange.201204842. PubMed DOI

Wang L.; Lin C.; Huang D.; Chen J.; Jiang L.; Wang M.; Chi L.; Shi L.; Jin J. Optimizing the Volmer Step by Single-Layer Nickel Hydroxide Nanosheets in Hydrogen Evolution Reaction of Platinum. ACS Catal. 2015, 5, 3801–3806. 10.1021/cs501835c. DOI

Zhang J.; Wang T.; Liu P.; Liu S.; Dong R.; Zhuang X.; Chen M.; Feng X. Engineering Water Dissociation Sites in MoS2 Nanosheets for Accelerated Electrocatalytic Hydrogen Production. Energy Environ. Sci. 2016, 9, 2789–2793. 10.1039/C6EE01786J. DOI

Anantharaj S.; Kundu S. Do the Evaluation Parameters Reflect Intrinsic Activity of Electrocatalysts in Electrochemical Water Splitting?. ACS Energy Lett. 2019, 4, 1260–1264. 10.1021/acsenergylett.9b00686. DOI

Anantharaj S.; Ede S. R.; Karthick K.; Sam Sankar S.; Sangeetha K.; Karthik P. E.; Kundu S. Precision and Correctness in the Evaluation of Electrocatalytic Water Splitting: Revisiting Activity Parameters with a Critical Assessment. Energy Environ. Sci. 2018, 11, 744–771. 10.1039/C7EE03457A. DOI

Trasatti S.; Petrii O. A. Real Surface Area Measurements in Electrochemistry. J. Electroanal. Chem. 1992, 327, 353–376. 10.1016/0022-0728(92)80162-W. DOI

Li D.; Batchelor-McAuley C.; Compton R. G. Some Thoughts about Reporting the Electrocatalytic Performance of Nanomaterials. Appl. Mater. Today 2020, 18, 100404.10.1016/j.apmt.2019.05.011. DOI

Gopalakrishnan D.; Lee A.; Thangavel N. K.; Reddy Arava L. M. Facile Synthesis of Electrocatalytically Active NbS2 Nanoflakes for an Enhanced Hydrogen Evolution Reaction (HER). Sustain. Energy Fuels 2018, 2, 96–102. 10.1039/C7SE00376E. DOI

Si J.; Zheng Q.; Chen H.; Lei C.; Suo Y.; Yang B.; Zhang Z.; Li Z.; Lei L.; Hou Y.; Ostrikov K. (Ken) Scalable Production of Few-Layer Niobium Disulfide Nanosheets via Electrochemical Exfoliation for Energy-Efficient Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2019, 11, 13205–13213. 10.1021/acsami.8b22052. PubMed DOI

Huang C.; Wang X.; Wang D.; Zhao W.; Bu K.; Xu J.; Huang X.; Bi Q.; Huang J.; Huang F. Atomic-Pillar Effect in PdxNbS2 to Boost Basal-Plane Activity for Stable Hydrogen Evolution. Chem. Mater. 2019, 31, 4726–4731. 10.1021/acs.chemmater.9b00821. DOI

Zhang M.; He Y.; Yan D.; Xu H.; Wang A.; Chen Z.; Wang S.; Luo H.; Yan K. Multifunctional 2H-TaS2 Nanoflakes for Efficient Supercapacitors and Electrocatalytic Evolution of Hydrogen and Oxygen. Nanoscale 2019, 11, 22255–22260. 10.1039/C9NR07564J. PubMed DOI

Raj I.; Duan Y.; Kigen D.; Yang W.; Hou L.; Yang F.; Li Y. Catalytically Enhanced Thin and Uniform TaS2 Nanosheets for Hydrogen Evolution Reaction. Front. Mater. Sci. 2018, 12, 239–246. 10.1007/s11706-018-0425-0. DOI

Feng Y.; Gong S.; Du E.; Chen X.; Qi R.; Yu K.; Zhu Z. 3R TaS2 Surpasses the Corresponding 1T and 2H Phases for the Hydrogen Evolution Reaction. J. Phys. Chem. C 2018, 122, 2382–2390. 10.1021/acs.jpcc.7b10833. DOI

Yu Q.; Luo Y.; Qiu S.; Li Q.; Cai Z.; Zhang Z.; Liu J.; Sun C.; Liu B. Tuning the Hydrogen Evolution Performance of Metallic 2D Tantalum Disulfide by Interfacial Engineering. ACS Nano 2019, 13, 11874–11881. 10.1021/acsnano.9b05933. PubMed DOI

Li H.; Tan Y.; Liu P.; Guo C.; Luo M.; Han J.; Lin T.; Huang F.; Chen M. Atomic-Sized Pores Enhanced Electrocatalysis of TaS2 Nanosheets for Hydrogen Evolution. Adv. Mater. 2016, 28, 8945–8949. 10.1002/adma.201602502. PubMed DOI

Voiry D.; Salehi M.; Silva R.; Fujita T.; Chen M.; Asefa T.; Shenoy V. B.; Eda G.; Chhowalla M. Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Lett. 2013, 13, 6222–6227. 10.1021/nl403661s. PubMed DOI

Wang D.; Wang X.; Lu Y.; Song C.; Pan J.; Li C.; Sui M.; Zhao W.; Huang F. Atom-Scale Dispersed Palladium in a Conductive Pd0.1TaS2 Lattice with a Unique Electronic Structure for Efficient Hydrogen Evolution. J. Mater. Chem. A 2017, 5, 22618–22624. 10.1039/C7TA06447K. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...