Tepsin and AP4 mediate transport from the trans-Golgi to the plant-like vacuole in toxoplasma

. 2025 Dec 01 ; 224 (12) : . [epub] 20251013

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41082686

Grantová podpora
SPP2225 Deutsche Forschungsgemeinschaft
ME 2675/7-1 Deutsche Forschungsgemeinschaft
JI 463/2-2 Deutsche Forschungsgemeinschaft
INST 86/1831-1 Deutsche Forschungsgemeinschaft

Apicomplexan parasites are obligate intracellular pathogens possessing unique organelles but lacking several components of the membrane trafficking machinery conserved in other eukaryotes. While some of these components have been lost during evolution, others remain undetectable by standard bioinformatics approaches. Using a conditional splitCas9 system in Toxoplasma gondii, we previously identified TGGT1_301410, a hypothetical gene conserved among apicomplexans, as a potential trafficking factor. Here, we show that TGGT1_301410 is a distant ortholog of T. gondii tepsin (TgTEP), localized to the trans-Golgi and functioning as an accessory protein of the adaptor protein complex 4 (AP4). We demonstrate that AP4-TgTEP is essential for the actin-dependent transport of vesicles to the plant-like vacuole (PLVAC) and Golgi organization. Notably, our findings reveal that, unlike in metazoans, the AP4 complex in T. gondii utilizes clathrin as a coat protein, a mechanism more closely aligned with that of plants. These results underscore a conserved yet functionally adapted vesicular transport system in Apicomplexa.

Zobrazit více v PubMed

Alvarez-Jarreta, J., Amos B., Aurrecoechea C., Bah S., Barba M., Barreto A., Basenko E.Y., Belnap R., Blevins A., Böhme U., et al. 2024. VEuPathDB: The eukaryotic pathogen, vector and host bioinformatics resource center in 2023. Nucleic Acids Res. 52:D808–D816. 10.1093/nar/gkad1003 PubMed DOI PMC

Amos, B., Aurrecoechea C., Barba M., Barreto A., Basenko E.Y., Bażant W., Belnap R., Blevins A.S., Böhme U., Brestelli J., et al. 2022. VEuPathDB: The eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 50:D898–d911. 10.1093/nar/gkab929 PubMed DOI PMC

Andenmatten, N., Egarter S., Jackson A.J., Jullien N., Herman J.P., and Meissner M.. 2013. Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat. Methods. 10:125–127. 10.1038/nmeth.2301 PubMed DOI PMC

Archuleta, T.L., Frazier M.N., Monken A.E., Kendall A.K., Harp J., McCoy A.J., Creanza N., and Jackson L.P.. 2017. Structure and evolution of ENTH and VHS/ENTH-like domains in tepsin. Traffic (Copenhagen, Denmark). 18:590–603. 10.1111/tra.12499 PubMed DOI PMC

Barlow, L.D., Maciejowski W., More K., Terry K., Vargová R., Záhonová K., and Dacks J.B.. 2023. Comparative genomics for evolutionary cell biology using AMOEBAE: Understanding the Golgi and beyond. Methods Mol. Biol. 2557:431–452. 10.1007/978-1-0716-2639-9_26 PubMed DOI

Barylyuk, K., Koreny L., Ke H., Butterworth S., Crook O.M., Lassadi I., Gupta V., Tromer E., Mourier T., Stevens T.J., et al. 2020. A comprehensive subcellular atlas of the toxoplasma proteome via hyperLOPIT provides spatial context for protein functions. Cell Host Microbe. 28:752–766.e759. 10.1016/j.chom.2020.09.011 PubMed DOI PMC

Behnke, M.S., Radke J.B., Smith A.T., Sullivan W.J. Jr., and White M.W.. 2008. The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements. Mol. Microbiol. 68:1502–1518. 10.1111/j.1365-2958.2008.06249.x PubMed DOI PMC

Behnke, M.S., Wootton J.C., Lehmann M.M., Radke J.B., Lucas O., Nawas J., Sibley L.D., and White M.W.. 2010. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PloS One. 5:e12354. 10.1371/journal.pone.0012354 PubMed DOI PMC

Besteiro, S., Brooks C.F., Striepen B., and Dubremetz J.F.. 2011. Autophagy protein Atg3 is essential for maintaining mitochondrial integrity and for normal intracellular development of Toxoplasma gondii tachyzoites. PLoS Pathog. 7:e1002416. 10.1371/journal.ppat.1002416 PubMed DOI PMC

Blader, I.J., Coleman B.I., Chen C.-T., and Gubbels M.J.. 2015. Lytic cycle of toxoplasma gondii: 15 Years later. Annu. Rev. Microbiol. 69:463–485. 10.1146/annurev-micro-091014-104100 PubMed DOI PMC

Borner, G.H.H., Antrobus R., Hirst J., Bhumbra G.S., Kozik P., Jackson L.P., Sahlender D.A., and Robinson M.S.. 2012. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles. J. Cell Biol. 197:141–160. 10.1083/jcb.201111049 PubMed DOI PMC

Branon, T.C., Bosch J.A., Sanchez A.D., Udeshi N.D., Svinkina T., Carr S.A., Feldman J.L., Perrimon N., and Ting A.Y.. 2018. Efficient proximity labeling in living cells and organisms with TurboID. Nat. biotechnol. 36:880–887. 10.1038/nbt.4201 PubMed DOI PMC

Breinich, M.S., Ferguson D.J.P., Foth B.J., van Dooren G.G., Lebrun M., Quon D.V., Striepen B., Bradley P.J., Frischknecht F., Carruthers V.B., and Meissner M.. 2009. A dynamin is required for the biogenesis of secretory organelles in Toxoplasma gondii. Curr. Biol. 19:277–286. 10.1016/j.cub.2009.01.039 PubMed DOI PMC

Carmeille, R., Schiano Lomoriello P., Devarakonda P.M., Kellermeier J.A., and Heaslip A.T.. 2021. Actin and an unconventional myosin motor, TgMyoF, control the organization and dynamics of the endomembrane network in Toxoplasma gondii. PLoS Pathog. 17:e1008787. 10.1371/journal.ppat.1008787 PubMed DOI PMC

Cho, K.F., Branon T.C., Udeshi N.D., Myers S.A., Carr S.A., and Ting A.Y.. 2020. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 15:3971–3999. 10.1038/s41596-020-0399-0 PubMed DOI

Cova, M.M., Lamarque M.H., and Lebrun M.. 2022. How apicomplexa parasites secrete and build their invasion machinery. Annu. Rev. Microbiol. 76:619–640. 10.1146/annurev-micro-041320-021425 PubMed DOI

Criscuolo, A., and Gribaldo S.. 2010. BMGE (Block mapping and gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10:210. 10.1186/1471-2148-10-210 PubMed DOI PMC

Dahhan, D.A., Reynolds G.D., Cárdenas J.J., Eeckhout D., Johnson A., Yperman K., Kaufmann W.A., Vang N., Yan X., Hwang I., et al. 2022. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell. 34:2150–2173. 10.1093/plcell/koac071 PubMed DOI PMC

Das, S., Stortz J.F., Meissner M., and Periz J.. 2021. The multiple functions of actin in apicomplexan parasites. Cell. Microbiol. 23:e13345. 10.1111/cmi.13345 PubMed DOI

Davies, A.K., Itzhak D.N., Edgar J.R., Archuleta T.L., Hirst J., Jackson L.P., Robinson M.S., and Borner G.H.H.. 2018. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat. Commun. 9:3958. 10.1038/s41467-018-06172-7 PubMed DOI PMC

De Camilli, P., Chen H., Hyman J., Panepucci E., Bateman A., and Brunger A.T.. 2002. The ENTH domain. FEBS Lett. 513:11–18. 10.1016/s0014-5793(01)03306-3 PubMed DOI

de Chaumont, F., Dallongeville S., Chenouard N., Hervé N., Pop S., Provoost T., Meas-Yedid V., Pankajakshan P., Lecomte T., Le Montagner Y., et al. 2012. Icy: An open bioimage informatics platform for extended reproducible research. Nat. Methods. 9:690–696. 10.1038/nmeth.2075 PubMed DOI

Di Cristina, M., Dou Z., Lunghi M., Kannan G., Huynh M.-H., McGovern O.L., Schultz T.L., Schultz A.J., Miller A.J., Hayes B.M., et al. 2017. Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection. Nat. Microbiol. 2:17096. 10.1038/nmicrobiol.2017.96 PubMed DOI PMC

Diekmann, Y., Seixas E., Gouw M., Tavares-Cadete F., Seabra M.C., and Pereira-Leal J.B.. 2011. Thousands of rab GTPases for the cell biologist. PLoS Comput. Biol. 7:e1002217. 10.1371/journal.pcbi.1002217 PubMed DOI PMC

Elias, M., Brighouse A., Gabernet-Castello C., Field M.C., and Dacks J.B.. 2012. Sculpting the endomembrane system in deep time: High resolution phylogenetics of Rab GTPases. J. Cell Sci. 125:2500–2508. 10.1242/jcs.101378 PubMed DOI PMC

Frazier, M.N., Davies A.K., Voehler M., Kendall A.K., Borner G.H.H., Chazin W.J., Robinson M.S., and Jackson L.P.. 2016. Molecular basis for the interaction between AP4 β4 and its accessory protein, tepsin. Traffic. 17:400–415. 10.1111/tra.12375 PubMed DOI PMC

Fuji, K., Shirakawa M., Shimono Y., Kunieda T., Fukao Y., Koumoto Y., Takahashi H., Hara-Nishimura I., and Shimada T.. 2016. The adaptor complex AP-4 regulates vacuolar protein sorting at the trans-Golgi network by interacting with VACUOLAR SORTING RECEPTOR1. Plant Physiol. 170:211–219. 10.1104/pp.15.00869 PubMed DOI PMC

Gajria, B., Bahl A., Brestelli J., Dommer J., Fischer S., Gao X., Heiges M., Iodice J., Kissinger J.C., Mackey A.J., et al. 2008. ToxoDB: An integrated toxoplasma gondii database resource. Nucleic Acids Res. 36:D553–D556. 10.1093/nar/gkm981 PubMed DOI PMC

Ghosh, D., Walton J.L., Roepe P.D., and Sinai A.P.. 2012. Autophagy is a cell death mechanism in Toxoplasma gondii. Cell. Microbiol. 14:589–607. 10.1111/j.1462-5822.2011.01745.x PubMed DOI PMC

Gras, S., Jimenez-Ruiz E., Klinger C.M., Schneider K., Klingl A., Lemgruber L., and Meissner M.. 2019. An endocytic-secretory cycle participates in Toxoplasma gondii in motility. PLoS Biol. 17:e3000060. 10.1371/journal.pbio.3000060 PubMed DOI PMC

Harding, C.R., Egarter S., Gow M., Jiménez-Ruiz E., Ferguson D.J.P., and Meissner M.. 2016. Gliding associated proteins play essential roles during the formation of the inner membrane complex of toxoplasma gondii. PLoS Pathog. 12:e1005403. 10.1371/journal.ppat.1005403 PubMed DOI PMC

Harper, J.M., Huynh M.-H., Coppens I., Parussini F., Moreno S., and Carruthers V.B.. 2006. A cleavable propeptide influences Toxoplasma infection by facilitating the trafficking and secretion of the TgMIC2-M2AP invasion complex. Mol. Biol. Cell. 17:4551–4563. 10.1091/mbc.e06-01-0064 PubMed DOI PMC

He, K., Wu R., Yan A., Liu X., and Long S.. 2025. A novel ENTH domain-containing protein TgTEPSIN is essential for structural maintenance of the plant-like vacuolar compartment and bradyzoite differentiation in toxoplasma gondii. Int. J. Biol. Macromol. 300:140311. 10.1016/j.ijbiomac.2025.140311 PubMed DOI

Heaslip, A.T., Nelson S.R., and Warshaw D.M.. 2016. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments. Mol. Biol. Cell. 27:2080–2089. 10.1091/mbc.E15-12-0824 PubMed DOI PMC

Helms, J.B., and Rothman J.E.. 1992. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature. 360:352–354. 10.1038/360352a0 PubMed DOI

Hirst, J., Schlacht A., Norcott J.P., Traynor D., Bloomfield G., Antrobus R., Kay R.R., Dacks J.B., and Robinson M.S.. 2014. Characterization of TSET, an ancient and widespread membrane trafficking complex. Elife. 3:e02866. 10.7554/eLife.02866 PubMed DOI PMC

Hunt, A., Russell M.R.G., Wagener J., Kent R., Carmeille R., Peddie C.J., Collinson L., Heaslip A., Ward G.E., and Treeck M.. 2019. Differential requirements for cyclase-associated protein (CAP) in actin-dependent processes of Toxoplasma gondii. Elife. 8:e50598. 10.7554/eLife.50598 PubMed DOI PMC

Jackson, A.J., Clucas C., Mamczur N.J., Ferguson D.J., and Meissner M.. 2013. Toxoplasma gondii Syntaxin 6 is required for vesicular transport between endosomal-like compartments and the Golgi complex. Traffic. 14:1166–1181. 10.1111/tra.12102 PubMed DOI PMC

Jimenez-Ruiz, E., Morlon-Guyot J., Daher W., and Meissner M.. 2016. Vacuolar protein sorting mechanisms in apicomplexan parasites. Mol. Biochem. Parasitol. 209:18–25. 10.1016/j.molbiopara.2016.01.007 PubMed DOI PMC

Jumper, J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596:583–589. 10.1038/s41586-021-03819-2 PubMed DOI PMC

Kaderi Kibria, K.M., Rawat K., Klinger C.M., Datta G., Panchal M., Singh S., Iyer G.R., Kaur I., Sharma V., Dacks J.B., et al. 2015. A role for adaptor protein complex 1 in protein targeting to rhoptry organelles in Plasmodium falciparum. Biochim. Biophys. Acta. 1853:699–710. 10.1016/j.bbamcr.2014.12.030 PubMed DOI

Kalyaanamoorthy, S., Minh B.Q., Wong T.K.F., von Haeseler A., and Jermiin L.S.. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 14:587–589. 10.1038/nmeth.4285 PubMed DOI PMC

Keeling, P.J., Burger G., Durnford D.G., Lang B.F., Lee R.W., Pearlman R.E., Roger A.J., and Gray M.W.. 2005. The tree of eukaryotes. Trends Ecol. Evol. 20:670–676. 10.1016/j.tree.2005.09.005 PubMed DOI

Klinger, C.M., Jimenez-Ruiz E., Mourier T., Klingl A., Lemgruber L., Pain A., Dacks J.B., and Meissner M.. 2024. Evolutionary analysis identifies a Golgi pathway and correlates lineage-specific factors with endomembrane organelle emergence in apicomplexans. Cell Rep. 43:113740. 10.1016/j.celrep.2024.113740 PubMed DOI

Koreny, L., Mercado-Saavedra B.N., Klinger C.M., Barylyuk K., Butterworth S., Hirst J., Rivera-Cuevas Y., Zaccai N.R., Holzer V.J.C., Klingl A., et al. 2023. Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat. Commun. 14:2167. 10.1038/s41467-023-37431-x PubMed DOI PMC

Langsley, G., van Noort V., Carret C., Meissner M., de Villiers E.P., Bishop R., and Pain A.. 2008. Comparative genomics of the Rab protein family in Apicomplexan parasites. Microbes Infect. 10:462–470. 10.1016/j.micinf.2008.01.017 PubMed DOI PMC

Larsson, A. 2014. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 30:3276–3278. 10.1093/bioinformatics/btu531 PubMed DOI PMC

Law, K.C., Chung K.K., and Zhuang X.. 2022. An update on coat protein complexes for vesicle formation in plant post-Golgi trafficking. Front. Plant Sci. 13:826007. 10.3389/fpls.2022.826007 PubMed DOI PMC

Lee, S., Park H., Kyung T., Kim N.Y., Kim S., Kim J., and Heo W.D.. 2014. Reversible protein inactivation by optogenetic trapping in cells. Nat. Methods. 11:633–636. 10.1038/nmeth.2940 PubMed DOI

Li, W., Grech J., Stortz J.F., Gow M., Periz J., Meissner M., and Jimenez-Ruiz E.. 2022. A splitCas9 phenotypic screen in Toxoplasma gondii identifies proteins involved in host cell egress and invasion. Nat. Microbiol. 7:882–895. 10.1038/s41564-022-01114-y PubMed DOI

Mathur, V., Kwong W.K., Husnik F., Irwin N.A.T., Kristmundsson Á., Gestal C., Freeman M., and Keeling P.J.. 2021. Phylogenomics identifies a new major subgroup of apicomplexans, marosporida class nov., with extreme apicoplast genome reduction. Genome Biol. Evol. 13:evaa244. 10.1093/gbe/evaa244 PubMed DOI PMC

McFadden, G.I., and Yeh E.. 2017. The apicoplast: Now you see it, now you don't. Int. J. Parasitol. 47:137–144. 10.1016/j.ijpara.2016.08.005 PubMed DOI PMC

McGovern, O.L., Rivera-Cuevas Y., Kannan G., Narwold A.J. Jr., and Carruthers V.B.. 2018. Intersection of endocytic and exocytic systems in Toxoplasma gondii. Traffic. 19:336–353. 10.1111/tra.12556 PubMed DOI PMC

Minh, B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., and Lanfear R.. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37:1530–1534. 10.1093/molbev/msaa015 PubMed DOI PMC

Miranda, K., Pace D.A., Cintron R., Rodrigues J.C.F., Fang J., Smith A., Rohloff P., Coelho E., de Haas F., de Souza W., et al. 2010. Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol. Microbiol. 76:1358–1375. 10.1111/j.1365-2958.2010.07165.x PubMed DOI PMC

Nguyen, H.M., El Hajj H., El Hajj R., Tawil N., Berry L., Lebrun M., Bordat Y., and Besteiro S.. 2017. Toxoplasma gondii autophagy-related protein ATG9 is crucial for the survival of parasites in their host. Cell. Microbiol. 19. 10.1111/cmi.12712 PubMed DOI

Nichols, B.A., Chiappino M.L., and Pavesio C.E.. 1994. Endocytosis at the micropore of Toxoplasma gondii. Parasitol. Res. 80:91–98. 10.1007/BF00933773 PubMed DOI

Parussini, F., Coppens I., Shah P.P., Diamond S.L., and Carruthers V.B.. 2010. Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Mol. Microbiol. 76:1340–1357. 10.1111/j.1365-2958.2010.07181.x PubMed DOI PMC

Pasquarelli, R.R., Quan J.J., Cheng E.S., Yang V., Britton T.A., Sha J., Wohlschlegel J.A., and Bradley P.J.. 2024. Characterization and functional analysis of Toxoplasma Golgi-associated proteins identified by proximity labeling. mBio. 15:e0238024. 10.1128/mbio.02380-24 PubMed DOI PMC

Paysan-Lafosse, T., Blum M., Chuguransky S., Grego T., Pinto B.L., Salazar G.A., Bileschi M.L., Bork P., Bridge A., Colwell L., et al. 2023. InterPro in 2022. Nucleic Acids Res. 51:D418–D427. 10.1093/nar/gkac993 PubMed DOI PMC

Peng, D., and Tarleton R.. 2015. EuPaGDT: A web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb. Genom. 1:e000033. 10.1099/mgen.0.000033 PubMed DOI PMC

Perez-Riverol, Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D.J., Prakash A., Frericks-Zipper A., Eisenacher M., et al. 2022. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50:D543–d552. 10.1093/nar/gkab1038 PubMed DOI PMC

Periz, J., Del Rosario M., McStea A., Gras S., Loney C., Wang L., Martin-Fernandez M.L., and Meissner M.. 2019. A highly dynamic F-actin network regulates transport and recycling of micronemes in Toxoplasma gondii vacuoles. Nat. Commun. 10:4183. 10.1038/s41467-019-12136-2 PubMed DOI PMC

Periz, J., Whitelaw J., Harding C., Gras S., Del Rosario Minina M.I., Latorre-Barragan F., Lemgruber L., Reimer M.A., Insall R., Heaslip A., and Meissner M.. 2017. Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation. Elife. 6:e24119. 10.7554/eLife.24119 PubMed DOI PMC

Pfluger, S.L., Goodson H.V., Moran J.M., Ruggiero C.J., Ye X., Emmons K.M., and Hager K.M.. 2005. Receptor for retrograde transport in the apicomplexan parasite Toxoplasma gondii. Eukaryot. Cell. 4:432–442. 10.1128/EC.4.2.432-442.2005 PubMed DOI PMC

Pieperhoff, M.S., Schmitt M., Ferguson D.J.P., and Meissner M.. 2013. The role of clathrin in post-Golgi trafficking in Toxoplasma gondii. PloS One. 8:e77620. 10.1371/journal.pone.0077620 PubMed DOI PMC

Ren, J., Wen L., Gao X., Jin C., Xue Y., and Yao X.. 2009. DOG 1.0: Illustrator of protein domain structures. Cell Res. 19:271–273. 10.1038/cr.2009.6 PubMed DOI

Richter, D.J., Berney C., Strassert J.F.H., Poh Y.-P., Herman E.K., Muñoz-Gómez S.A., Wideman J.G., Burki F., and de Vargas C.. 2022. EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2:e56. 10.24072/pcjournal.173 DOI

Robert, X., and Gouet P.. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42:W320–W324. 10.1093/nar/gku316 PubMed DOI PMC

Schindelin, J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. 2012. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9:676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Schmidt, S., Wichers-Misterek J.S., Behrens H.M., Birnbaum J., Henshall I.G., Dröge J., Jonscher E., Flemming S., Castro-Peña C., Mesén-Ramírez P., and Spielmann T.. 2023. The Kelch13 compartment contains highly divergent vesicle trafficking proteins in malaria parasites. PLoS Pathog. 19:e1011814. 10.1371/journal.ppat.1011814 PubMed DOI PMC

Sciaky, N., Presley J., Smith C., Zaal K.J., Cole N., Moreira J.E., Terasaki M., Siggia E., and Lippincott-Schwartz J.. 1997. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol. 139:1137–1155. 10.1083/jcb.139.5.1137 PubMed DOI PMC

Sidik, S.M., Huet D., Ganesan S.M., Huynh M.H., Wang T., Nasamu A.S., Thiru P., Saeij J.P.J., Carruthers V.B., Niles J.C., et al. 2016. A genome-wide CRISPR screen in toxoplasma identifies essential apicomplexan genes. Cell. 166:1423–1435.e1412. 10.1016/j.cell.2016.08.019 PubMed DOI PMC

Singer, M., Simon K., Forné I., and Meissner M.. 2023. A central CRMP complex essential for invasion in Toxoplasma gondii. PLoS Biol. 21:e3001937. 10.1371/journal.pbio.3001937 PubMed DOI PMC

Sloves, P.J., Delhaye S., Mouveaux T., Werkmeister E., Slomianny C., Hovasse A., Dilezitoko Alayi T., Callebaut I., Gaji R.Y., Schaeffer-Reiss C., et al. 2012. Toxoplasma sortilin-like receptor regulates protein transport and is essential for apical secretory organelle biogenesis and host infection. Cell Host Microbe. 11:515–527. 10.1016/j.chom.2012.03.006 PubMed DOI

Smith, T.A., Lopez-Perez, G., Shortt, E., Lourido, S.. 2021. High-throughput functionalization of the Toxoplasma kinome uncovers a novel regulator of invasion and egress. bioRxiv. 10.1101/2021.09.23.461611(Preprint posted September 24, 2021). PubMed DOI PMC

Spielmann, T., Gras S., Sabitzki R., and Meissner M.. 2020. Endocytosis in Plasmodium and toxoplasma parasites. Trends Parasitol. 36:520–532. 10.1016/j.pt.2020.03.010 PubMed DOI

Stasic, A.J., Moreno S.N.J., Carruthers V.B., and Dou Z.. 2022. The Toxoplasma plant-like vacuolar compartment (PLVAC). J. Eukaryot. Microbiol. 69:e12951. 10.1111/jeu.12951 PubMed DOI PMC

Stortz, J.F., Del Rosario M., Singer M., Wilkes J.M., Meissner M., and Das S.. 2019. Formin-2 drives polymerisation of actin filaments enabling segregation of apicoplasts and cytokinesis in Plasmodium falciparum. Elife. 8:e49030. 10.7554/eLife.49030 PubMed DOI PMC

Szklarczyk, D., Franceschini A., Kuhn M., Simonovic M., Roth A., Minguez P., Doerks T., Stark M., Muller J., Bork P., et al. 2011. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39:D561–D568. 10.1093/nar/gkq973 PubMed DOI PMC

Tyanova, S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., and Cox J.. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 13:731–740. 10.1038/nmeth.3901 PubMed DOI

van Kempen, M., Kim S.S., Tumescheit C., Mirdita M., Lee J., Gilchrist C.L.M., Söding J., and Steinegger M.. 2023. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42:243–246. 10.1038/s41587-023-01773-0 PubMed DOI PMC

Varadi, M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., Yuan D., Stroe O., Wood G., Laydon A., et al. 2022. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50:D439–d444. 10.1093/nar/gkab1061 PubMed DOI PMC

Varberg, J.M., LaFavers K.A., Arrizabalaga G., and Sullivan W.J. Jr. 2018. Characterization of Plasmodium Atg3-Atg8 interaction inhibitors identifies novel alternative mechanisms of action in toxoplasma gondii. Antimicrob. Agents Chemother. 62:e01489-17. 10.1128/AAC.01489-17 PubMed DOI PMC

Venugopal, K., and Marion S.. 2018. Secretory organelle trafficking in toxoplasma gondii: A long story for a short travel. Int. J. Med. Microbiol. 308:751–760. 10.1016/j.ijmm.2018.07.007 PubMed DOI

Venugopal, K., Werkmeister E., Barois N., Saliou J.-M., Poncet A., Huot L., Sindikubwabo F., Hakimi M.A., Langsley G., Lafont F., and Marion S.. 2017. Dual role of the Toxoplasma gondii clathrin adaptor AP1 in the sorting of rhoptry and microneme proteins and in parasite division. PLoS Pathog. 13:e1006331. 10.1371/journal.ppat.1006331 PubMed DOI PMC

Wan, W., Dong H., Lai D.-H., Yang J., He K., Tang X., Liu Q., Hide G., Zhu X.-Q., Sibley L.D., et al. 2023. The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments. Nat. Commun. 14:977. 10.1038/s41467-023-36571-4 PubMed DOI PMC

Warring, S.D., Dou Z., Carruthers V.B., McFadden G.I., and van Dooren G.G.. 2014. Characterization of the chloroquine resistance transporter homologue in Toxoplasma gondii. Eukaryot. Cell. 13:1360–1370. 10.1128/EC.00027-14 PubMed DOI PMC

Woo, Y.H., Ansari H., Otto T.D., Klinger C.M., Kolisko M., Michalek J., Saxena A., Shanmugam D., Tayyrov A., Veluchamy A., et al. 2015. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife. 4:e06974. 10.7554/eLife.06974 PubMed DOI PMC

Zhang, Y., and Skolnick J.. 2005. TM-Align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33:2302–2309. 10.1093/nar/gki524 PubMed DOI PMC

Zizioli, D., Meyer C., Guhde G., Saftig P., von Figura K., and Schu P.. 1999. Early embryonic death of mice deficient in gamma-adaptin. J. Biol. Chem. 274:5385–5390. 10.1074/jbc.274.9.5385 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...