Tepsin and AP4 mediate transport from the trans-Golgi to the plant-like vacuole in toxoplasma
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
SPP2225
Deutsche Forschungsgemeinschaft
ME 2675/7-1
Deutsche Forschungsgemeinschaft
JI 463/2-2
Deutsche Forschungsgemeinschaft
INST 86/1831-1
Deutsche Forschungsgemeinschaft
PubMed
41082686
PubMed Central
PMC12517565
DOI
10.1083/jcb.202312109
PII: 278366
Knihovny.cz E-zdroje
- MeSH
- adaptorový proteinový komplex 4 * metabolismus genetika MeSH
- Golgiho aparát metabolismus MeSH
- klathrin metabolismus MeSH
- protozoální proteiny * metabolismus genetika MeSH
- Toxoplasma * metabolismus genetika MeSH
- trans-Golgiho síť * metabolismus MeSH
- transport proteinů MeSH
- vakuoly * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adaptorový proteinový komplex 4 * MeSH
- klathrin MeSH
- protozoální proteiny * MeSH
Apicomplexan parasites are obligate intracellular pathogens possessing unique organelles but lacking several components of the membrane trafficking machinery conserved in other eukaryotes. While some of these components have been lost during evolution, others remain undetectable by standard bioinformatics approaches. Using a conditional splitCas9 system in Toxoplasma gondii, we previously identified TGGT1_301410, a hypothetical gene conserved among apicomplexans, as a potential trafficking factor. Here, we show that TGGT1_301410 is a distant ortholog of T. gondii tepsin (TgTEP), localized to the trans-Golgi and functioning as an accessory protein of the adaptor protein complex 4 (AP4). We demonstrate that AP4-TgTEP is essential for the actin-dependent transport of vesicles to the plant-like vacuole (PLVAC) and Golgi organization. Notably, our findings reveal that, unlike in metazoans, the AP4 complex in T. gondii utilizes clathrin as a coat protein, a mechanism more closely aligned with that of plants. These results underscore a conserved yet functionally adapted vesicular transport system in Apicomplexa.
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Pflanzliche Entwicklungsbiologie Biozentrum der Ludwig Maximilians Universität Munich Germany
Zobrazit více v PubMed
Alvarez-Jarreta, J., Amos B., Aurrecoechea C., Bah S., Barba M., Barreto A., Basenko E.Y., Belnap R., Blevins A., Böhme U., et al. 2024. VEuPathDB: The eukaryotic pathogen, vector and host bioinformatics resource center in 2023. Nucleic Acids Res. 52:D808–D816. 10.1093/nar/gkad1003 PubMed DOI PMC
Amos, B., Aurrecoechea C., Barba M., Barreto A., Basenko E.Y., Bażant W., Belnap R., Blevins A.S., Böhme U., Brestelli J., et al. 2022. VEuPathDB: The eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 50:D898–d911. 10.1093/nar/gkab929 PubMed DOI PMC
Andenmatten, N., Egarter S., Jackson A.J., Jullien N., Herman J.P., and Meissner M.. 2013. Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat. Methods. 10:125–127. 10.1038/nmeth.2301 PubMed DOI PMC
Archuleta, T.L., Frazier M.N., Monken A.E., Kendall A.K., Harp J., McCoy A.J., Creanza N., and Jackson L.P.. 2017. Structure and evolution of ENTH and VHS/ENTH-like domains in tepsin. Traffic (Copenhagen, Denmark). 18:590–603. 10.1111/tra.12499 PubMed DOI PMC
Barlow, L.D., Maciejowski W., More K., Terry K., Vargová R., Záhonová K., and Dacks J.B.. 2023. Comparative genomics for evolutionary cell biology using AMOEBAE: Understanding the Golgi and beyond. Methods Mol. Biol. 2557:431–452. 10.1007/978-1-0716-2639-9_26 PubMed DOI
Barylyuk, K., Koreny L., Ke H., Butterworth S., Crook O.M., Lassadi I., Gupta V., Tromer E., Mourier T., Stevens T.J., et al. 2020. A comprehensive subcellular atlas of the toxoplasma proteome via hyperLOPIT provides spatial context for protein functions. Cell Host Microbe. 28:752–766.e759. 10.1016/j.chom.2020.09.011 PubMed DOI PMC
Behnke, M.S., Radke J.B., Smith A.T., Sullivan W.J. Jr., and White M.W.. 2008. The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements. Mol. Microbiol. 68:1502–1518. 10.1111/j.1365-2958.2008.06249.x PubMed DOI PMC
Behnke, M.S., Wootton J.C., Lehmann M.M., Radke J.B., Lucas O., Nawas J., Sibley L.D., and White M.W.. 2010. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PloS One. 5:e12354. 10.1371/journal.pone.0012354 PubMed DOI PMC
Besteiro, S., Brooks C.F., Striepen B., and Dubremetz J.F.. 2011. Autophagy protein Atg3 is essential for maintaining mitochondrial integrity and for normal intracellular development of Toxoplasma gondii tachyzoites. PLoS Pathog. 7:e1002416. 10.1371/journal.ppat.1002416 PubMed DOI PMC
Blader, I.J., Coleman B.I., Chen C.-T., and Gubbels M.J.. 2015. Lytic cycle of toxoplasma gondii: 15 Years later. Annu. Rev. Microbiol. 69:463–485. 10.1146/annurev-micro-091014-104100 PubMed DOI PMC
Borner, G.H.H., Antrobus R., Hirst J., Bhumbra G.S., Kozik P., Jackson L.P., Sahlender D.A., and Robinson M.S.. 2012. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles. J. Cell Biol. 197:141–160. 10.1083/jcb.201111049 PubMed DOI PMC
Branon, T.C., Bosch J.A., Sanchez A.D., Udeshi N.D., Svinkina T., Carr S.A., Feldman J.L., Perrimon N., and Ting A.Y.. 2018. Efficient proximity labeling in living cells and organisms with TurboID. Nat. biotechnol. 36:880–887. 10.1038/nbt.4201 PubMed DOI PMC
Breinich, M.S., Ferguson D.J.P., Foth B.J., van Dooren G.G., Lebrun M., Quon D.V., Striepen B., Bradley P.J., Frischknecht F., Carruthers V.B., and Meissner M.. 2009. A dynamin is required for the biogenesis of secretory organelles in Toxoplasma gondii. Curr. Biol. 19:277–286. 10.1016/j.cub.2009.01.039 PubMed DOI PMC
Carmeille, R., Schiano Lomoriello P., Devarakonda P.M., Kellermeier J.A., and Heaslip A.T.. 2021. Actin and an unconventional myosin motor, TgMyoF, control the organization and dynamics of the endomembrane network in Toxoplasma gondii. PLoS Pathog. 17:e1008787. 10.1371/journal.ppat.1008787 PubMed DOI PMC
Cho, K.F., Branon T.C., Udeshi N.D., Myers S.A., Carr S.A., and Ting A.Y.. 2020. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 15:3971–3999. 10.1038/s41596-020-0399-0 PubMed DOI
Cova, M.M., Lamarque M.H., and Lebrun M.. 2022. How apicomplexa parasites secrete and build their invasion machinery. Annu. Rev. Microbiol. 76:619–640. 10.1146/annurev-micro-041320-021425 PubMed DOI
Criscuolo, A., and Gribaldo S.. 2010. BMGE (Block mapping and gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10:210. 10.1186/1471-2148-10-210 PubMed DOI PMC
Dahhan, D.A., Reynolds G.D., Cárdenas J.J., Eeckhout D., Johnson A., Yperman K., Kaufmann W.A., Vang N., Yan X., Hwang I., et al. 2022. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell. 34:2150–2173. 10.1093/plcell/koac071 PubMed DOI PMC
Das, S., Stortz J.F., Meissner M., and Periz J.. 2021. The multiple functions of actin in apicomplexan parasites. Cell. Microbiol. 23:e13345. 10.1111/cmi.13345 PubMed DOI
Davies, A.K., Itzhak D.N., Edgar J.R., Archuleta T.L., Hirst J., Jackson L.P., Robinson M.S., and Borner G.H.H.. 2018. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat. Commun. 9:3958. 10.1038/s41467-018-06172-7 PubMed DOI PMC
De Camilli, P., Chen H., Hyman J., Panepucci E., Bateman A., and Brunger A.T.. 2002. The ENTH domain. FEBS Lett. 513:11–18. 10.1016/s0014-5793(01)03306-3 PubMed DOI
de Chaumont, F., Dallongeville S., Chenouard N., Hervé N., Pop S., Provoost T., Meas-Yedid V., Pankajakshan P., Lecomte T., Le Montagner Y., et al. 2012. Icy: An open bioimage informatics platform for extended reproducible research. Nat. Methods. 9:690–696. 10.1038/nmeth.2075 PubMed DOI
Di Cristina, M., Dou Z., Lunghi M., Kannan G., Huynh M.-H., McGovern O.L., Schultz T.L., Schultz A.J., Miller A.J., Hayes B.M., et al. 2017. Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection. Nat. Microbiol. 2:17096. 10.1038/nmicrobiol.2017.96 PubMed DOI PMC
Diekmann, Y., Seixas E., Gouw M., Tavares-Cadete F., Seabra M.C., and Pereira-Leal J.B.. 2011. Thousands of rab GTPases for the cell biologist. PLoS Comput. Biol. 7:e1002217. 10.1371/journal.pcbi.1002217 PubMed DOI PMC
Elias, M., Brighouse A., Gabernet-Castello C., Field M.C., and Dacks J.B.. 2012. Sculpting the endomembrane system in deep time: High resolution phylogenetics of Rab GTPases. J. Cell Sci. 125:2500–2508. 10.1242/jcs.101378 PubMed DOI PMC
Frazier, M.N., Davies A.K., Voehler M., Kendall A.K., Borner G.H.H., Chazin W.J., Robinson M.S., and Jackson L.P.. 2016. Molecular basis for the interaction between AP4 β4 and its accessory protein, tepsin. Traffic. 17:400–415. 10.1111/tra.12375 PubMed DOI PMC
Fuji, K., Shirakawa M., Shimono Y., Kunieda T., Fukao Y., Koumoto Y., Takahashi H., Hara-Nishimura I., and Shimada T.. 2016. The adaptor complex AP-4 regulates vacuolar protein sorting at the trans-Golgi network by interacting with VACUOLAR SORTING RECEPTOR1. Plant Physiol. 170:211–219. 10.1104/pp.15.00869 PubMed DOI PMC
Gajria, B., Bahl A., Brestelli J., Dommer J., Fischer S., Gao X., Heiges M., Iodice J., Kissinger J.C., Mackey A.J., et al. 2008. ToxoDB: An integrated toxoplasma gondii database resource. Nucleic Acids Res. 36:D553–D556. 10.1093/nar/gkm981 PubMed DOI PMC
Ghosh, D., Walton J.L., Roepe P.D., and Sinai A.P.. 2012. Autophagy is a cell death mechanism in Toxoplasma gondii. Cell. Microbiol. 14:589–607. 10.1111/j.1462-5822.2011.01745.x PubMed DOI PMC
Gras, S., Jimenez-Ruiz E., Klinger C.M., Schneider K., Klingl A., Lemgruber L., and Meissner M.. 2019. An endocytic-secretory cycle participates in Toxoplasma gondii in motility. PLoS Biol. 17:e3000060. 10.1371/journal.pbio.3000060 PubMed DOI PMC
Harding, C.R., Egarter S., Gow M., Jiménez-Ruiz E., Ferguson D.J.P., and Meissner M.. 2016. Gliding associated proteins play essential roles during the formation of the inner membrane complex of toxoplasma gondii. PLoS Pathog. 12:e1005403. 10.1371/journal.ppat.1005403 PubMed DOI PMC
Harper, J.M., Huynh M.-H., Coppens I., Parussini F., Moreno S., and Carruthers V.B.. 2006. A cleavable propeptide influences Toxoplasma infection by facilitating the trafficking and secretion of the TgMIC2-M2AP invasion complex. Mol. Biol. Cell. 17:4551–4563. 10.1091/mbc.e06-01-0064 PubMed DOI PMC
He, K., Wu R., Yan A., Liu X., and Long S.. 2025. A novel ENTH domain-containing protein TgTEPSIN is essential for structural maintenance of the plant-like vacuolar compartment and bradyzoite differentiation in toxoplasma gondii. Int. J. Biol. Macromol. 300:140311. 10.1016/j.ijbiomac.2025.140311 PubMed DOI
Heaslip, A.T., Nelson S.R., and Warshaw D.M.. 2016. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments. Mol. Biol. Cell. 27:2080–2089. 10.1091/mbc.E15-12-0824 PubMed DOI PMC
Helms, J.B., and Rothman J.E.. 1992. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature. 360:352–354. 10.1038/360352a0 PubMed DOI
Hirst, J., Schlacht A., Norcott J.P., Traynor D., Bloomfield G., Antrobus R., Kay R.R., Dacks J.B., and Robinson M.S.. 2014. Characterization of TSET, an ancient and widespread membrane trafficking complex. Elife. 3:e02866. 10.7554/eLife.02866 PubMed DOI PMC
Hunt, A., Russell M.R.G., Wagener J., Kent R., Carmeille R., Peddie C.J., Collinson L., Heaslip A., Ward G.E., and Treeck M.. 2019. Differential requirements for cyclase-associated protein (CAP) in actin-dependent processes of Toxoplasma gondii. Elife. 8:e50598. 10.7554/eLife.50598 PubMed DOI PMC
Jackson, A.J., Clucas C., Mamczur N.J., Ferguson D.J., and Meissner M.. 2013. Toxoplasma gondii Syntaxin 6 is required for vesicular transport between endosomal-like compartments and the Golgi complex. Traffic. 14:1166–1181. 10.1111/tra.12102 PubMed DOI PMC
Jimenez-Ruiz, E., Morlon-Guyot J., Daher W., and Meissner M.. 2016. Vacuolar protein sorting mechanisms in apicomplexan parasites. Mol. Biochem. Parasitol. 209:18–25. 10.1016/j.molbiopara.2016.01.007 PubMed DOI PMC
Jumper, J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596:583–589. 10.1038/s41586-021-03819-2 PubMed DOI PMC
Kaderi Kibria, K.M., Rawat K., Klinger C.M., Datta G., Panchal M., Singh S., Iyer G.R., Kaur I., Sharma V., Dacks J.B., et al. 2015. A role for adaptor protein complex 1 in protein targeting to rhoptry organelles in Plasmodium falciparum. Biochim. Biophys. Acta. 1853:699–710. 10.1016/j.bbamcr.2014.12.030 PubMed DOI
Kalyaanamoorthy, S., Minh B.Q., Wong T.K.F., von Haeseler A., and Jermiin L.S.. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 14:587–589. 10.1038/nmeth.4285 PubMed DOI PMC
Keeling, P.J., Burger G., Durnford D.G., Lang B.F., Lee R.W., Pearlman R.E., Roger A.J., and Gray M.W.. 2005. The tree of eukaryotes. Trends Ecol. Evol. 20:670–676. 10.1016/j.tree.2005.09.005 PubMed DOI
Klinger, C.M., Jimenez-Ruiz E., Mourier T., Klingl A., Lemgruber L., Pain A., Dacks J.B., and Meissner M.. 2024. Evolutionary analysis identifies a Golgi pathway and correlates lineage-specific factors with endomembrane organelle emergence in apicomplexans. Cell Rep. 43:113740. 10.1016/j.celrep.2024.113740 PubMed DOI
Koreny, L., Mercado-Saavedra B.N., Klinger C.M., Barylyuk K., Butterworth S., Hirst J., Rivera-Cuevas Y., Zaccai N.R., Holzer V.J.C., Klingl A., et al. 2023. Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat. Commun. 14:2167. 10.1038/s41467-023-37431-x PubMed DOI PMC
Langsley, G., van Noort V., Carret C., Meissner M., de Villiers E.P., Bishop R., and Pain A.. 2008. Comparative genomics of the Rab protein family in Apicomplexan parasites. Microbes Infect. 10:462–470. 10.1016/j.micinf.2008.01.017 PubMed DOI PMC
Larsson, A. 2014. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 30:3276–3278. 10.1093/bioinformatics/btu531 PubMed DOI PMC
Law, K.C., Chung K.K., and Zhuang X.. 2022. An update on coat protein complexes for vesicle formation in plant post-Golgi trafficking. Front. Plant Sci. 13:826007. 10.3389/fpls.2022.826007 PubMed DOI PMC
Lee, S., Park H., Kyung T., Kim N.Y., Kim S., Kim J., and Heo W.D.. 2014. Reversible protein inactivation by optogenetic trapping in cells. Nat. Methods. 11:633–636. 10.1038/nmeth.2940 PubMed DOI
Li, W., Grech J., Stortz J.F., Gow M., Periz J., Meissner M., and Jimenez-Ruiz E.. 2022. A splitCas9 phenotypic screen in Toxoplasma gondii identifies proteins involved in host cell egress and invasion. Nat. Microbiol. 7:882–895. 10.1038/s41564-022-01114-y PubMed DOI
Mathur, V., Kwong W.K., Husnik F., Irwin N.A.T., Kristmundsson Á., Gestal C., Freeman M., and Keeling P.J.. 2021. Phylogenomics identifies a new major subgroup of apicomplexans, marosporida class nov., with extreme apicoplast genome reduction. Genome Biol. Evol. 13:evaa244. 10.1093/gbe/evaa244 PubMed DOI PMC
McFadden, G.I., and Yeh E.. 2017. The apicoplast: Now you see it, now you don't. Int. J. Parasitol. 47:137–144. 10.1016/j.ijpara.2016.08.005 PubMed DOI PMC
McGovern, O.L., Rivera-Cuevas Y., Kannan G., Narwold A.J. Jr., and Carruthers V.B.. 2018. Intersection of endocytic and exocytic systems in Toxoplasma gondii. Traffic. 19:336–353. 10.1111/tra.12556 PubMed DOI PMC
Minh, B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., and Lanfear R.. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37:1530–1534. 10.1093/molbev/msaa015 PubMed DOI PMC
Miranda, K., Pace D.A., Cintron R., Rodrigues J.C.F., Fang J., Smith A., Rohloff P., Coelho E., de Haas F., de Souza W., et al. 2010. Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol. Microbiol. 76:1358–1375. 10.1111/j.1365-2958.2010.07165.x PubMed DOI PMC
Nguyen, H.M., El Hajj H., El Hajj R., Tawil N., Berry L., Lebrun M., Bordat Y., and Besteiro S.. 2017. Toxoplasma gondii autophagy-related protein ATG9 is crucial for the survival of parasites in their host. Cell. Microbiol. 19. 10.1111/cmi.12712 PubMed DOI
Nichols, B.A., Chiappino M.L., and Pavesio C.E.. 1994. Endocytosis at the micropore of Toxoplasma gondii. Parasitol. Res. 80:91–98. 10.1007/BF00933773 PubMed DOI
Parussini, F., Coppens I., Shah P.P., Diamond S.L., and Carruthers V.B.. 2010. Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Mol. Microbiol. 76:1340–1357. 10.1111/j.1365-2958.2010.07181.x PubMed DOI PMC
Pasquarelli, R.R., Quan J.J., Cheng E.S., Yang V., Britton T.A., Sha J., Wohlschlegel J.A., and Bradley P.J.. 2024. Characterization and functional analysis of Toxoplasma Golgi-associated proteins identified by proximity labeling. mBio. 15:e0238024. 10.1128/mbio.02380-24 PubMed DOI PMC
Paysan-Lafosse, T., Blum M., Chuguransky S., Grego T., Pinto B.L., Salazar G.A., Bileschi M.L., Bork P., Bridge A., Colwell L., et al. 2023. InterPro in 2022. Nucleic Acids Res. 51:D418–D427. 10.1093/nar/gkac993 PubMed DOI PMC
Peng, D., and Tarleton R.. 2015. EuPaGDT: A web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb. Genom. 1:e000033. 10.1099/mgen.0.000033 PubMed DOI PMC
Perez-Riverol, Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D.J., Prakash A., Frericks-Zipper A., Eisenacher M., et al. 2022. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50:D543–d552. 10.1093/nar/gkab1038 PubMed DOI PMC
Periz, J., Del Rosario M., McStea A., Gras S., Loney C., Wang L., Martin-Fernandez M.L., and Meissner M.. 2019. A highly dynamic F-actin network regulates transport and recycling of micronemes in Toxoplasma gondii vacuoles. Nat. Commun. 10:4183. 10.1038/s41467-019-12136-2 PubMed DOI PMC
Periz, J., Whitelaw J., Harding C., Gras S., Del Rosario Minina M.I., Latorre-Barragan F., Lemgruber L., Reimer M.A., Insall R., Heaslip A., and Meissner M.. 2017. Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation. Elife. 6:e24119. 10.7554/eLife.24119 PubMed DOI PMC
Pfluger, S.L., Goodson H.V., Moran J.M., Ruggiero C.J., Ye X., Emmons K.M., and Hager K.M.. 2005. Receptor for retrograde transport in the apicomplexan parasite Toxoplasma gondii. Eukaryot. Cell. 4:432–442. 10.1128/EC.4.2.432-442.2005 PubMed DOI PMC
Pieperhoff, M.S., Schmitt M., Ferguson D.J.P., and Meissner M.. 2013. The role of clathrin in post-Golgi trafficking in Toxoplasma gondii. PloS One. 8:e77620. 10.1371/journal.pone.0077620 PubMed DOI PMC
Ren, J., Wen L., Gao X., Jin C., Xue Y., and Yao X.. 2009. DOG 1.0: Illustrator of protein domain structures. Cell Res. 19:271–273. 10.1038/cr.2009.6 PubMed DOI
Richter, D.J., Berney C., Strassert J.F.H., Poh Y.-P., Herman E.K., Muñoz-Gómez S.A., Wideman J.G., Burki F., and de Vargas C.. 2022. EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2:e56. 10.24072/pcjournal.173 DOI
Robert, X., and Gouet P.. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42:W320–W324. 10.1093/nar/gku316 PubMed DOI PMC
Schindelin, J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. 2012. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9:676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Schmidt, S., Wichers-Misterek J.S., Behrens H.M., Birnbaum J., Henshall I.G., Dröge J., Jonscher E., Flemming S., Castro-Peña C., Mesén-Ramírez P., and Spielmann T.. 2023. The Kelch13 compartment contains highly divergent vesicle trafficking proteins in malaria parasites. PLoS Pathog. 19:e1011814. 10.1371/journal.ppat.1011814 PubMed DOI PMC
Sciaky, N., Presley J., Smith C., Zaal K.J., Cole N., Moreira J.E., Terasaki M., Siggia E., and Lippincott-Schwartz J.. 1997. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol. 139:1137–1155. 10.1083/jcb.139.5.1137 PubMed DOI PMC
Sidik, S.M., Huet D., Ganesan S.M., Huynh M.H., Wang T., Nasamu A.S., Thiru P., Saeij J.P.J., Carruthers V.B., Niles J.C., et al. 2016. A genome-wide CRISPR screen in toxoplasma identifies essential apicomplexan genes. Cell. 166:1423–1435.e1412. 10.1016/j.cell.2016.08.019 PubMed DOI PMC
Singer, M., Simon K., Forné I., and Meissner M.. 2023. A central CRMP complex essential for invasion in Toxoplasma gondii. PLoS Biol. 21:e3001937. 10.1371/journal.pbio.3001937 PubMed DOI PMC
Sloves, P.J., Delhaye S., Mouveaux T., Werkmeister E., Slomianny C., Hovasse A., Dilezitoko Alayi T., Callebaut I., Gaji R.Y., Schaeffer-Reiss C., et al. 2012. Toxoplasma sortilin-like receptor regulates protein transport and is essential for apical secretory organelle biogenesis and host infection. Cell Host Microbe. 11:515–527. 10.1016/j.chom.2012.03.006 PubMed DOI
Smith, T.A., Lopez-Perez, G., Shortt, E., Lourido, S.. 2021. High-throughput functionalization of the Toxoplasma kinome uncovers a novel regulator of invasion and egress. bioRxiv. 10.1101/2021.09.23.461611(Preprint posted September 24, 2021). PubMed DOI PMC
Spielmann, T., Gras S., Sabitzki R., and Meissner M.. 2020. Endocytosis in Plasmodium and toxoplasma parasites. Trends Parasitol. 36:520–532. 10.1016/j.pt.2020.03.010 PubMed DOI
Stasic, A.J., Moreno S.N.J., Carruthers V.B., and Dou Z.. 2022. The Toxoplasma plant-like vacuolar compartment (PLVAC). J. Eukaryot. Microbiol. 69:e12951. 10.1111/jeu.12951 PubMed DOI PMC
Stortz, J.F., Del Rosario M., Singer M., Wilkes J.M., Meissner M., and Das S.. 2019. Formin-2 drives polymerisation of actin filaments enabling segregation of apicoplasts and cytokinesis in Plasmodium falciparum. Elife. 8:e49030. 10.7554/eLife.49030 PubMed DOI PMC
Szklarczyk, D., Franceschini A., Kuhn M., Simonovic M., Roth A., Minguez P., Doerks T., Stark M., Muller J., Bork P., et al. 2011. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39:D561–D568. 10.1093/nar/gkq973 PubMed DOI PMC
Tyanova, S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., and Cox J.. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 13:731–740. 10.1038/nmeth.3901 PubMed DOI
van Kempen, M., Kim S.S., Tumescheit C., Mirdita M., Lee J., Gilchrist C.L.M., Söding J., and Steinegger M.. 2023. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42:243–246. 10.1038/s41587-023-01773-0 PubMed DOI PMC
Varadi, M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., Yuan D., Stroe O., Wood G., Laydon A., et al. 2022. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50:D439–d444. 10.1093/nar/gkab1061 PubMed DOI PMC
Varberg, J.M., LaFavers K.A., Arrizabalaga G., and Sullivan W.J. Jr. 2018. Characterization of Plasmodium Atg3-Atg8 interaction inhibitors identifies novel alternative mechanisms of action in toxoplasma gondii. Antimicrob. Agents Chemother. 62:e01489-17. 10.1128/AAC.01489-17 PubMed DOI PMC
Venugopal, K., and Marion S.. 2018. Secretory organelle trafficking in toxoplasma gondii: A long story for a short travel. Int. J. Med. Microbiol. 308:751–760. 10.1016/j.ijmm.2018.07.007 PubMed DOI
Venugopal, K., Werkmeister E., Barois N., Saliou J.-M., Poncet A., Huot L., Sindikubwabo F., Hakimi M.A., Langsley G., Lafont F., and Marion S.. 2017. Dual role of the Toxoplasma gondii clathrin adaptor AP1 in the sorting of rhoptry and microneme proteins and in parasite division. PLoS Pathog. 13:e1006331. 10.1371/journal.ppat.1006331 PubMed DOI PMC
Wan, W., Dong H., Lai D.-H., Yang J., He K., Tang X., Liu Q., Hide G., Zhu X.-Q., Sibley L.D., et al. 2023. The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments. Nat. Commun. 14:977. 10.1038/s41467-023-36571-4 PubMed DOI PMC
Warring, S.D., Dou Z., Carruthers V.B., McFadden G.I., and van Dooren G.G.. 2014. Characterization of the chloroquine resistance transporter homologue in Toxoplasma gondii. Eukaryot. Cell. 13:1360–1370. 10.1128/EC.00027-14 PubMed DOI PMC
Woo, Y.H., Ansari H., Otto T.D., Klinger C.M., Kolisko M., Michalek J., Saxena A., Shanmugam D., Tayyrov A., Veluchamy A., et al. 2015. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife. 4:e06974. 10.7554/eLife.06974 PubMed DOI PMC
Zhang, Y., and Skolnick J.. 2005. TM-Align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33:2302–2309. 10.1093/nar/gki524 PubMed DOI PMC
Zizioli, D., Meyer C., Guhde G., Saftig P., von Figura K., and Schu P.. 1999. Early embryonic death of mice deficient in gamma-adaptin. J. Biol. Chem. 274:5385–5390. 10.1074/jbc.274.9.5385 PubMed DOI