European human granulocytic anaplasmosis is caused by a subcluster of Anaplasma phagocytophilum Ecotype I
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41127257
PubMed Central
PMC12538471
DOI
10.1016/j.crpvbd.2025.100324
PII: S2667-114X(25)00084-6
Knihovny.cz E-zdroje
- Klíčová slova
- Anaplasma phagocytophilum, Ecotypes, Human granulocytic anaplasmosis (HGA), Ixodes ricinus, Multilocus sequence typing (MLST), Whole genome sequence (WGS), groEL,
- Publikační typ
- časopisecké články MeSH
Anaplasma phagocytophilum causes human granulocytic anaplasmosis. However, despite its ubiquitous presence in animals and ticks, human cases are rarely reported in Europe. We generated genetic data from A. phagocytophilum from patients and compared them with sequences from wild and domestic animals to assess the zoonotic potential of the respective genotypes. The genomic sequence of an A. phagocytophilum isolate obtained from a Slovenian patient was determined. We also sequenced a groEL-gene fragment of eight isolates from human patients from France and Poland. The A. phagocytophilum genome from the Slovenian patient was more closely related to isolates from dogs than from sheep. Using groEL-based typing, isolates from humans were found within a distinct subcluster of A. phagocytophilum Ecotype I. This subcluster was defined as zoonotic. Strains from dogs, horses, cats, foxes, wolves, and wild boar were significantly overrepresented in this branch. Variants outside this subcluster were more abundant and found in a wider variety of domestic and wild animals, most notably ruminants. A similar pattern was observed for the MLST analyses targeting seven housekeeping genes. Human anaplasmosis in Europe is associated with a specific subcluster of A. phagocytophilum Ecotype I, which is not primarily associated with ruminants, but rather with dogs, horses, cats, carnivores, wild boar and hedgehogs. Our findings provide a reasonable explanation for the discrepancy between the omnipresence of A. phagocytophilum in the environment and the limited number of reported human cases. We recommend taking this genetic sub-clustering into account for future risk assessments.
CNR des Borrelia Hôpitaux Universitaires de Strasbourg F 67000 Strasbourg France
Department of Infection and Immunity Luxembourg Institute of Health Esch sur Alzette Luxembourg
Future Genomics Technologies BV 2333 BE Leiden the Netherlands
Zobrazit více v PubMed
Aardema M.L. Genomic analyses indicate the North American Ap-ha variant of the tick-vectored bacterium Anaplasma phagocytophilum was introduced from Europe. Parasites Vectors. 2023;16:301. doi: 10.1186/s13071-023-05914-x. PubMed DOI PMC
Azagi T., Dirks R.P., Yebra-Pimentel E.S., Schaap P.J., Koehorst J.J., Esser H.J., Sprong H. Assembly and comparison of Ca. Neoehrlichia mikurensis genomes. Microorganisms. 2022;10:1134. doi: 10.3390/microorganisms10061134. PubMed DOI PMC
Azagi T., Hoornstra D., Kremer K., Hovius J.W.R., Sprong H. Evaluation of disease causality of rare Ixodes ricinus-borne infections in Europe. Pathogens. 2020;9:150. doi: 10.3390/pathogens9020150. PubMed DOI PMC
Azagi T., Jaarsma R.I., Docters van Leeuwen A., Fonville M., Maas M., Franssen F.F.J., et al. Circulation of Babesia species and their exposure to humans through Ixodes ricinus. Pathogens. 2021;10:386. doi: 10.3390/pathogens10040386. PubMed DOI PMC
Bakker J.W., Esser H.J., Sprong H., Godeke G.J., Hoornweg T.E., de Boer W.F., et al. Differential susceptibility of geographically distinct Ixodes ricinus populations to tick-borne encephalitis virus and louping ill virus. Emerg. Microb. Infect. 2024;13 doi: 10.1080/22221751.2024.2321992. PubMed DOI PMC
Barlough J.E., Madigan J.E., DeRock E., Dumler J.S., Bakken J.S. Protection against Ehrlichia equi is conferred by prior infection with the human granulocytotropic Ehrlichia (HGE agent) J. Clin. Microbiol. 1995;33:3333–3334. doi: 10.1128/jcm.33.12.3333-3334.1995. PubMed DOI PMC
Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Method. 1995;57:289–300.
Carlyon J.A. Laboratory maintenance of Anaplasma phagocytophilum. Curr. Protoc. Microbiol. Chapter. 2005;3 doi: 10.1002/9780471729259.mc03a02s00. Unit 3A.2. PubMed DOI
Černý J., Lynn G., Hrnková J., Golovchenko M., Rudenko N., Grubhoffer L. Management options for Ixodes ricinus-associated pathogens: a review of prevention strategies. Int. J. Environ. Res. Publ. Health. 2020;17:1830. doi: 10.3390/ijerph17061830. PubMed DOI PMC
Coipan E.C., Jahfari S., Fonville M., Oei G.A., Spanjaard L., Takumi K., et al. Imbalanced presence of Borrelia burgdorferi s.l. multilocus sequence types in clinical manifestations of Lyme borreliosis. Infect. Genet. Evol. 2016;42:66–76. doi: 10.1016/j.meegid.2016.04.019. PubMed DOI
Dixon D.M., Branda J.A., Clark S.H., Dumler J.S., Horowitz H.W., Perdue S.S., et al. Ehrlichiosis and anaplasmosis subcommittee report to the Tick-borne Disease Working Group. Ticks Tick Borne Dis. 2021;12 doi: 10.1016/j.ttbdis.2021.101823. PubMed DOI
Dumler J.S., Barbet A.F., Bekker C.P., Dasch G.A., Palmer G.H., Ray S.C., et al. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 2001;51:2145–2165. doi: 10.1099/00207713-51-6-2145. PubMed DOI
Eren A.M., Kiefl E., Shaiber A., Veseli I., Miller S.E., Schechter M.S., et al. Community-led, integrated, reproducible multi-omics with anvi'o. Nat. Microbiol. 2021;6:3–6. doi: 10.1038/s41564-020-00834-3. PubMed DOI PMC
Fisher R.A. The mathematical distributions used in the common tests of significance. Econometrica. 1935;3:353–365.
Galperin M.Y., Makarova K.S., Wolf Y.I., Koonin E.V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015;43(Database issue):D261–D269. doi: 10.1093/nar/gku1223. PubMed DOI PMC
Gandy S., Hansford K., McGinley L., Cull B., Smith R., Semper A., et al. Prevalence of Anaplasma phagocytophilum in questing Ixodes ricinus nymphs across twenty recreational areas in England and Wales. Ticks Tick Borne Dis. 2022;13 doi: 10.1016/j.ttbdis.2022.101965. PubMed DOI
Genné D., Rossel M., Sarr A., Battilotti F., Rais O., Rego R.O.M., Voordouw M.J. Competition between strains of Borrelia afzelii in the host tissues and consequences for transmission to ticks. ISME J. 2021;15:2390–2400. doi: 10.1038/s41396-021-00939-5. PubMed DOI PMC
Hrazdilová K., Lesiczka P.M., Bardoň J., Vyroubalová Š., Šimek B., Zurek L., Modrý D. Wild boar as a potential reservoir of zoonotic tick-borne pathogens. Ticks Tick Borne Dis. 2021;12 doi: 10.1016/j.ttbdis.2020.101558. PubMed DOI
Huhn C., Winter C., Wolfsperger T., Wüppenhorst N., Strašek Smrdel K., Skuballa J., et al. Analysis of the population structure of Anaplasma phagocytophilum using multilocus sequence typing. PLoS One. 2014;9 doi: 10.1371/journal.pone.0093725. PubMed DOI PMC
Ismail N., McBride J.W. Tick-borne emerging infections: ehrlichiosis and anaplasmosis. Clin. Lab. Med. 2017;37:317–340. doi: 10.1016/j.cll.2017.01.006. PubMed DOI
Jaarsma R.I., Sprong H., Takumi K., Kazimirova M., Silaghi C., Mysterud A., et al. Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasites Vectors. 2019;12:328. doi: 10.1186/s13071-019-3583-8. PubMed DOI PMC
Jahfari S., Coipan E.C., Fonville M., van Leeuwen A.D., Hengeveld P., Heylen D., et al. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasites Vectors. 2014;7:365. doi: 10.1186/1756-3305-7-365. PubMed DOI PMC
Köhler C.F., Holding M.L., Sprong H., Jansen P.A., Esser H.J. Biodiversity in the Lyme-light: ecological restoration and tick-borne diseases in Europe. Trends Parasitol. 2023;39:373–385. doi: 10.1016/j.pt.2023.02.005. PubMed DOI
Langenwalder D.B., Schmidt S., Silaghi C., Skuballa J., Pantchev N., Matei I.A., et al. The absence of the drhm gene is not a marker for human-pathogenicity in European Anaplasma phagocytophilum strains. Parasites Vectors. 2020;13:238. doi: 10.1186/s13071-020-04116-z. PubMed DOI PMC
Langenwalder D.B., Silaghi C., Nieder M., Pfeffer M., von Loewenich F.D. Co-infection, reinfection and superinfection with Anaplasma phagocytophilum strains in a cattle herd based on ankA gene and multilocus sequence typing. Parasites Vectors. 2020;13:157. doi: 10.1186/s13071-020-04032-2. PubMed DOI PMC
Leigh J.W., Bryant D., Nakagawa S. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI
Lindgren E., Andersson Y., Suk J.E., Sudre B., Semenza J.C. Public health. Monitoring EU emerging infectious disease risk due to climate change. Science. 2012;336:418–419. doi: 10.1126/science.1215735. PubMed DOI
Lotric-Furlan S., Petrovec M., Avsic-Zupanc T., Strle F. Comparison of patients fulfilling criteria for confirmed and probable human granulocytic ehrlichiosis. Scand. J. Infect. Dis. 2004;36:817–822. doi: 10.1080/00365540410021171. PubMed DOI
Madigan J.E., Richter P.J., Jr., Kimsey R.B., Barlough J.E., Bakken J.S., Dumler J.S. Transmission and passage in horses of the agent of human granulocytic ehrlichiosis. J. Infect. Dis. 1995;172:1141–1144. doi: 10.1093/infdis/172.4.1141. PubMed DOI
Matei I.A., Estrada-Peña A., Cutler S.J., Vayssier-Taussat M., Varela-Castro L., Potkonjak A., et al. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasites Vectors. 2019;12:599. doi: 10.1186/s13071-019-3852-6. PubMed DOI PMC
McFadden D. In: Frontiers in Econometrics. Zarembka P., editor. Academic Press; NY: 1974. Conditional logit analysis of qualitative choice behavior; pp. 105–142.
Medlock J.M., Hansford K.M., Bormane A., Derdakova M., Estrada-Peña A., George J.C., et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors. 2013;6:1. doi: 10.1186/1756-3305-6-1. PubMed DOI PMC
Moniuszko-Malinowska A., Dunaj J., Andersson M.O., Chmielewski T., Czupryna P., Groth M., et al. Anaplasmosis in Poland - analysis of 120 patients. Ticks Tick Borne Dis. 2021;12 doi: 10.1016/j.ttbdis.2021.101763. PubMed DOI
Murray C.S., Gao Y., Wu M. Re-evaluating the evidence for a universal genetic boundary among microbial species. Nat. Commun. 2021;12:4059. doi: 10.1038/s41467-021-24128-2. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Rar V., Tkachev S., Tikunova N. Genetic diversity of Anaplasma bacteria: twenty years later. Infect. Genet. Evol. 2021;91 doi: 10.1016/j.meegid.2021.104833. PubMed DOI
Richter M., Rosselló-Móra R., Oliver Glöckner F., Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–931. doi: 10.1093/bioinformatics/btv681. PubMed DOI PMC
Scorpio D.G., Dumler J.S., Barat N.C., Cook J.A., Barat C.E., Stillman B.A., et al. Comparative strain analysis of Anaplasma phagocytophilum infection and clinical outcomes in a canine model of granulocytic anaplasmosis. Vector Borne Zoonotic Dis. 2011;11:223–229. doi: 10.1089/vbz.2009.0262. PubMed DOI
Sprong H., Azagi T., Hoornstra D., Nijhof A.M., Knorr S., Baarsma M.E., Hovius J.W. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasites Vectors. 2018;11:145. doi: 10.1186/s13071-018-2744-5. PubMed DOI PMC
Stuen S., Granquist E.G., Silaghi C. Anaplasma phagocytophilum - a widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 2013;3:31. doi: 10.3389/fcimb.2013.00031. PubMed DOI PMC