Management Options for Ixodes ricinus-Associated Pathogens: A Review of Prevention Strategies
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32178257
PubMed Central
PMC7143654
DOI
10.3390/ijerph17061830
PII: ijerph17061830
Knihovny.cz E-zdroje
- Klíčová slova
- Ixodes ricinus, tick, tick management, tick-borne diseases,
- MeSH
- hodnocení rizik MeSH
- klíště * patogenita MeSH
- klíšťová encefalitida * terapie MeSH
- lidé MeSH
- lymeská nemoc * terapie MeSH
- nemoci přenášené klíšťaty * terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- Evropa MeSH
Ticks are important human and animal parasites and vectors of many infectious disease agents. Control of tick activity is an effective tool to reduce the risk of contracting tick-transmitted diseases. The castor bean tick (Ixodes ricinus) is the most common tick species in Europe. It is also a vector of the causative agents of Lyme borreliosis and tick-borne encephalitis, which are two of the most important arthropod-borne diseases in Europe. In recent years, increases in tick activity and incidence of tick-borne diseases have been observed in many European countries. These increases are linked to many ecological and anthropogenic factors such as landscape management, climate change, animal migration, and increased popularity of outdoor activities or changes in land usage. Tick activity is driven by many biotic and abiotic factors, some of which can be effectively managed to decrease risk of tick bites. In the USA, recommendations for landscape management, tick host control, and tick chemical control are well-defined for the applied purpose of reducing tick presence on private property. In Europe, where fewer studies have assessed tick management strategies, the similarity in ecological factors influencing vector presence suggests that approaches that work in USA may also be applicable. In this article we review key factors driving the tick exposure risk in Europe to select those most conducive to management for decreased tick-associated risk.
Zobrazit více v PubMed
Estrada-Peña A., Mihalca A.D., Petney T.N. Ticks of Europe and North. Africa—A Guide to Species Identification. Springer International Publishing; Cham, Switzerland: 2017. pp. XXI, 404.
Beati L., Klompen H. Phylogeography of Ticks (Acari: Ixodida) Annu. Rev. Entomol. 2019;64:379–397. doi: 10.1146/annurev-ento-020117-043027. PubMed DOI
eCDC Surveillance and disease data—Tick maps. [(accessed on 10 October 2019)]; Available online: https://www.ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/tick-maps.
Abdullah S., Helps C., Tasker S., Newbury H., Wall R. Ticks infesting domestic dogs in the UK: A large-scale surveillance programme. Parasit Vectors. 2016;9:391. doi: 10.1186/s13071-016-1673-4. PubMed DOI PMC
Sprong H., Azagi T., Hoornstra D., Nijhof A.M., Knorr S., Baarsma M.E., Hovius J.W. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasit Vectors. 2018;11:145. doi: 10.1186/s13071-018-2744-5. PubMed DOI PMC
Parola P., Raoult D. Tick-borne bacterial diseases emerging in Europe. Clin. Microbiol. Infect. 2001;7:80–83. doi: 10.1046/j.1469-0691.2001.00200.x. PubMed DOI
Barzon L. Ongoing and emerging arbovirus threats in Europe. J. Clin. Virol. 2018;107:38–47. doi: 10.1016/j.jcv.2018.08.007. PubMed DOI
Karbowiak G., Biernat B. The role of particular tick developmental stages in the circulation of tick-borne pathogens affecting humans in Central Europe. 2. Tick-borne encephalitis virus. Ann. Parasitol. 2016;62:3–9. doi: 10.17420/ap6201.25. PubMed DOI
Gonzalez J.P., Camicas J.L., Cornet J.P., Faye O., Wilson M.L. Sexual and transovarian transmission of Crimean-Congo haemorrhagic fever virus in Hyalomma truncatum ticks. Res. Virol. 1992;143:23–28. doi: 10.1016/S0923-2516(06)80073-7. PubMed DOI
Plowright W., Perry C.T., Greig A. Sexual Transmission of African Swine Fever Virus in the Tick, Ornithodoros Moubata Porcinus, Walton. Res. Vet. Sci. 1974;17:106–113. doi: 10.1016/S0034-5288(18)33716-0. PubMed DOI
Hoby S., Mathis A., Doherr M.G., Robert N., Ryser-Degiorgis M.P. Babesia capreoli infections in alpine chamois (Rupicapra r. Rupicapra), roe deer (Capreolus c. Capreolus) and red deer (Cervus elaphus) from Switzerland. J. Wildl. Dis. 2009;45:748–753. doi: 10.7589/0090-3558-45.3.748. PubMed DOI
Daniel M., Materna J., Honig V., Metelka L., Danielová V., Harcarik J., Kliegrová S., Grubhoffer L. Vertical distribution of the tick Ixodes ricinus and tick-borne pathogens in the northern Moravian mountains correlated with climate warming (Jeseníky Mts., Czech Republic) Cent. Eur. J. Public Health. 2009;17:139–145. doi: 10.21101/cejph.a3550. PubMed DOI
Daniel M., Danielová V., Kříž B., Růžek D., Fialová A., Malý M., Materna J., Pejčoch M., Erhart J. The occurrence of Ixodes ricinus ticks and important tick-borne pathogens in areas with high tick-borne encephalitis prevalence in different altitudinal levels of the Czech Republic Part I. Ixodes ricinus ticks and tick-borne encephalitis virus. Epidemiol. Mikrobiol. Imunol. 2016;65:118–128. PubMed
Danielová V., Daniel M., Schwarzová L., Materna J., Rudenko N., Golovchenko M., Holubová J., Grubhoffer L., Kilián P. Integration of a tick-borne encephalitis virus and Borrelia burgdorferi sensu lato into mountain ecosystems, following a shift in the altitudinal limit of distribution of their vector, Ixodes ricinus (Krkonose mountains, Czech Republic) Vector Borne Zoonotic Dis. 2010;10:223–230. doi: 10.1089/vbz.2009.0020. PubMed DOI
Stünzner D., Hubálek Z., Halouzka J., Wendelin I., Sixl W., Marth E. Prevalence of Borrelia burgdorferi sensu lato in the tick Ixodes ricinus in the Styrian mountains of Austria. Wien. Klin Wochenschr. 2006;118:682–685. doi: 10.1007/s00508-006-0695-x. PubMed DOI
Daniel M., Rudenko N., Golovchenko M., Danielová V., Fialová A., Kříž B., Malý M. The occurrence of Ixodes ricinus ticks and important tick-borne pathogens in areas with high tick-borne encephalitis prevalence in different altitudinal levels of the Czech Republic Part II. Ixodes ricinus ticks and genospecies of Borrelia burgdorferi sensu lato complex. Epidemiol. Mikrobiol. Imunol. 2016;65:182–192. PubMed
Soleng A., Edgar K.S., Paulsen K.M., Pedersen B.N., Okbaldet Y.B., Skjetne I.E.B., Gurung D., Vikse R., Andreassen Å. Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway. Ticks Tick Borne Dis. 2018;9:97–103. doi: 10.1016/j.ttbdis.2017.10.002. PubMed DOI
Ostfeld R.S., Brunner J.L. Climate change and Ixodes tick-borne diseases of humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015;370 doi: 10.1098/rstb.2014.0051. PubMed DOI PMC
Semenza J.C., Suk J.E. Vector-borne diseases and climate change: A European perspective. FEMS Microbiol. Lett. 2018;365 doi: 10.1093/femsle/fnx244. PubMed DOI PMC
Stone B.L., Tourand Y., Brissette C.A. Brave New Worlds: The Expanding Universe of Lyme Disease. Vector Borne Zoonotic Dis. 2017;17:619–629. doi: 10.1089/vbz.2017.2127. PubMed DOI PMC
Cayol C., Koskela E., Mappes T., Siukkola A., Kallio E.R. Temporal dynamics of the tick Ixodes ricinus in northern Europe: Epidemiological implications. Parasit Vectors. 2017;10:166. doi: 10.1186/s13071-017-2112-x. PubMed DOI PMC
Boeckmann M., Joyner T.A. Old health risks in new places? An ecological niche model for I. ricinus tick distribution in Europe under a changing climate. Health Place. 2014;30:70–77. doi: 10.1016/j.healthplace.2014.08.004. PubMed DOI
Ehrmann S., Liira J., Gärtner S., Hansen K., Brunet J., Cousins S.A.O., Deconchat M., Decocq G., De Frenne P., De Smedt P., et al. Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes. BMC Ecol. 2017;17:31. doi: 10.1186/s12898-017-0141-0. PubMed DOI PMC
Alkishe A.A., Peterson A.T., Samy A.M. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PLoS ONE. 2017;12:e0189092. doi: 10.1371/journal.pone.0189092. PubMed DOI PMC
Boehnke D., Gebhardt R., Petney T., Norra S. On the complexity of measuring forests microclimate and interpreting its relevance in habitat ecology: The example of Ixodes ricinus ticks. Parasit Vectors. 2017;10:549. doi: 10.1186/s13071-017-2498-5. PubMed DOI PMC
Furness R.W., Furness E.N. Ixodes ricinus parasitism of birds increases at higher winter temperatures. J. Vector Ecol. 2018;43:59–62. doi: 10.1111/jvec.12283. PubMed DOI
Vollack K., Sodoudi S., Névir P., Müller K., Richter D. Influence of meteorological parameters during the preceding fall and winter on the questing activity of nymphal Ixodes ricinus ticks. Int. J. Biometeorol. 2017;61:1787–1795. doi: 10.1007/s00484-017-1362-9. PubMed DOI
Kiewra D., Sobczyñski M. Biometrical analysis of the common tick, Ixodes ricinus, in the Sleza Massif (Lower Silesia, Poland) J. Vector Ecol. 2006;31:239–244. doi: 10.3376/1081-1710(2006)31[239:BAOTCT]2.0.CO;2. PubMed DOI
Daniel M., Kolár J., Zeman P., Pavelka K., Sádlo J. Predictive map of Ixodes ricinus high-incidence habitats and a tick-borne encephalitis risk assessment using satellite data. Exp. Appl. Acarol. 1998;22:417–433. doi: 10.1023/A:1006030827216. PubMed DOI
Cat J., Beugnet F., Hoch T., Jongejan F., Prangé A., Chalvet-Monfray K. Influence of the spatial heterogeneity in tick abundance in the modeling of the seasonal activity of Ixodes ricinus nymphs in Western Europe. Exp. Appl. Acarol. 2017;71:115–130. doi: 10.1007/s10493-016-0099-1. PubMed DOI
Schulz M., Mahling M., Pfister K. Abundance and seasonal activity of questing Ixodes ricinus ticks in their natural habitats in southern Germany in 2011. J. Vector Ecol. 2014;39:56–65. doi: 10.1111/j.1948-7134.2014.12070.x. PubMed DOI
Maaz D., Krücken J., Blümke J., Richter D., McKay-Demeler J., Matuschka F.R., Hartmann S., von Samson-Himmelstjerna G. Factors associated with diversity, quantity and zoonotic potential of ectoparasites on urban mice and voles. PLoS ONE. 2018;13:e0199385. doi: 10.1371/journal.pone.0199385. PubMed DOI PMC
Kriz B., Daniel M., Benes C., Maly M. The role of game (wild boar and roe deer) in the spread of tick-borne encephalitis in the Czech Republic. Vector Borne Zoonotic Dis. 2014;14:801–807. doi: 10.1089/vbz.2013.1569. PubMed DOI PMC
Honig V., Carolan H.E., Vavruskova Z., Massire C., Mosel M.R., Crowder C.D., Rounds M.A., Ecker D.J., Ruzek D., Grubhoffer L., et al. Broad-range survey of vector-borne pathogens and tick host identification of Ixodes ricinus from Southern Czech Republic. FEMS Microbiol. Ecol. 2017;93 doi: 10.1093/femsec/fix129. PubMed DOI PMC
Qviller L., Viljugrein H., Loe L.E., Meisingset E.L., Mysterud A. The influence of red deer space use on the distribution of Ixodes ricinus ticks in the landscape. Parasit Vectors. 2016;9:545. doi: 10.1186/s13071-016-1825-6. PubMed DOI PMC
Labbé Sandelin L., Tolf C., Larsson S., Wilhelmsson P., Salaneck E., Jaenson T.G., Lindgren P.E., Olsen B., Waldenström J. Candidatus Neoehrlichia mikurensis in Ticks from Migrating Birds in Sweden. PLoS ONE. 2015;10:e0133250. doi: 10.1371/journal.pone.0133250. PubMed DOI PMC
Pajoro M., Pistone D., Varotto Boccazzi I., Mereghetti V., Bandi C., Fabbi M., Scattorin F., Sassera D., Montagna M. Molecular screening for bacterial pathogens in ticks (Ixodes ricinus) collected on migratory birds captured in northern Italy. Folia Parasitol. (Praha) 2018;65 doi: 10.14411/fp.2018.008. PubMed DOI
Pugliese A., Rosà R. Effect of host populations on the intensity of ticks and the prevalence of tick-borne pathogens: How to interpret the results of deer exclosure experiments. Parasitology. 2008;135:1531–1544. doi: 10.1017/S003118200800036X. PubMed DOI
Slovák M., Kazimírová M., Siebenstichová M., Ustaníková K., Klempa B., Gritsun T., Gould E.A., Nuttall P.A. Survival dynamics of tick-borne encephalitis virus in Ixodes ricinus ticks. Ticks Tick Borne Dis. 2014;5:962–969. doi: 10.1016/j.ttbdis.2014.07.019. PubMed DOI
Achazi K., Růžek D., Donoso-Mantke O., Schlegel M., Ali H.S., Wenk M., Schmidt-Chanasit J., Ohlmeyer L., Rühe F., Vor T., et al. Rodents as sentinels for the prevalence of tick-borne encephalitis virus. Vector Borne Zoonotic Dis. 2011;11:641–647. doi: 10.1089/vbz.2010.0236. PubMed DOI PMC
Kurtenbach K., De Michelis S., Etti S., Schäfer S.M., Sewell H.S., Brade V., Kraiczy P. Host association of Borrelia burgdorferi sensu lato--the key role of host complement. Trends Microbiol. 2002;10:74–79. doi: 10.1016/S0966-842X(01)02298-3. PubMed DOI
Kurtenbach K., Sewell H.S., Ogden N.H., Randolph S.E., Nuttall P.A. Serum complement sensitivity as a key factor in Lyme disease ecology. Infect. Immun. 1998;66:1248–1251. doi: 10.1128/IAI.66.3.1248-1251.1998. PubMed DOI PMC
Kuo M.M., Lane R.S., Giclas P.C. A comparative study of mammalian and reptilian alternative pathway of complement-mediated killing of the Lyme disease spirochete (Borrelia burgdorferi) J. Parasitol. 2000;86:1223–1228. doi: 10.1645/0022-3395(2000)086[1223:ACSOMA]2.0.CO;2. PubMed DOI
Lane R.S., Quistad G.B. Borreliacidal factor in the blood of the western fence lizard (Sceloporus occidentalis) J. Parasitol. 1998;84:29–34. doi: 10.2307/3284524. PubMed DOI
Hönig V., Svec P., Halas P., Vavruskova Z., Tykalova H., Kilian P., Vetiskova V., Dornakova V., Sterbova J., Simonova Z., et al. Ticks and tick-borne pathogens in South Bohemia (Czech Republic)--Spatial variability in Ixodes ricinus abundance, Borrelia burgdorferi and tick-borne encephalitis virus prevalence. Ticks Tick Borne Dis. 2015;6:559–567. doi: 10.1016/j.ttbdis.2015.04.010. PubMed DOI
Hubálek Z., Halouzka J., Juricová Z. A simple method of transmission risk assessment in enzootic foci of Lyme borreliosis. Eur. J. Epidemiol. 1996;12:331–333. doi: 10.1007/BF00145294. PubMed DOI
L’Hostis M., Dumon H., Dorchies B., Boisdron F., Gorenflot A. Seasonal incidence and ecology of the tick Ixodes ricinus (Acari: Ixodidae) on grazing pastures in western France. Exp. Appl. Acarol. 1995;19:211–220. doi: 10.1007/BF00130824. PubMed DOI
MILNE A. The ecology of the sheep tick, Ixodes ricinus L.; host relationships of the tick; observations on hill and moorland grazings in northern England. Parasitology. 1949;39:173–197. doi: 10.1017/S0031182000083736. PubMed DOI
Sumilo D., Bormane A., Asokliene L., Vasilenko V., Golovljova I., Avsic-Zupanc T., Hubalek Z., Randolph S.E. Socio-economic factors in the differential upsurge of tick-borne encephalitis in Central and Eastern Europe. Rev. Med. Virol. 2008;18:81–95. doi: 10.1002/rmv.566. PubMed DOI
Gregory R.D., van Strien A., Vorisek P., Gmelig Meyling A.W., Noble D.G., Foppen R.P., Gibbons D.W. Developing indicators for European birds. Philos Trans. R Soc. Lond. B Biol. Sci. 2005;360:269–288. doi: 10.1098/rstb.2004.1602. PubMed DOI PMC
Simmons B.I., Balmford A., Bladon A.J., Christie A.P., De Palma A., Dicks L.V., Gallego-Zamorano J., Johnston A., Martin P.A., Purvis A., et al. Worldwide insect declines: An important message, but interpret with caution. Ecol. Evol. 2019;9:3678–3680. doi: 10.1002/ece3.5153. PubMed DOI PMC
Rizzoli A., Hauffe H., Carpi G., Vourc H G., Neteler M., Rosa R. Lyme borreliosis in Europe. Euro Surveill. 2011;16 PubMed
Randolph S.E., Asokliene L., Avsic-Zupanc T., Bormane A., Burri C., Gern L., Golovljova I., Hubalek Z., Knap N., Kondrusik M., et al. Variable spikes in tick-borne encephalitis incidence in 2006 independent of variable tick abundance but related to weather. Parasit Vectors. 2008;1:44. doi: 10.1186/1756-3305-1-44. PubMed DOI PMC
Randolph S.E., team E.-T.S.-P. Human activities predominate in determining changing incidence of tick-borne encephalitis in Europe. Euro Surveill. 2010;15:24–31. doi: 10.2807/ese.15.27.19606-en. PubMed DOI
Sonenshine D.E. Range Expansion of Tick Disease Vectors in North America: Implications for Spread of Tick-Borne Disease. Int. J. Environ. Res. Public Health. 2018;15:478. doi: 10.3390/ijerph15030478. PubMed DOI PMC
Due C., Fox W., Medlock J.M., Pietzsch M., Logan J.G. Tick bite prevention and tick removal. BMJ. 2013;347:f7123. doi: 10.1136/bmj.f7123. PubMed DOI
Kjær L.J., Soleng A., Edgar K.S., Lindstedt H.E.H., Paulsen K.M., Andreassen Å., Korslund L., Kjelland V., Slettan A., Stuen S., et al. Predicting and mapping human risk of exposure to. Euro Surveill. 2019;24 doi: 10.2807/1560-7917.ES.2019.24.9.1800101. PubMed DOI PMC
Kiewra D., Stefańska-Krzaczek E., Szymanowski M., Szczepańska A. Local-scale spatio-temporal distribution of questing Ixodes ricinus L. (Acari: Ixodidae)-A case study from a riparian urban forest in Wrocław, SW Poland. Ticks Tick Borne Dis. 2017;8:362–369. doi: 10.1016/j.ttbdis.2016.12.011. PubMed DOI
Slunge D., Boman A. Learning to live with ticks? The role of exposure and risk perceptions in protective behaviour against tick-borne diseases. PLoS ONE. 2018;13:e0198286. doi: 10.1371/journal.pone.0198286. PubMed DOI PMC
Pages F., Dautel H., Duvallet G., Kahl O., de Gentile L., Boulanger N. Tick repellents for human use: Prevention of tick bites and tick-borne diseases. Vector Borne Zoonotic Dis. 2014;14:85–93. doi: 10.1089/vbz.2013.1410. PubMed DOI
Eisen L., Rose D., Prose R., Breuner N.E., Dolan M.C., Thompson K., Connally N. Bioassays to evaluate non-contact spatial repellency, contact irritancy, and acute toxicity of permethrin-treated clothing against nymphal Ixodes scapularis ticks. Ticks Tick Borne Dis. 2017;8:837–849. doi: 10.1016/j.ttbdis.2017.06.010. PubMed DOI PMC
Cisak E., Wójcik-Fatla A., Zając V., Dutkiewicz J. Repellents and acaricides as personal protection measures in the prevention of tick-borne diseases. Ann. Agric. Environ. Med. 2012;19:625–630. PubMed
Boffetta P., Desai V. Exposure to permethrin and cancer risk: A systematic review. Crit. Rev. Toxicol. 2018;48:433–442. doi: 10.1080/10408444.2018.1439449. PubMed DOI
BRENNAN J.M. Preliminary report on some organic materials as tick repellents and toxic agents. Public Health Rep. 1947;62:1162–1165. doi: 10.2307/4586232. PubMed DOI
Ashitani T., Garboui S.S., Schubert F., Vongsombath C., Liblikas I., Pålsson K., Borg-Karlson A.K. Activity studies of sesquiterpene oxides and sulfides from the plant Hyptis suaveolens (Lamiaceae) and its repellency on Ixodes ricinus (Acari: Ixodidae) Exp. Appl. Acarol. 2015;67:595–606. doi: 10.1007/s10493-015-9965-5. PubMed DOI
Mawela K.G., Luseba D., Magano S., Eloff J.N. Repellent properties of Rotheca glabrum plant extracts against adults of Rhipicephalus appendiculatus. BMC Vet. Res. 2019;15:122. doi: 10.1186/s12917-019-1853-5. PubMed DOI PMC
Jaenson T.G., Pålsson K., Borg-Karlson A.K. Evaluation of extracts and oils of tick-repellent plants from Sweden. Med. Vet. Entomol. 2005;19:345–352. doi: 10.1111/j.1365-2915.2005.00578.x. PubMed DOI
Galisteo Pretel A., Pérez Del Pulgar H., Olmeda A.S., Gonzalez-Coloma A., Barrero A.F., Quílez Del Moral J.F. Novel Insect Antifeedant and Ixodicidal Nootkatone Derivatives. Biomolecules. 2019;9:742. doi: 10.3390/biom9110742. PubMed DOI PMC
Bharadwaj A., Stafford K.C., Behle R.W. Efficacy and environmental persistence of nootkatone for the control of the blacklegged tick (Acari: Ixodidae) in residential landscapes. J. Med. Entomol. 2012;49:1035–1044. doi: 10.1603/ME11251. PubMed DOI
Pitches D.W. Removal of ticks: A review of the literature. Euro Surveill. 2006;11:E060817.060814. doi: 10.2807/esw.11.33.03027-en. PubMed DOI
de la Fuente J., Contreras M., Estrada-Peña A., Cabezas-Cruz A. Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. Vaccine. 2017;35:5089–5094. doi: 10.1016/j.vaccine.2017.07.097. PubMed DOI
de Silva A.M., Fish D., Burkot T.R., Zhang Y., Fikrig E. OspA antibodies inhibit the acquisition of Borrelia burgdorferi by Ixodes ticks. Infect. Immun. 1997;65:3146–3150. doi: 10.1128/IAI.65.8.3146-3150.1997. PubMed DOI PMC
Lymerix Lack of demand kills Lyme disease vaccine. Nursing. 2002;32:18. PubMed
Littman M.P., Goldstein R.E., Labato M.A., Lappin M.R., Moore G.E. ACVIM small animal consensus statement on Lyme disease in dogs: Diagnosis, treatment, and prevention. J. Vet. Intern. Med. 2006;20:422–434. doi: 10.1111/j.1939-1676.2006.tb02880.x. PubMed DOI
Guarino C., Asbie S., Rohde J., Glaser A., Wagner B. Vaccination of horses with Lyme vaccines for dogs induces short-lasting antibody responses. Vaccine. 2017;35:4140–4147. doi: 10.1016/j.vaccine.2017.06.052. PubMed DOI
Guerrero F.D., Miller R.J., Pérez de León A.A. Cattle tick vaccines: Many candidate antigens, but will a commercially viable product emerge? Int. J. Parasitol. 2012;42:421–427. doi: 10.1016/j.ijpara.2012.04.003. PubMed DOI
Willadsen P., Bird P., Cobon G.S., Hungerford J. Commercialisation of a recombinant vaccine against Boophilus microplus. Parasitology. 1995;110:S43–S50. doi: 10.1017/S0031182000001487. PubMed DOI
Sutton D., Spry C. One Dose of Doxycycline for the Prevention of Lyme Disease: A Review of Clinical Effectiveness and Guidelines. Canadian Agency for Drugs and Technologies in Health; Ottawa, ON, Canada: 2019. [(accessed on 12 December 2019)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545493/ PubMed
Leenders A.C. Single-dose doxycycline for the prevention of Lyme disease. N. Engl. J. Med. 2001;345:1349. author reply 1349–1350. PubMed
Sanchez E., Vannier E., Wormser G.P., Hu L.T. Diagnosis, Treatment, and Prevention of Lyme Disease, Human Granulocytic Anaplasmosis, and Babesiosis: A Review. JAMA. 2016;315:1767–1777. doi: 10.1001/jama.2016.2884. PubMed DOI PMC
Torbahn G., Hofmann H., Rücker G., Bischoff K., Freitag M.H., Dersch R., Fingerle V., Motschall E., Meerpohl J.J., Schmucker C. Efficacy and Safety of Antibiotic Therapy in Early Cutaneous Lyme Borreliosis: A Network Meta-analysis. JAMA Dermatol. 2018;154:1292–1303. doi: 10.1001/jamadermatol.2018.3186. PubMed DOI PMC
Vial H.J., Gorenflot A. Chemotherapy against babesiosis. Vet. Parasitol. 2006;138:147–160. doi: 10.1016/j.vetpar.2006.01.048. PubMed DOI
Eyer L., Valdés J.J., Gil V.A., Nencka R., Hřebabecký H., Šála M., Salát J., Černý J., Palus M., De Clercq E., et al. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob. Agents Chemother. 2015;59:5483–5493. doi: 10.1128/AAC.00807-15. PubMed DOI PMC
Nguyen A., Mahaffy J., Vaidya N.K. Modeling transmission dynamics of lyme disease: Multiple vectors, seasonality, and vector mobility. Infect. Dis Model. 2019;4:28–43. doi: 10.1016/j.idm.2019.03.001. PubMed DOI PMC
Scott J.D., Foley J.E., Clark K.L., Anderson J.F., Durden L.A., Manord J.M., Smith M.L. Established Population of Blacklegged Ticks with High Infection Prevalence for the Lyme Disease Bacterium. Int. J. Med. Sci. 2016;13:881–891. doi: 10.7150/ijms.16922. PubMed DOI PMC
Williams S.C., Stafford K.C., Molaei G., Linske M.A. Integrated Control of Nymphal Ixodes scapularis: Effectiveness of White-Tailed Deer Reduction, the Entomopathogenic Fungus Metarhizium anisopliae, and Fipronil-Based Rodent Bait Boxes. Vector Borne Zoonotic Dis. 2018;18:55–64. doi: 10.1089/vbz.2017.2146. PubMed DOI
Hofmeester T.R., Sprong H., Jansen P.A., Prins H.H.T., van Wieren S.E. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasit Vectors. 2017;10:433. doi: 10.1186/s13071-017-2370-7. PubMed DOI PMC
Gilbert L., Maffey G.L., Ramsay S.L., Hester A.J. The effect of deer management on the abundance of Ixodes ricinus in Scotland. Ecol. Appl. 2012;22:658–667. doi: 10.1890/11-0458.1. PubMed DOI
Kugeler K.J., Jordan R.A., Schulze T.L., Griffith K.S., Mead P.S. Will Culling White-Tailed Deer Prevent Lyme Disease? Zoonoses Public Health. 2016;63:337–345. doi: 10.1111/zph.12245. PubMed DOI PMC
Chapron G., Kaczensky P., Linnell J.D., von Arx M., Huber D., Andrén H., López-Bao J.V., Adamec M., Álvares F., Anders O., et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science. 2014;346:1517–1519. doi: 10.1126/science.1257553. PubMed DOI
Daniels T.J., Fish D., Falco R.C. Evaluation of host-targeted acaricide for reducing risk of Lyme disease in southern New York state. J. Med. Entomol. 1991;28:537–543. doi: 10.1093/jmedent/28.4.537. PubMed DOI
Hofmeester T.R., Jansen P.A., Wijnen H.J., Coipan E.C., Fonville M., Prins H.H.T., Sprong H., van Wieren S.E. Cascading effects of predator activity on tick-borne disease risk. Proc. Biol. Sci. 2017;284 doi: 10.1098/rspb.2017.0453. PubMed DOI PMC
Hoen A.G., Rollend L.G., Papero M.A., Carroll J.F., Daniels T.J., Mather T.N., Schulze T.L., Stafford K.C., Fish D. Effects of tick control by acaricide self-treatment of white-tailed deer on host-seeking tick infection prevalence and entomologic risk for Ixodes scapularis-borne pathogens. Vector Borne Zoonotic Dis. 2009;9:431–438. doi: 10.1089/vbz.2008.0155. PubMed DOI
Wong T.J., Schramm P.J., Foster E., Hahn M.B., Schafrick N.H., Conlon K.C., Cameron L. The Effectiveness and Implementation of 4-Poster Deer Self-Treatment Devices for Tick-borne Disease Prevention—A Potential Component of an Integrated Tick Management Program. [(accessed on 2 February 2020)]; Available online: https://www.cdc.gov/climateandhealth/docs/Effectiveness4PosterDevices_508.pdf.
Baráková I., Derdáková M., Selyemová D., Chvostáč M., Špitalská E., Rosso F., Collini M., Rosà R., Tagliapietra V., Girardi M., et al. Tick-borne pathogens and their reservoir hosts in northern Italy. Ticks Tick Borne Dis. 2018;9:164–170. doi: 10.1016/j.ttbdis.2017.08.012. PubMed DOI
Skotarczak B. Canine borreliosis—Epidemiology and diagnostics. Ann. Agric. Environ. Med. 2002;9:137–140. PubMed
Almazan C., Tipacamu G.A., Rodriguez S., Mosqueda J., Perez de Leon A. Immunological control of ticks and tick-borne diseases that impact cattle health and production. Front. Biosci. (Landmark Ed.) 2018;23:1535–1551. doi: 10.2741/4659. PubMed DOI
Conlon J.A., Mather T.N., Tanner P., Gallo G., Jacobson R.H. Efficacy of a nonadjuvanted, outer surface protein A, recombinant vaccine in dogs after challenge by ticks naturally infected with Borrelia burgdorferi. Vet. Ther. 2000;1:96–107. PubMed
Geurden T., Becskei C., Grace S., Strube C., Doherty P., Liebenberg J., Mahabir S.P., Slootmans N., Lloyd A., Six R.H. Efficacy of a novel oral formulation of sarolaner (Simparica™) against four common tick species infesting dogs in Europe. Vet. Parasitol. 2016;222:33–36. doi: 10.1016/j.vetpar.2016.03.024. PubMed DOI
Cavalleri D., Murphy M., Gorbea R.L., Seewald W., Drake J., Nanchen S. Laboratory evaluations of the immediate and sustained effectiveness of lotilaner (Credelio™) against three common species of ticks affecting dogs in Europe. Parasit Vectors. 2017;10:527. doi: 10.1186/s13071-017-2477-x. PubMed DOI PMC
Dorko E., Hockicko J., Rimárová K., Bušová A., Popaďák P., Popaďáková J., Schréter I. Milk outbreaks of tick-borne encephalitis in Slovakia, 2012–2016. Cent. Eur. J. Public Health. 2018;26:S47–S50. doi: 10.21101/cejph.a5272. PubMed DOI
Růžek D., Yakimenko V.V., Karan L.S., Tkachev S.E. Omsk haemorrhagic fever. Lancet. 2010;376:2104–2113. doi: 10.1016/S0140-6736(10)61120-8. PubMed DOI
Annen K., Friedman K., Eshoa C., Horowitz M., Gottschall J., Straus T. Two cases of transfusion-transmitted Anaplasma phagocytophilum. Am. J. Clin. Pathol. 2012;137:562–565. doi: 10.1309/AJCP4E4VQQQOZIAQ. PubMed DOI
Ngo V., Civen R. Babesiosis acquired through blood transfusion, California, USA. Emerg Infect. Dis. 2009;15:785–787. doi: 10.3201/eid1505.081562. PubMed DOI PMC
Gleim E.R., Conner L.M., Berghaus R.D., Levin M.L., Zemtsova G.E., Yabsley M.J. The phenology of ticks and the effects of long-term prescribed burning on tick population dynamics in southwestern Georgia and northwestern Florida. PLoS ONE. 2014;9:e112174. doi: 10.1371/journal.pone.0112174. PubMed DOI PMC
Scasta J.D. Fire and Parasites: An Under-Recognized Form of Anthropogenic Land Use Change and Mechanism of Disease Exposure. Ecohealth. 2015;12:398–403. doi: 10.1007/s10393-015-1024-5. PubMed DOI
Stafford K.C., Ward J.S., Magnarelli L.A. Impact of controlled burns on the abundance of Ixodes scapularis (Acari: Ixodidae) J. Med. Entomol. 1998;35:510–513. doi: 10.1093/jmedent/35.4.510. PubMed DOI
Mather T.N., Duffy D.C., Campbell S.R. An unexpected result from burning vegetation to reduce Lyme disease transmission risks. J. Med. Entomol. 1993;30:642–645. doi: 10.1093/jmedent/30.3.642. PubMed DOI
Morlando S., Schmidt S.J., LoGiudice K. Reduction in Lyme Disease Risk as an Economic Benefit of Habitat Restoration. Restoration Ecol. 2011 doi: 10.1111/j.1526-100X.2011.00796.x. DOI
Lerman S.B., D’Amico V. Lawn mowing frequency in suburban areas has no detectable effect on Borrelia spp. vector Ixodes scapularis (Acari: Ixodidae) PLoS ONE. 2019;14:e0214615. doi: 10.1371/journal.pone.0214615. PubMed DOI PMC
Stafford K.C. Tick Management Handbook; An Integrated Guide for Homeowners, Pest Control Operators, and Public Health Officials for the Prevention of Tick-Associated Disease. Connecticut Agricultural Experiment Station; New Haven, CT, USA: 2004. [(accessed on 12 December 2019)]. Available online: https://stacks.cdc.gov/view/cdc/11444.
Hansford K.M., Fonville M., Gillingham E.L., Coipan E.C., Pietzsch M.E., Krawczyk A.I., Vaux A.G.C., Cull B., Sprong H., Medlock J.M. Ticks and Borrelia in urban and peri-urban green space habitats in a city in southern England. Ticks Tick Borne Dis. 2017;8:353–361. doi: 10.1016/j.ttbdis.2016.12.009. PubMed DOI
Kowalec M., Szewczyk T., Welc-Falęciak R., Siński E., Karbowiak G., Bajer A. Ticks and the city—Are there any differences between city parks and natural forests in terms of tick abundance and prevalence of spirochaetes? Parasit Vectors. 2017;10:573. doi: 10.1186/s13071-017-2391-2. PubMed DOI PMC
Winkel K.T., Ribeiro P.B., Antunes L.O., Cárcamo M.C., Vianna E.E. Rhipicephalus sanguineus sensu lato (Ixodidae) in synantropic rodents in Rio Grande do Sul, Brazil. Rev. Bras. Parasitol. Vet. 2014;23:276–279. doi: 10.1590/S1984-29612014027. PubMed DOI
Godfrey E.R., Randolph S.E. Economic downturn results in tick-borne disease upsurge. Parasit. Vectors. 2011;4:35. doi: 10.1186/1756-3305-4-35. PubMed DOI PMC
Košnik I.G., Lah A.K. A campaign to increase the vaccination rate in a highly endemic tick-borne encephalitis region of Slovenia. Vaccine. 2013;31:732–734. doi: 10.1016/j.vaccine.2012.12.005. PubMed DOI
Bergmeier E., Petermann J., Schröder E. Geobotanical survey of wood-pasture habitats in Europe: Diversity, threats and conservation. Biodiversity Conserv. 2010;19:2995–3014. doi: 10.1007/s10531-010-9872-3. DOI
Rodriguez-Vivas R.I., Jonsson N.N., Bhushan C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol. Res. 2018;117:3–29. doi: 10.1007/s00436-017-5677-6. PubMed DOI PMC
Banumathi B., Vaseeharan B., Rajasekar P., Prabhu N.M., Ramasamy P., Murugan K., Canale A., Benelli G. Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus—A review. Vet. Parasitol. 2017;244:102–110. doi: 10.1016/j.vetpar.2017.07.021. PubMed DOI
Stafford K.C. Pesticide use by licensed applicators for the control of Ixodes scapularis (Acari: Ixodidae) in Connecticut. J. Med. Entomol. 1997;34:552–558. doi: 10.1093/jmedent/34.5.552. PubMed DOI
Petermann J., Cauquil L., Hurlin J.C., Gaia H., Hüe T. Survey of cattle tick, Riphicephalus (Boophilus) microplus, resistance to amitraz and deltamethrin in New Caledonia. Vet. Parasitol. 2016;217:64–70. doi: 10.1016/j.vetpar.2015.12.010. PubMed DOI
Guerrero F.D., Lovis L., Martins J.R. Acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus. Rev. Bras. Parasitol. Vet. 2012;21:1–6. doi: 10.1590/S1984-29612012000100002. PubMed DOI
Rajput Z.I., Hu S.H., Chen W.J., Arijo A.G., Xiao C.W. Importance of ticks and their chemical and immunological control in livestock. J. Zhejiang Univ. Sci. B. 2006;7:912–921. doi: 10.1631/jzus.2006.B0912. PubMed DOI PMC
Jordan R.A., Schulze T.L. Availability and Nature of Commercial Tick Control Services in Three Lyme Disease Endemic States. J. Med. Entomol. 2019 doi: 10.1093/jme/tjz215. PubMed DOI
Kunz S.E., Kemp D.H. Insecticides and acaricides: Resistance and environmental impact. Rev. Sci. Tech. 1994;13:1249–1286. doi: 10.20506/rst.13.4.816. PubMed DOI
Sánchez-Bayoa F., Wyckhuysbcd K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019;232:8–27. doi: 10.1016/j.biocon.2019.01.020. DOI
Benelli G., Pavela R., Canale A., Mehlhorn H. Tick repellents and acaricides of botanical origin: A green roadmap to control tick-borne diseases? Parasitol. Res. 2016;115:2545–2560. doi: 10.1007/s00436-016-5095-1. PubMed DOI
Eisen L., Dolan M.C. Evidence for Personal Protective Measures to Reduce Human Contact With Blacklegged Ticks and for Environmentally Based Control Methods to Suppress Host-Seeking Blacklegged Ticks and Reduce Infection with Lyme Disease Spirochetes in Tick Vectors and Rodent Reservoirs. J. Med. Entomol. 2016;53:1063–1092. doi: 10.1093/jme/tjw103. PubMed DOI PMC
Stafford K.C., Denicola A.J., Magnarelli L.A. Presence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in two Connecticut populations of Ixodes scapularis (Acari: Ixodidae) J. Med. Entomol. 1996;33:183–188. doi: 10.1093/jmedent/33.1.183. PubMed DOI
Samish M., Glazer I. Entomopathogenic nematodes for the biocontrol of ticks. Trends Parasitol. 2001;17:368–371. doi: 10.1016/S1471-4922(01)01985-7. PubMed DOI
Lipa J., Eilenberg J., Bresciani J., Frandsen F. Some observations on a newly recorded mermithid parasite of Ixodes ricinus L. (Acarina: Ixodidae) Acta Parasitol. 1997;42:109–114.
Vega F.E. The use of fungal entomopathogens as endophytes in biological control: A review. Mycologia. 2018;110:4–30. doi: 10.1080/00275514.2017.1418578. PubMed DOI
Fernandes E.K., Bittencourt V.R. Entomopathogenic fungi against South American tick species. Exp. Appl. Acarol. 2008;46:71–93. doi: 10.1007/s10493-008-9161-y. PubMed DOI
Fernandes É., Bittencourt V.R., Roberts D.W. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Exp. Parasitol. 2012;130:300–305. doi: 10.1016/j.exppara.2011.11.004. PubMed DOI
Samish M., Alekseev E. Arthropods as predators of ticks (Ixodoidea) J. Med. Entomol. 2001;38:1–11. doi: 10.1603/0022-2585-38.1.1. PubMed DOI
Samish M., Ginsberg H., Glazer I. Biological control of ticks. Parasitology. 2004;129:S389–S403. doi: 10.1017/S0031182004005219. PubMed DOI
Nunn C.L., Ezenwa V.O., Arnold C., Koenig W.D. Mutualism or parasitism? Using a phylogenetic approach to characterize the oxpecker-ungulate relationship. Evolution. 2011;65:1297–1304. doi: 10.1111/j.1558-5646.2010.01212.x. PubMed DOI
Samish M., Rehacek J. Pathogens and predators of ticks and their potential in biological control. Annu. Rev. Entomol. 1999;44:159–182. doi: 10.1146/annurev.ento.44.1.159. PubMed DOI
Souza-Neto J.A., Powell J.R., Bonizzoni M. Aedes aegypti vector competence studies: A review. Infect. Genet. Evol. 2019;67:191–209. doi: 10.1016/j.meegid.2018.11.009. PubMed DOI PMC
Monteiro V.V.S., Navegantes-Lima K.C., de Lemos A.B., da Silva G.L., de Souza Gomes R., Reis J.F., Rodrigues Junior L.C., da Silva O.S., Romão P.R.T., Monteiro M.C. -Chikungunya Virus Interaction: Key Role of Vector Midguts Microbiota and Its Saliva in the Host Infection. Front. Microbiol. 2019;10:492. doi: 10.3389/fmicb.2019.00492. PubMed DOI PMC
Hegde S., Rasgon J.L., Hughes G.L. The microbiome modulates arbovirus transmission in mosquitoes. Curr. Opin. Virol. 2015;15:97–102. doi: 10.1016/j.coviro.2015.08.011. PubMed DOI PMC
Terradas G., McGraw E.A. Wolbachia-mediated virus blocking in the mosquito vector Aedes aegypti. Curr. Opin. Insect. Sci. 2017;22:37–44. doi: 10.1016/j.cois.2017.05.005. PubMed DOI
Zhang X., Norris D.E., Rasgon J.L. Distribution and molecular characterization of Wolbachia endosymbionts and filarial nematodes in Maryland populations of the lone star tick (Amblyomma americanum) FEMS Microbiol. Ecol. 2011;77:50–56. doi: 10.1111/j.1574-6941.2011.01089.x. PubMed DOI PMC
Burgdorfer W., Hayes S.F., Mavros A.J. Nonpathogenic rickettsiae in Dermacentor andersoni: A limiting factor for the distribution of Rickettsia rickettsii. In: Burgdorfer W., Anacker R.L., editors. Rickettsiae and Rickettsial Diseases. Academic Press; New York, NY, USA: 1981.
Macaluso K.R., Sonenshine D.E., Ceraul S.M., Azad A.F. Rickettsial infection in Dermacentor variabilis (Acari: Ixodidae) inhibits transovarial transmission of a second Rickettsia. J. Med. Entomol. 2002;39:809–813. doi: 10.1603/0022-2585-39.6.809. PubMed DOI
Narasimhan S., Fikrig E. Tick microbiome: The force within. Trends Parasitol. 2015;31:315–323. doi: 10.1016/j.pt.2015.03.010. PubMed DOI PMC
Flores H.A., O’Neill S.L. Controlling vector-borne diseases by releasing modified mosquitoes. Nat. Rev. Microbiol. 2018;16:508–518. doi: 10.1038/s41579-018-0025-0. PubMed DOI PMC
Mead P., Hook S., Niesobecki S., Ray J., Meek J., Delorey M., Prue C., Hinckley A. Risk factors for tick exposure in suburban settings in the Northeastern United States. Ticks Tick Borne Dis. 2018;9:319–324. doi: 10.1016/j.ttbdis.2017.11.006. PubMed DOI
Connally N.P., Durante A.J., Yousey-Hindes K.M., Meek J.I., Nelson R.S., Heimer R. Peridomestic Lyme disease prevention: Results of a population-based case-control study. Am. J. Prev. Med. 2009;37:201–206. doi: 10.1016/j.amepre.2009.04.026. PubMed DOI
Zintl A., Mulcahy G., Skerrett H.E., Taylor S.M., Gray J.S. Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin. Microbiol. Rev. 2003;16:622–636. doi: 10.1128/CMR.16.4.622-636.2003. PubMed DOI PMC
Mysterud A., Jore S., Østerås O., Viljugrein H. Emergence of tick-borne diseases at northern latitudes in Europe: A comparative approach. Sci. Rep. 2017;7:16316. doi: 10.1038/s41598-017-15742-6. PubMed DOI PMC
CDC Ticks. [(accessed on 10 October 2019)]; Available online: https://www.cdc.gov/ticks/index.html.
Burtis J.C., Pflueger C. Interactions between soil-dwelling arthropod predators and Ixodes scapularis under laboratory and field conditions. Ecosphere. 2017;8:e01914. doi: 10.1002/ecs2.1914. DOI
Fouet C., Kamdem C. Integrated Mosquito Management: Is Precision Control a Luxury or Necessity? Trends Parasitol. 2019;35:85–95. doi: 10.1016/j.pt.2018.10.004. PubMed DOI PMC
Benelli G., Beier J.C. Current vector control challenges in the fight against malaria. Acta Trop. 2017;174:91–96. doi: 10.1016/j.actatropica.2017.06.028. PubMed DOI
Borrelia spirochetes in European exotic farm animals
Role of Zoo-Housed Animals in the Ecology of Ticks and Tick-Borne Pathogens-A Review