KrF Laser and Plasma Exposure of PDMS-Carbon Composite and Its Antibacterial Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35160785
PubMed Central
PMC8836707
DOI
10.3390/ma15030839
PII: ma15030839
Knihovny.cz E-zdroje
- Klíčová slova
- E. coli, S. epidermidis, antibacterial properties, antimicrobial activity, carbon nanotubes, excimer laser treatment, nanostructure, plasma treatment, polydimethylsiloxane, wrinkle-like patterns,
- Publikační typ
- časopisecké články MeSH
A polydimethylsiloxane (PDMS) composite with multi-walled carbon nanotubes was successfully prepared. Composite foils were treated with both plasma and excimer laser, and changes in their physicochemical properties were determined in detail. Mainly changes in surface chemistry, wettability, and morphology were determined. The plasma treatment of PDMS complemented with subsequent heating led to the formation of a unique wrinkle-like pattern. The impact of different laser treatment conditions on the composite surface was determined. The morphology was determined by AFM and LCM techniques, while chemical changes and chemical surface mapping were studied with the EDS/EDX method. Selected activated polymer composites were used for the evaluation of antibacterial activity using Gram-positive (Staphylococcus epidermidis) and Gram-negative (Escherichia coli) bacteria. The antibacterial effect was achieved against S. epidermidis on pristine PDMS treated with 500 mJ of laser energy and PDMS-C nanocomposite treated with a lower laser fluence of 250 mJ. Silver deposition of PDMS foil increases significantly its antibacterial properties against E. coli, which is further enhanced by the carbon predeposition or high-energy laser treatment.
Zobrazit více v PubMed
Hiremath N., Bhat G. Structure and Properties of High-Performance Fibers. Elsevier BV; Amsterdam, The Netherlands: 2017. High-performance carbon nanofibers and nanotubes; pp. 79–109.
Ponnamma D., Ninan N., Thomas S. Applications of Nanomaterials. Elsevier BV; Amsterdam, The Netherlands: 2018. Carbon Nanotube Tube Filled Polymer Nanocomposites and Their Applications in Tissue Engineering; pp. 391–414.
Koo J.H. Fundamentals, Properties, and Applications of Polymer Nanocomposites. Cambridge University Press (CUP); Cambridge, UK: 2016.
AfzaliTabar M., Alaei M., Khojasteh R.R., Motiee F., Rashidi A. Preference of multi-walled carbon nanotube (MWCNT) to single-walled carbon nanotube (SWCNT) and activated carbon for preparing silica nanohybrid pickering emulsion for chemical enhanced oil recovery (C-EOR) J. Solid State Chem. 2017;245:164–173. doi: 10.1016/j.jssc.2016.10.017. DOI
Giusca C.E., Tison Y., Silva S.R.P. Evidence for metal-semiconductor transitions in twisted and collapsed double-walled carbon nanotubes by scanning tunneling microscopy. Nano Lett. 2008;8:3350–3356. doi: 10.1021/nl801782k. PubMed DOI
Gaynor W., Burkhard G.F., McGehee M.D., Peumans P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011;23:2905–2910. doi: 10.1002/adma.201100566. PubMed DOI
Alberto M., Bhavsar R., Luque-Alleda J.M., Prestat E., Gao L., Budd P.M., Vijayaraghavan A., Szekely G., Holmes S.M., Gorgojo P. Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. J. Membrane Sci. 2018;565:390–401. doi: 10.1016/j.memsci.2018.08.050. DOI
Xu D., Liu H., Yang L., Wang Z. Fabrication of superhydrophobic surfaces with non-aligned alkyl-modified multi-wall carbon nanotubes. Carbon. 2006;44:3226–3231. doi: 10.1016/j.carbon.2006.06.030. DOI
Luo C., Zuo X., Wang L., Wang E., Song S., Wang J., Wang J., Fan C., Cao Y. Flexible carbon nanotube−polymer composite films with high conductivity and superhydrophobicity made by solution process. Nano Lett. 2008;8:4454–4458. doi: 10.1021/nl802411d. PubMed DOI
Yang J., Zhang Z., Men X., Xu X. Fabrication of stable, transparent and superhydrophobic nanocomposite films with polystyrene functionalized carbon nanotubes. Appl. Surf. Sci. 2009;255:9244–9247. doi: 10.1016/j.apsusc.2009.07.010. DOI
Wu T., Pan Y., Li L. Fabrication of superhydrophobic hybrids from multiwalled carbon nanotubes and poly(vinylidene fluoride) Colloids Surfaces A Physicochem. Eng. Asp. 2011;384:47–52. doi: 10.1016/j.colsurfa.2011.03.015. DOI
Wang K., Hu N.-X., Xu G., Qi Y. Stable superhydrophobic composite coatings made from an aqueous dispersion of carbon nanotubes and a fluoropolymer. Carbon. 2011;49:1769–1774. doi: 10.1016/j.carbon.2010.12.063. DOI
Yao H., Chu C.-C., Sue H.-J., Nishimura R. Electrically conductive superhydrophobic octadecylamine-functionalized multiwall carbon nanotube films. Carbon. 2013;53:366–373. doi: 10.1016/j.carbon.2012.11.023. DOI
Sethi S., Dhinojwala A. Superhydrophobic conductive carbon nanotube coatings for steel. Langmuir. 2009;25:4311–4313. doi: 10.1021/la9001187. PubMed DOI
Wang C.-F., Chen W.-Y., Cheng H.-Z., Fu S.-L. Pressure-proof superhydrophobic films from flexible carbon nanotube/polymer coatings. J. Phys. Chem. C. 2010;114:15607–15611. doi: 10.1021/jp1047985. DOI
Ci L., Suhr J., Pushparaj V., Zhang X., Ajayan P.M. Continuous carbon nanotube reinforced composites. Nano Lett. 2008;8:2762–2766. doi: 10.1021/nl8012715. PubMed DOI
Xu W.J., Kranz M., Kim S.H., Allen M.G. Micropatternable elastic electrets based on a PDMS/carbon nanotube composite. J. Micromech. Microeng. 2010;20:104003. doi: 10.1088/0960-1317/20/10/104003. DOI
Jung H., Moon J.-H., Baek D.-H., Lee J.-H., Choi Y.-Y., Hong J.-S., Lee S.-H. CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans. Biomed. Eng. 2012;59:1472–1479. doi: 10.1109/TBME.2012.2190288. PubMed DOI
Zhang H.-F., Teo M.K., Yang C. Superhydrophobic carbon nanotube/polydimethylsiloxane composite coatings. Mater. Sci. Technol. 2015;31:1745–1748. doi: 10.1179/1743284714Y.0000000752. DOI
Hu H., Zhao Z., Wan W., Gogotsi Y., Qiu J. Polymer/Graphene hybrid aerogel with high compressibility, conductivity, and “sticky” superhydrophobicity. ACS Appl. Mater. Interfaces. 2014;6:3242–3249. doi: 10.1021/am4050647. PubMed DOI
Liu W., Cai J., Ding Z., Li Z. TiO2/RGO composite aerogels with controllable and continuously tunable surface wettability for varied aqueous photocatalysis. Appl. Catal. B Environ. 2015;174–175:421–426. doi: 10.1016/j.apcatb.2015.03.041. DOI
Eduok U., Faye O., Szpunar J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Prog. Org. Coat. 2017;111:124–163. doi: 10.1016/j.porgcoat.2017.05.012. DOI
Wolf M.P., Salieb-Beugelaar G.B., Hunziker P. PDMS with designer functionalities—Properties, modifications strategies, and applications. Prog. Polym. Sci. 2018;83:97–134. doi: 10.1016/j.progpolymsci.2018.06.001. DOI
Van Kooten T.G., Whitesides J.F., von Recum A.F. Influence of silicone (PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis. J. Biomed. Mater. Res. 1998;43:1–14. doi: 10.1002/(SICI)1097-4636(199821)43:1<1::AID-JBM1>3.0.CO;2-T. PubMed DOI
Kim S.-J., Lee D.-S., Kim I.-G., Sohn N.-W., Park J.-Y., Choi B.-K., Kim S.-W. Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor. Kaohsiung J. Med. Sci. 2012;28:123–129. doi: 10.1016/j.kjms.2011.10.016. PubMed DOI
Gunatillake P., Adhikari R. Biosynthetic Polymers for Medical Applications. Elsevier BV; Amsterdam, The Netherlands: 2016. Nondegradable synthetic polymers for medical devices and implants; pp. 33–62.
Willerth S. Engineering Neural Tissue from Stem Cells. Academic Press; Cambridge, MA, USA: 2017.
Yong J., Chen F., Yang Q., Hou X. Femtosecond laser controlled wettability of solid surfaces. Soft Matter. 2015;11:8897–8906. doi: 10.1039/C5SM02153G. PubMed DOI
Slepička P., Neděla O., Kasálková N.S., Sajdl P., Švorčík V. Periodic nanostructure induced on PEN surface by KrF laser irradiation. Int. J. Nanotechnol. 2017;14:399. doi: 10.1504/IJNT.2017.082458. DOI
Fajstavr D., Neznalová K., Švorčík V., Slepička P. LIPSS structures induced on graphene-polystyrene composite. Materials. 2019;12:3460. doi: 10.3390/ma12213460. PubMed DOI PMC
Slepičková Kasálková N., Slepička P., Švorčík V. Carbon Nanostructures, Nanolayers, and Their Composites. Nanomaterials. 2021;11:2368. doi: 10.3390/nano11092368. PubMed DOI PMC
Slepička P., Neznalová K., Fajstavr D., Švorčík V. Nanostructuring of honeycomb-like polystyrene with excimer laser. Prog. Org. Coat. 2020;145:105670. doi: 10.1016/j.porgcoat.2020.105670. DOI
Guittard F., Darmanin T. Bioinspired Superhydrophobic Surfaces: Advances and Applications with Metallic and Inorganic Materials. CRC Press; Boca Raton, FL, USA: 2017.
Kaimlová M., Nemogová I., Kolarova K., Slepička P., Švorčík V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI
Rebollar E., Frischauf I., Olbrich M., Peterbauer T., Hering S., Preiner J., Hinterdorfer P., Romanin C., Heitz J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials. 2008;29:1796–1806. doi: 10.1016/j.biomaterials.2007.12.039. PubMed DOI
Fajstavr D., Neznalová K., Kasálková N.S., Rimpelová S., Kubičíková K., Švorčík V., Slepička P. Nanostructured polystyrene doped with acetylsalicylic acid and its antibacterial properties. Materials. 2020;13:3609. doi: 10.3390/ma13163609. PubMed DOI PMC
Neděla O., Slepička P., Kasalkova N.S., Sajdl P., Kolská Z., Rimpelová S., Švorčík V. Antibacterial properties of angle-dependent nanopatterns on polystyrene. React. Funct. Polym. 2019;136:173–180. doi: 10.1016/j.reactfunctpolym.2019.01.007. DOI
Slepička P., Siegel J., Lyutakov O., Kasálková N.S., Kolská Z., Bačáková L., Švorčík V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Balasubramaniam B., Prateek, Ranjan S., Saraf M., Kar P., Singh S.P., Thakur V.K., Singh A., Gupta R.K. Antibacterial and antiviral functional materials: Chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacol. Transl. Sci. 2021;4:8–54. doi: 10.1021/acsptsci.0c00174. PubMed DOI PMC
Lišková J., Kasálková N.S., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (l-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. doi: 10.1016/j.msec.2019.02.105. PubMed DOI
Slepička P., Trostová S., Kasálková N.S., Kolská Z., Malinský P., Macková A., Bačáková L., Švorčík V. Nanostructuring of polymethylpentene by plasma and heat treatment for improved biocompatibility. Polym. Degrad. Stab. 2012;97:1075–1082. doi: 10.1016/j.polymdegradstab.2012.04.013. DOI
Slepička P., Hurtuková K., Fajstavr D., Slepičková Kasálková N., Lyutakov O., Švorčík V. Carbon-gold nanocomposite induced by unique high energy laser single-shot annealing. Mater. Lett. 2021;301:130256. doi: 10.1016/j.matlet.2021.130256. DOI