Nanostructured Polystyrene Doped with Acetylsalicylic Acid and Its Antibacterial Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-02482S
Grantová Agentura České Republiky
PubMed
32824068
PubMed Central
PMC7475827
DOI
10.3390/ma13163609
PII: ma13163609
Knihovny.cz E-zdroje
- Klíčová slova
- LIPSS, acetylsalicylic acid, antibacterial properties, excimer laser, polystyrene, surface morphology,
- Publikační typ
- časopisecké články MeSH
Homogeneous polystyrene foils doped with different concentrations of acetylsalicylic acid were prepared by the solvent casting method. The surface morphology and surface chemistry of as-prepared foils were characterized in detail. Excimer laser (krypton fluoride, a wavelength of 248 nm) was used for surface nanopatterning of doped polystyrene foils. Certain combinations of laser fluence and number of laser pulses led to formation of laser-induced periodic surface structures (LIPSS) on the exposed surface. Formation of the pattern was affected by the presence of a dopant in the polystyrene structure. Significant differences in surface chemistry and morphology of laser-treated foils compared to both pristine and doped polystyrene were detected. The pattern width and height were both affected by selection of input excimer exposure conditions, and the amount of 6000 pulses was determined as optimal. The possibility of nanostructuring of a honeycomb-like pattern doped with acetylsalicylic acid was also demonstrated. Selected nanostructured surfaces were used for study the antibacterial properties for a model bacteria strain of S. aureus. The combination of altered surface chemistry and morphology of polystyrene was confirmed to have an excellent antibacterial properties.
Zobrazit více v PubMed
Fuzlin A.F.A., Misnon I.I., Samsudin A.S. Materials Science Forum. Volume 981. Trans Tech Publications Ltd.; Stafa-Zurich, Switzerland: 2020. Conduction Properties Study on Alginate Incorporated with Glycolic Acid Based Solid Biopolymer Electrolytes; pp. 34–39.
Bonse J., Kirner S.V., Höhm S., Epperlein N., Spaltmann D., Rosenfeld A., Krüger J. Laser-Based Micro-and Nanoprocessing XI. Volume 10092. International Society for Optics and Photonics; San Diego, CA, USA: 2017. Applications of laser-induced periodic surface structures (LIPSS) p. 100920N.
Bolle M., Lazare S., Le Blanc M., Wilmes A. Submicron periodic structures produced on polymer surfaces with polarized excimer laser ultraviolet radiation. Appl. Phys. Lett. 1992;60:674–676. doi: 10.1063/1.106588. DOI
Loeschner K., Kiesow A., Heilmann A. Advances in Solid State Physics. Springer; Berlin/Heidelberg, Germany: 2008. Periodic Structure Formation in Polymer Films with Embedded Gold Nanoparticles; pp. 73–86.
Hendrikson W., Masman-Bakker W., van Bochove B., Skolski J., Eichstädt J., Koopman B., Rouwkema J. Mold-Based Application of Laser-Induced Periodic Surface Structures (LIPSS) on Biomaterials for Nanoscale Patterning. Macromol. Biosci. 2016;16:43–49. doi: 10.1002/mabi.201500270. PubMed DOI
Rebollar E., Vázquez de Aldana J.R., Pérez-Hernández J.A., Ezquerra T.A., Moreno P., Castillejo M. Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Appl. Phys. Lett. 2012;100:041106. doi: 10.1063/1.3679103. PubMed DOI
Bonse J., Krüger J., Höhm S., Rosenfeld A. Femtosecond laser-induced periodic surface structures. J. Laser Appl. 2012;24:042006.
Gurevich E.L. Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation. Appl. Surf. Sci. 2016;374:56–60. doi: 10.1016/j.apsusc.2015.09.091. DOI
Rebollar E., Ezquerra T.A., Nogales A. Wrinkled Polymer Surfaces. Springer; Berlin/Heidelberg, Germany: 2019. Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces; pp. 143–155.
Orazi L., Sorgato M., Piccolo L., Masato D., Lucchetta G. Generation and characterization of Laser Induced Periodic Surface Structures on plastic injection molds. Lasers Manuf. Mater. Process. 2020;7:207–221. doi: 10.1007/s40516-020-00115-1. DOI
Van Krevelen D.W. Properties of Polymers. Elsevier Science B.V.; Amsterdam, The Netherlands: 1990.
Fajstavr D., Michaljaničová I., Slepička P., Neděla O., Sajdl P., Kolská Z., Švorčík V. Surface instability on polyethersulfone induced by dual laser treatment for husk nanostructure construction. React. Funct. Polym. 2018;125:20–28. doi: 10.1016/j.reactfunctpolym.2018.02.005. DOI
Lemoine P., Blau W., Drury A., Keely C. Molecular weight effects on the 248-nm photoablation of polystyrene spun films. Polymer. 1993;34:5020–5028. doi: 10.1016/0032-3861(93)90244-5. DOI
Urech L., Lippert T. Photoablation of polymer materials. Photochem. Photophys. Polym. Mater. 2010:541–568. doi: 10.1002/9780470594179.ch14. DOI
Mito T., Masuhara H. Laser-induced nanometer expansion and contraction dynamics of polystyrene films depending on its molecular weight. Appl. Surf. Sci. 2002;197:796–799. doi: 10.1016/S0169-4332(02)00417-8. DOI
Rebollar E., Oujja M., Castillejo M., Georgiou S. Examination of photoproducts in the ablation plume of doped PMMA. Appl. Phys. A. 2004;79:1357–1360. doi: 10.1007/s00339-004-2779-7. DOI
Rebollar E., Bounos G., Oujja M., Georgiou S., Castillejo M. Effect of molecular weight on the morphological modifications induced by UV laser ablation of doped polymers. J. Phys. Chem. B. 2006;110:16452–16458. doi: 10.1021/jp062060i. PubMed DOI
Rebollar E., Bounos G., Oujja M., Domingo C., Georgiou S., Castillejo M. Influence of polymer molecular weight on the chemical modifications induced by UV laser ablation. J. Phys. Chem. B. 2006;110:14215–14220. doi: 10.1021/jp061451u. PubMed DOI
Nayak N.C., Lam Y.C., Yue C.Y., Sinha A.T. CO2-laser micromachining of PMMA: The effect of polymer molecular weight. J. Micromechanics Microengineering. 2008;18:095020. doi: 10.1088/0960-1317/18/9/095020. DOI
Fajstavr D., Neznalová K., Švorčík V., Slepička P. LIPSS Structures Induced on Graphene-Polystyrene Composite. Materials. 2019;12:3460. doi: 10.3390/ma12213460. PubMed DOI PMC
Fajstavr D., Slepička P., Švorčík V. LIPSS with gold nanoclusters prepared by combination of heat treatment and KrF exposure. Appl. Surf. Sci. 2019;465:919–928. doi: 10.1016/j.apsusc.2018.09.167. DOI
Yoshida S., Hagiwara K., Hasebe T., Hotta A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 2013;233:99–107. doi: 10.1016/j.surfcoat.2013.02.042. DOI
Siegel J., Šuláková P., Kaimlová M., Švorčík V., Hubáček T. Underwater Laser Treatment of PET: Effect of Processing Parameters on Surface Morphology and Chemistry. Appl. Sci. 2018;8:2389. doi: 10.3390/app8122389. DOI
Heitz J., Gumpenberger T., Kahr H., Romanin C. Adhesion and proliferation of human vascular cells on UV-light-modified polymers. Biotechnol. Appl. Biochem. 2004;39:59–69. doi: 10.1042/BA20030107. PubMed DOI
Azuma H., Takeuchi A., Kamiya N., Ito T., Kato M., Shirai S., Narita T., Fukumori K., Tachi K., Matsuoka T. New surface treatment of polymers by simultaneous exposure to vacuum ultra-violet light and nanometer-sized particles. Jpn. J. Appl. Phys. 2004;43:L1250. doi: 10.1143/JJAP.43.L1250. DOI
Wang Z., Li H., Chen J., Xue Z., Wu B., Lu X. Acetylsalicylic acid electrochemical sensor based on PATP–AuNPs modified molecularly imprinted polymer film. Talanta. 2011;85:1672–1679. doi: 10.1016/j.talanta.2011.06.067. PubMed DOI
Lu X.M., Lu Q.H., Zhu Z.K., Yin J., Wang Z.G. The laser-induced periodic surface structure on polyimide doped with lecithin. Mater. Lett. 2003;57:3636–3640. doi: 10.1016/S0167-577X(03)00140-X. DOI
Böger R.H., Bode-Böger S.M., Gutzki F.M., Tsikas D., Weskott H.P., frölich J.C. Rapid and selective inhibition of platelet aggregation and thromboxane formation by intravenous low dose aspirin in man. Clin. Sci. 1993;84:517–524. doi: 10.1042/cs0840517. PubMed DOI
Attie M.F., Gill J.R., Stock J.L., Spiegel A.M., Downs R.W., Levine M.A., Marx S.J. Urinary calcium excretion in familial hypocalciuric hypercalcemia. Persistence of relative hypocalciuria after induction of hypoparathyroidism. J. Clin. Investig. 1983;72:667–676. doi: 10.1172/JCI111016. PubMed DOI PMC
Moore T.J., Joseph M.J., Allen B.W., Coury L.A. Enzymatically amplified voltammetric sensor for microliter sample volumes of salicylate. Anal. Chem. 1995;67:1896–1902. doi: 10.1021/ac00107a022. PubMed DOI
Wang X., Ohlin C.H.A., Lu Q., Hu J. Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene. Biomaterials. 2008;29:2049–2059. doi: 10.1016/j.biomaterials.2007.12.047. PubMed DOI
Slepička P., Neznalová K., Fajstavr D., Slepičková K.N., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Process. Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI
Krajcar R., Siegel J., Slepička P., Fitl P., Švorčík V. Silver nanowires prepared on PET structured by laser irradiation. Mater. Lett. 2014;117:184–187. doi: 10.1016/j.matlet.2013.11.112. DOI
Slepička P., Neděla O., Sajdl P., Kolská Z., Švorčík V. Polyethylene naphthalate as an excellent candidate for ripple nanopatterning. Appl. Surf. Sci. 2013;285P:885–892. doi: 10.1016/j.apsusc.2013.09.007. DOI
Cui J., Nogales A., Ezquerra T.A., Rebollar E. Influence of substrate and film thickness on polymer LIPSS formation. Appl. Surf. Sci. 2017;394:125–131. doi: 10.1016/j.apsusc.2016.10.045. DOI
Chen Y., Ding Y., Zheng J. A polymer nanocomposite coating with enhanced hydrophilicity, antibacterial and antibiofouling properties: Role of polymerizable emulsifier/anionic ligand. Chem. Eng. J. 2020;379:122268. doi: 10.1016/j.cej.2019.122268. DOI
Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Li M., Liu X., Liu N., Guo Z., Singh P.K., Fu S. Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. Colloids Surf. A Physicochem. Eng. Asp. 2018;554:122–128. doi: 10.1016/j.colsurfa.2018.06.031. DOI
Recek N. Biocompatibility of Plasma-Treated Polymeric Implants. Materials. 2019;12:240. doi: 10.3390/ma12020240. PubMed DOI PMC
Kubiak K.J., Wilson M.C.T., Mathia T.G., Carval P.H. Wettability versus roughness of engineering surfaces. Wear. 2011;271:523–528. doi: 10.1016/j.wear.2010.03.029. DOI
Řezníčková A., Chaloupka A., Heitz J., Kolská Z., Švorčík V. Surface properties of polymers treated with F2 laser. Surf. Interface Anal. 2011;44:296–300. doi: 10.1002/sia.3801. DOI