Nanostructured Polystyrene Doped with Acetylsalicylic Acid and Its Antibacterial Properties

. 2020 Aug 14 ; 13 (16) : . [epub] 20200814

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32824068

Grantová podpora
19-02482S Grantová Agentura České Republiky

Homogeneous polystyrene foils doped with different concentrations of acetylsalicylic acid were prepared by the solvent casting method. The surface morphology and surface chemistry of as-prepared foils were characterized in detail. Excimer laser (krypton fluoride, a wavelength of 248 nm) was used for surface nanopatterning of doped polystyrene foils. Certain combinations of laser fluence and number of laser pulses led to formation of laser-induced periodic surface structures (LIPSS) on the exposed surface. Formation of the pattern was affected by the presence of a dopant in the polystyrene structure. Significant differences in surface chemistry and morphology of laser-treated foils compared to both pristine and doped polystyrene were detected. The pattern width and height were both affected by selection of input excimer exposure conditions, and the amount of 6000 pulses was determined as optimal. The possibility of nanostructuring of a honeycomb-like pattern doped with acetylsalicylic acid was also demonstrated. Selected nanostructured surfaces were used for study the antibacterial properties for a model bacteria strain of S. aureus. The combination of altered surface chemistry and morphology of polystyrene was confirmed to have an excellent antibacterial properties.

Zobrazit více v PubMed

Fuzlin A.F.A., Misnon I.I., Samsudin A.S. Materials Science Forum. Volume 981. Trans Tech Publications Ltd.; Stafa-Zurich, Switzerland: 2020. Conduction Properties Study on Alginate Incorporated with Glycolic Acid Based Solid Biopolymer Electrolytes; pp. 34–39.

Bonse J., Kirner S.V., Höhm S., Epperlein N., Spaltmann D., Rosenfeld A., Krüger J. Laser-Based Micro-and Nanoprocessing XI. Volume 10092. International Society for Optics and Photonics; San Diego, CA, USA: 2017. Applications of laser-induced periodic surface structures (LIPSS) p. 100920N.

Bolle M., Lazare S., Le Blanc M., Wilmes A. Submicron periodic structures produced on polymer surfaces with polarized excimer laser ultraviolet radiation. Appl. Phys. Lett. 1992;60:674–676. doi: 10.1063/1.106588. DOI

Loeschner K., Kiesow A., Heilmann A. Advances in Solid State Physics. Springer; Berlin/Heidelberg, Germany: 2008. Periodic Structure Formation in Polymer Films with Embedded Gold Nanoparticles; pp. 73–86.

Hendrikson W., Masman-Bakker W., van Bochove B., Skolski J., Eichstädt J., Koopman B., Rouwkema J. Mold-Based Application of Laser-Induced Periodic Surface Structures (LIPSS) on Biomaterials for Nanoscale Patterning. Macromol. Biosci. 2016;16:43–49. doi: 10.1002/mabi.201500270. PubMed DOI

Rebollar E., Vázquez de Aldana J.R., Pérez-Hernández J.A., Ezquerra T.A., Moreno P., Castillejo M. Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Appl. Phys. Lett. 2012;100:041106. doi: 10.1063/1.3679103. PubMed DOI

Bonse J., Krüger J., Höhm S., Rosenfeld A. Femtosecond laser-induced periodic surface structures. J. Laser Appl. 2012;24:042006.

Gurevich E.L. Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation. Appl. Surf. Sci. 2016;374:56–60. doi: 10.1016/j.apsusc.2015.09.091. DOI

Rebollar E., Ezquerra T.A., Nogales A. Wrinkled Polymer Surfaces. Springer; Berlin/Heidelberg, Germany: 2019. Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces; pp. 143–155.

Orazi L., Sorgato M., Piccolo L., Masato D., Lucchetta G. Generation and characterization of Laser Induced Periodic Surface Structures on plastic injection molds. Lasers Manuf. Mater. Process. 2020;7:207–221. doi: 10.1007/s40516-020-00115-1. DOI

Van Krevelen D.W. Properties of Polymers. Elsevier Science B.V.; Amsterdam, The Netherlands: 1990.

Fajstavr D., Michaljaničová I., Slepička P., Neděla O., Sajdl P., Kolská Z., Švorčík V. Surface instability on polyethersulfone induced by dual laser treatment for husk nanostructure construction. React. Funct. Polym. 2018;125:20–28. doi: 10.1016/j.reactfunctpolym.2018.02.005. DOI

Lemoine P., Blau W., Drury A., Keely C. Molecular weight effects on the 248-nm photoablation of polystyrene spun films. Polymer. 1993;34:5020–5028. doi: 10.1016/0032-3861(93)90244-5. DOI

Urech L., Lippert T. Photoablation of polymer materials. Photochem. Photophys. Polym. Mater. 2010:541–568. doi: 10.1002/9780470594179.ch14. DOI

Mito T., Masuhara H. Laser-induced nanometer expansion and contraction dynamics of polystyrene films depending on its molecular weight. Appl. Surf. Sci. 2002;197:796–799. doi: 10.1016/S0169-4332(02)00417-8. DOI

Rebollar E., Oujja M., Castillejo M., Georgiou S. Examination of photoproducts in the ablation plume of doped PMMA. Appl. Phys. A. 2004;79:1357–1360. doi: 10.1007/s00339-004-2779-7. DOI

Rebollar E., Bounos G., Oujja M., Georgiou S., Castillejo M. Effect of molecular weight on the morphological modifications induced by UV laser ablation of doped polymers. J. Phys. Chem. B. 2006;110:16452–16458. doi: 10.1021/jp062060i. PubMed DOI

Rebollar E., Bounos G., Oujja M., Domingo C., Georgiou S., Castillejo M. Influence of polymer molecular weight on the chemical modifications induced by UV laser ablation. J. Phys. Chem. B. 2006;110:14215–14220. doi: 10.1021/jp061451u. PubMed DOI

Nayak N.C., Lam Y.C., Yue C.Y., Sinha A.T. CO2-laser micromachining of PMMA: The effect of polymer molecular weight. J. Micromechanics Microengineering. 2008;18:095020. doi: 10.1088/0960-1317/18/9/095020. DOI

Fajstavr D., Neznalová K., Švorčík V., Slepička P. LIPSS Structures Induced on Graphene-Polystyrene Composite. Materials. 2019;12:3460. doi: 10.3390/ma12213460. PubMed DOI PMC

Fajstavr D., Slepička P., Švorčík V. LIPSS with gold nanoclusters prepared by combination of heat treatment and KrF exposure. Appl. Surf. Sci. 2019;465:919–928. doi: 10.1016/j.apsusc.2018.09.167. DOI

Yoshida S., Hagiwara K., Hasebe T., Hotta A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 2013;233:99–107. doi: 10.1016/j.surfcoat.2013.02.042. DOI

Siegel J., Šuláková P., Kaimlová M., Švorčík V., Hubáček T. Underwater Laser Treatment of PET: Effect of Processing Parameters on Surface Morphology and Chemistry. Appl. Sci. 2018;8:2389. doi: 10.3390/app8122389. DOI

Heitz J., Gumpenberger T., Kahr H., Romanin C. Adhesion and proliferation of human vascular cells on UV-light-modified polymers. Biotechnol. Appl. Biochem. 2004;39:59–69. doi: 10.1042/BA20030107. PubMed DOI

Azuma H., Takeuchi A., Kamiya N., Ito T., Kato M., Shirai S., Narita T., Fukumori K., Tachi K., Matsuoka T. New surface treatment of polymers by simultaneous exposure to vacuum ultra-violet light and nanometer-sized particles. Jpn. J. Appl. Phys. 2004;43:L1250. doi: 10.1143/JJAP.43.L1250. DOI

Wang Z., Li H., Chen J., Xue Z., Wu B., Lu X. Acetylsalicylic acid electrochemical sensor based on PATP–AuNPs modified molecularly imprinted polymer film. Talanta. 2011;85:1672–1679. doi: 10.1016/j.talanta.2011.06.067. PubMed DOI

Lu X.M., Lu Q.H., Zhu Z.K., Yin J., Wang Z.G. The laser-induced periodic surface structure on polyimide doped with lecithin. Mater. Lett. 2003;57:3636–3640. doi: 10.1016/S0167-577X(03)00140-X. DOI

Böger R.H., Bode-Böger S.M., Gutzki F.M., Tsikas D., Weskott H.P., frölich J.C. Rapid and selective inhibition of platelet aggregation and thromboxane formation by intravenous low dose aspirin in man. Clin. Sci. 1993;84:517–524. doi: 10.1042/cs0840517. PubMed DOI

Attie M.F., Gill J.R., Stock J.L., Spiegel A.M., Downs R.W., Levine M.A., Marx S.J. Urinary calcium excretion in familial hypocalciuric hypercalcemia. Persistence of relative hypocalciuria after induction of hypoparathyroidism. J. Clin. Investig. 1983;72:667–676. doi: 10.1172/JCI111016. PubMed DOI PMC

Moore T.J., Joseph M.J., Allen B.W., Coury L.A. Enzymatically amplified voltammetric sensor for microliter sample volumes of salicylate. Anal. Chem. 1995;67:1896–1902. doi: 10.1021/ac00107a022. PubMed DOI

Wang X., Ohlin C.H.A., Lu Q., Hu J. Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene. Biomaterials. 2008;29:2049–2059. doi: 10.1016/j.biomaterials.2007.12.047. PubMed DOI

Slepička P., Neznalová K., Fajstavr D., Slepičková K.N., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Process. Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI

Krajcar R., Siegel J., Slepička P., Fitl P., Švorčík V. Silver nanowires prepared on PET structured by laser irradiation. Mater. Lett. 2014;117:184–187. doi: 10.1016/j.matlet.2013.11.112. DOI

Slepička P., Neděla O., Sajdl P., Kolská Z., Švorčík V. Polyethylene naphthalate as an excellent candidate for ripple nanopatterning. Appl. Surf. Sci. 2013;285P:885–892. doi: 10.1016/j.apsusc.2013.09.007. DOI

Cui J., Nogales A., Ezquerra T.A., Rebollar E. Influence of substrate and film thickness on polymer LIPSS formation. Appl. Surf. Sci. 2017;394:125–131. doi: 10.1016/j.apsusc.2016.10.045. DOI

Chen Y., Ding Y., Zheng J. A polymer nanocomposite coating with enhanced hydrophilicity, antibacterial and antibiofouling properties: Role of polymerizable emulsifier/anionic ligand. Chem. Eng. J. 2020;379:122268. doi: 10.1016/j.cej.2019.122268. DOI

Slepicka P., Siegel J., Lyutakov O., Slepickova Kasalkova N., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI

Li M., Liu X., Liu N., Guo Z., Singh P.K., Fu S. Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. Colloids Surf. A Physicochem. Eng. Asp. 2018;554:122–128. doi: 10.1016/j.colsurfa.2018.06.031. DOI

Recek N. Biocompatibility of Plasma-Treated Polymeric Implants. Materials. 2019;12:240. doi: 10.3390/ma12020240. PubMed DOI PMC

Kubiak K.J., Wilson M.C.T., Mathia T.G., Carval P.H. Wettability versus roughness of engineering surfaces. Wear. 2011;271:523–528. doi: 10.1016/j.wear.2010.03.029. DOI

Řezníčková A., Chaloupka A., Heitz J., Kolská Z., Švorčík V. Surface properties of polymers treated with F2 laser. Surf. Interface Anal. 2011;44:296–300. doi: 10.1002/sia.3801. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Functionalization of a Honeycomb Polystyrene Pattern by Excimer Treatment in Liquid

. 2022 Nov 16 ; 14 (22) : . [epub] 20221116

KrF Laser and Plasma Exposure of PDMS-Carbon Composite and Its Antibacterial Properties

. 2022 Jan 22 ; 15 (3) : . [epub] 20220122

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...