Carbon Transformation Induced by High Energy Excimer Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35806736
PubMed Central
PMC9267606
DOI
10.3390/ma15134614
PII: ma15134614
Knihovny.cz E-zdroje
- Klíčová slova
- Q-carbon, Raman analysis, amorphous carbon, carbon, excimer laser, surface chemistry, surface morphology,
- Publikační typ
- časopisecké články MeSH
The main aim of this study was to describe the treatment of carbon sheet with a high-energy excimer laser. The excimer modification changed the surface chemistry and morphology of carbon. The appearance of specific carbon forms and modifications have been detected due to exposure to laser beam fluencies up to 8 J cm-2. High fluence optics was used for dramatic changes in the carbon layer with the possibility of Q-carbon formation; a specific amorphous carbon phase was detected with Raman spectroscopy. The changes in morphology were determined with atomic force microscopy and confirmed with scanning electron microscopy, where the partial formation of the Q-carbon phase was detected. Energy dispersive spectroscopy (EDS) was applied for a detailed study of surface chemistry. The particular shift of functional groups induced on laser-treated areas was determined by X-ray photoelectron spectroscopy. For the first time, high-dose laser exposure successfully induced a specific amorphous carbon phase.
Central Laboratories University of Chemistry and Technology 166 28 Prague Czech Republic
Department of Power Engineering University of Chemistry and Technology 166 28 Prague Czech Republic
Faculty of Science J E Purkyně University in Ústí nad Labem 400 96 Ústí nad Labem Czech Republic
Zobrazit více v PubMed
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Kim H., Ahn J.H. Graphene for flexible and wearable device applications. Carbon. 2017;120:244–257. doi: 10.1016/j.carbon.2017.05.041. DOI
Gunther D., LeBlanc G., Prasai D., Zhang J.R., Cliffel D.E., Bolotin K.I., Jennings G.K. Photosystem I on graphene as a highly transparent, photoactive electrode. Langmuir. 2013;29:4177–4180. doi: 10.1021/la305020c. PubMed DOI
Balandin A.A., Ghosh S., Teweldebrhan D., Calizo I., Bao W., Miao F., Lau C.N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in silicon nanoelectronics; Proceedings of the 2008 IEEE Silicon Nanoelectronics Workshop; Honolulu, HI, USA. 15–16 June 2008; pp. 1–2.
Park S., Shehzad M.A., Khan M.F., Nazir G., Eom J., Noh H., Seo Y. Effect of grain boundaries on electrical properties of polycrystalline graphene. Carbon. 2017;112:142–148. doi: 10.1016/j.carbon.2016.11.010. DOI
Meng Y., Deng L., Liu Z., Xiao H., Guo X., Liao M., Tian Y. All-optical tunable microfiber knot resonator with graphene-assisted sandwich structure. Opt. Express. 2017;25:18451–18461. doi: 10.1364/OE.25.018451. PubMed DOI
Liang Y., Liang X., Zhang Z., Li W., Huo X., Peng L. High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits. Nanoscale. 2015;7:10954–10962. doi: 10.1039/C5NR02292D. PubMed DOI
Iannaccone G., Bonaccorso F., Colombo L., Fiori G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018;13:183–191. doi: 10.1038/s41565-018-0082-6. PubMed DOI
Tang R., Han S., Teng F., Hu K., Zhang Z., Hu M., Fang X. Size-Controlled Graphene Nanodot Arrays/ZnO Hybrids for High-Performance UV Photodetectors. Adv. Sci. 2018;5:1700334. doi: 10.1002/advs.201700334. PubMed DOI PMC
Li Q., Guo X., Zhang Y., Zhang W., Ge C., Zhao L., Sun L. Porous graphene paper for supercapacitor applications. J. Mater. Sci. Technol. 2017;33:793–799. doi: 10.1016/j.jmst.2017.03.018. DOI
Stoller M.D., Park S., Zhu Y., An J., Ruoff R.S. Graphene-based ultracapacitors. Nano Lett. 2008;8:3498–3502. doi: 10.1021/nl802558y. PubMed DOI
Xu Y., Bai H., Lu G., Li C., Shi G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008;130:5856–5857. doi: 10.1021/ja800745y. PubMed DOI
Salz J.J., Maguen E., Nesburn A.B., Warren C., Macy J.I., Hofbauer J.D., Berlin M. A two-year experience with excimer laser photorefractive keratectomy for myopia. Ophthalmology. 1993;100:873–882. doi: 10.1016/S0161-6420(93)31560-5. PubMed DOI
Bhaumik A., Haque A., Taufique M.F.N., Karnati P., Patel R., Nath M., Ghosh K. Reduced graphene oxide thin films with very large charge carrier mobility using pulsed laser deposition. J. Mater. Sci. Eng. 2017;6:1–11. doi: 10.4172/2169-0022.1000364. DOI
Russo P., Hu A., Compagnini G., Duley W.W., Zhou N.Y. Femtosecond laser ablation of highly oriented pyrolytic graphite: A green route for large-scale production of porous graphene and graphene quantum dots. Nanoscale. 2014;6:2381–2389. doi: 10.1039/C3NR05572H. PubMed DOI
Kazemizadeh F., Malekfar R., Parvin P. Pulsed laser ablation synthesis of carbon nanoparticles in vacuum. J. Phys. Chem. Solids. 2017;104:252–256. doi: 10.1016/j.jpcs.2017.01.015. DOI
Kiran G.R., Chandu B., Acharyya S.G., Rao S.V., Srikanth V.V. One-step synthesis of bulk quantities of graphene from graphite by femtosecond laser ablation under ambient conditions. Philos. Mag. Lett. 2017;97:229–234. doi: 10.1080/09500839.2017.1320437. DOI
Jalili M., Ghanbari H., Bellah S.M., Malekfar R. High-quality liquid phase-pulsed laser ablation graphene synthesis by flexible graphite exfoliation. J. Mater. Sci. Technol. 2019;35:292–299. doi: 10.1016/j.jmst.2018.09.048. DOI
Qian M., Niu Y.P., Gong S.Q. Influence of laser wavelength on two-dimensional carbon nanosheet formation from laser-induced exfoliation of naphthalene. Appl. Surf. Sci. 2018;428:549–554. doi: 10.1016/j.apsusc.2017.09.028. DOI
Jeschke H.O., Garcia M.E., Bennemann K.H. Theory for the ultrafast ablation of graphite films. Phys. Rev. Lett. 2001;87:015003. doi: 10.1103/PhysRevLett.87.015003. PubMed DOI
Smirnov V.A., Arbuzov A.A., Shul’ga Y.M., Baskakov S.A., Martynenko V.M., Muradyan V.E., Kresova E.I. Photoreduction of graphite oxide. High Energy Chem. 2011;45:57–61. doi: 10.1134/S0018143911010176. DOI
Zhang Y.L., Guo L., Xia H., Chen Q.D., Feng J., Sun H.B. Photoreduction of graphene oxides: Methods, properties, and applications. Adv. Opt. Mater. 2014;2:10–28. doi: 10.1002/adom.201300317. DOI
Morozov N.V. Laser-Induced Damage in Optical Materials: 1994. Volume 2428. International Society for Optics and Photonics; Bellingham, WA, USA: 1995. Laser-induced damage in optical materials under UV excimer laser radiation; pp. 153–169.
Xie B., Wang Y., Lai W., Lin W., Lin Z., Zhang Z., Wong C.P. Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components. Nano Energy. 2016;26:276–285. doi: 10.1016/j.nanoen.2016.04.045. DOI
Hosseini S.M.B.M., Baizaee S.M., Naderi H.R., Kordi A.D. Excimer laser assisted very fast exfoliation and reduction of graphite oxide at room temperature under air ambient for Supercapacitors electrode. Appl. Surf. Sci. 2018;427:507–516. doi: 10.1016/j.apsusc.2017.08.029. DOI
Haque A., Narayan J. Electron field emission from Q-carbon. Diam. Relat. Mater. 2018;86:71–78. doi: 10.1016/j.diamond.2018.04.008. DOI
Narayan J., Bhaumik A., Gupta S., Haque A., Sachan R. Progress in Q-carbon and related materials with extraordinary properties. Mater. Res. Lett. 2018;6:353–364. doi: 10.1080/21663831.2018.1458753. DOI
Bhaumik A., Nori S., Sachan R., Gupta S., Kumar D., Majumdar A.K., Narayan J. Room-Temperature Ferromagnetism and Extraordinary Hall Effect in Nanostructured Q-Carbon: Implications for Potential Spintronic Devices. ACS Appl. Nano Mater. 2018;1:807–819. doi: 10.1021/acsanm.7b00253. DOI
Bhaumik A., Sachan R., Narayan J. A novel high-temperature carbon-based superconductor: B-doped Q-carbon. J. Appl. Phys. 2017;122:045301. doi: 10.1063/1.4994787. DOI
Narayan J., Bhaumik A. Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 2015;118:215303. doi: 10.1063/1.4936595. DOI
Yoshinaka H., Inubushi S., Wakita T., Yokoya T., Muraoka Y. Formation of Q-carbon by adjusting sp3 content in diamond-like carbon films and laser energy density of pulsed laser annealing. Carbon. 2020;167:504–511. doi: 10.1016/j.carbon.2020.06.025. DOI
Sokolov D.A., Rouleau C.M., Geohegan D.B., Orlando T.M. Excimer laser reduction and patterning of graphite oxide. Carbon. 2013;53:81–89. doi: 10.1016/j.carbon.2012.10.034. DOI
Kasischke M., Maragkaki S., Volz S., Ostendorf A., Gurevich E.L. Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses. Appl. Surf. Sci. 2018;445:197–203. doi: 10.1016/j.apsusc.2018.03.086. DOI
Semerádtová A., Štofík M., Neděla O., Staněk O., Slepička P., Kolská Z., Malý J. A simple approach for fabrication of optical affinity-based bioanalytical microsystem on polymeric PEN foils. Colloids Surf. B Biointerfaces. 2018;165:28–36. doi: 10.1016/j.colsurfb.2018.01.048. PubMed DOI
Slepička P., Slepičková Kasálková N., Pinkner A., Sajdl P., Kolská Z., Švorčík V. Plasma induced cytocompatibility of stabilized poly-L-lactic acid doped with graphene nanoplatelets. React. Funct. Polym. 2018;131:266–275. doi: 10.1016/j.reactfunctpolym.2018.08.006. DOI
Lišková J., Slepičková Kasálková N., Slepička P., Švorčík V., Bačáková L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C. 2019;100:117–128. doi: 10.1016/j.msec.2019.02.105. PubMed DOI
Slepickova Kasalkova N., Žáková P., Stibor I., Slepička P., Kolská Z., Karpíšková J., Švorčík V. Carbon nanostructures grafted biopolymers for medical applications. Mater. Technol. 2019;34:376–385. doi: 10.1080/10667857.2019.1573943. DOI
Fajstavr D., Neznalová K., Švorčík V., Slepička P. LIPSS Structures Induced on Graphene-Polystyrene Composite. Materials. 2019;12:3460. doi: 10.3390/ma12213460. PubMed DOI PMC
Cutroneo M., Havránek V., Torrisi A., Mackova A., Malinsky P., Slepicka P., Sofer Z., Torrisi L. Polydimethylsiloxane–graphene oxide composite improving performance by ion beam irradiation. Surf. Interface Anal. 2020;52:1156–1162. doi: 10.1002/sia.6882. DOI
Slepicka P., Slepickova Kasalkova N., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI
Žáková P., Slepičková Kasálková N., Slepička P., Kolská Z., Karpíšková J., Stibor I., Švorčík V. Cytocompatibility of polyethylene grafted with triethylenetetramine functionalized carbon nanoparticles. Appl. Surf. Sci. 2017;422:809–816. doi: 10.1016/j.apsusc.2017.06.089. PubMed DOI
Ferrari A.C., Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. A. 2004;362:2477–2512. doi: 10.1098/rsta.2004.1452. PubMed DOI
Pimenta M.A., Dresselhaus G., Dresselhaus M.S., Cançado L.G., Jorio A., Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007;9:1276–1291. doi: 10.1039/B613962K. PubMed DOI
Couzi M., Bruneel J.L., Talaga D., Bokobza L. A multi wavelength Raman scattering study of defective graphitic carbon materials: The first order Raman spectra revisited. Carbon. 2016;107:388–394. doi: 10.1016/j.carbon.2016.06.017. DOI
Ferrari A.C., Basko D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013;8:235–246. doi: 10.1038/nnano.2013.46. PubMed DOI
Jorio A. Raman spectroscopy in graphene-based systems: Prototypes for nanoscience and nanotechnology. Int. Sch. Res. Not. 2012;2012:234216. doi: 10.5402/2012/234216. DOI
Dresselhaus M.S., Dresselhaus G., Saito R., Jorio A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005;49:47–99. doi: 10.1016/j.physrep.2004.10.006. DOI
He M., Yeo C. Evaluation of Thermal Degradation of DLC Film Using a Novel Raman Spectroscopy Technique. Coatings. 2018;8:143. doi: 10.3390/coatings8040143. DOI
Diniz dos Santos E., Luqueta G., Rajasekaran R., dos Santos T.B., Cesar Doria A.C.O., Radi P.A., Pessoa R.S., Vieira L., Maciel H.S. Macrophages adhesion rate on Ti-6Al-4V substrates: Polishing and DLC coating effects. Res. Biomed. Eng. 2016;32:144–152. doi: 10.1590/2446-4740.03616. DOI
Slepičková Kasálková N., Slepička P., Švorčík V. Carbon Nanostructures, Nanolayers, and Their Composites. Nanomaterials. 2021;11:2368. doi: 10.3390/nano11092368. PubMed DOI PMC
Gupta S., Sachan R., Narayan J. Scale-up of Q-carbon and nanodiamonds by pulsed laser annealing. Diam. Relat. Mater. 2019;99:107531. doi: 10.1016/j.diamond.2019.107531. DOI
Paetzel R., Brune J., Simon F., Herbst L., Machida M., Shida J. Activation of silicon wafer by excimer laser; Proceedings of the 18th International Conference on Advanced Thermal Processing of Semiconductors (RTP); Gainesville, FL, USA. 28 September–1 October 2010; pp. 98–102.
Conde J.C., Martín E., Chiussi S., Gontad F., González P. FEM for modelling 193 nm excimer laser treatment of SiO2/Si/Si1−x Gex heterostructures on SOI substrates. Phys. Status Solidi C. 2011;8:936–939. doi: 10.1002/pssc.201000376. DOI
Pecholta B., Gupta S., Molian P. Review of laser microscale processing of silicon carbide. J. Laser Appl. 2011;23:012008. doi: 10.2351/1.3562522. DOI
Calabretta C., Agati M., Zimbone M., Boninelli S., Castiello A., Pecora A., Fortunato G., Calcagno L., Torrisi L., La Via F. Laser Annealing of P and Al Implanted 4H-SiC Epitaxial Layers. Materials. 2019;12:3362. doi: 10.3390/ma12203362. PubMed DOI PMC
De Silva M., Ishikawa S., Miyazaki T., Kikkawa T., Kuroki S.L. Formation of amorphous alloys on 4H-SiC with NbNi film using pulsed-laser annealing. Appl. Phys. Lett. 2016;109:012101. doi: 10.1063/1.4955406. DOI
Zhang P., Liu X., Fang X., Chen X. Synthesis of single-layer graphene film by chemical vapor deposition with molten gallium catalyst on silicon dioxide. J. Mater. Sci. 2020;55:2787–2795. doi: 10.1007/s10853-019-04131-1. DOI
Islam F., Tahmasebi A., Moghtaderi B., Yu J. Structural Investigation of the Synthesized Few-Layer Graphene from Coal under Microwave. Nanomaterials. 2022;12:57. doi: 10.3390/nano12010057. PubMed DOI PMC
High-Energy Excimer Annealing of Nanodiamond Layers