Raman analysis
Dotaz
Zobrazit nápovědu
elektronický časopis
- Konspekt
- Chemie. Mineralogické vědy
- NLK Obory
- chemie, klinická chemie
- NLK Publikační typ
- elektronické časopisy
Ramanovu spektroskopii lze v chemii použít nejen k určování chemického složení, ale také pro získávání dalších informací o struktuře materiálu. Ve spektrech semikrystalických polymerů lze nalézt vzájemně odlišné pásy charakteristické pro krystalickou nebo amorfní fázi, stanovit z nich krystalinitu a z ní odhadnout míru degradace polymeru. V předložené studii byly vyhodnoceny změny raménka pásu na vlnočtu 1733 cm−1 v Ramanových spektrech vlákna z poly(p-dioxanonu) podrobeného hydrolytické degradaci. Pro různě dlouhé doby degradace byly vypočteny obsahy ploch pod raménkem tohoto pásu a též byl proveden jeho modelový rozklad na předpokládané píky krystalické a amorfní fáze. Obsahy ploch pod raménkem i parametry modelových píků byly porovnány s hodnotami krystalinity získanými pomocí diferenční skenovací kalorimetrie, přičemž bylo dosaženo dobré shody. Tato práce ukazuje příklad využití Ramanovy spektroskopie při studiu hydrolytické degradace polymerů.
Raman spectroscopy can be used in chemistry not just to determine chemical composition, but also to obtain further information on the material structure. In the spectra of semi-crystalline polymers, distinct bands characteristic of the crystalline or the amorphous phase can be found, the degree of crystallinity determined from them, and the degree of polymer degradation estimated from the crystallinity. In the present study, changes in the 1733 cm−1 band shoulder in Raman spectra of poly(p-dioxanone) fibres subjected to hydrolytic degradation were evaluated. For different degradation periods, the areas under the shoulder of this band were calculated and a model deconvolution of this band into assumed crystalline and amorphous peaks was also performed. The areas under the shoulder, as well as the model peaks' parameters, were compared with the crystallinity values obtained by differential scanning calorimetry, achieving a good agreement. This work shows an example of using Raman spectroscopy when studying the hydrolytic degradation of polymers.
A surface enhanced Raman scattering (SERS) spectrometry is an interesting alternative for a rapid molecular recognition of analytes at very low concentration levels. The hyphenation of this technique with advanced separation methods enhances its potential as a detection technique. Until now, it has been hyphenated mainly with common chromatographic and electrophoretic techniques. This work demonstrates for a first time a power of preparative isotachophoresis-surface enhanced Raman scattering spectrometry (pITP-SERS) combination on the analysis of model analyte (buserelin) in a complex biological sample (urine). An off-line identification of target analyte was performed using a comparison of Raman spectra of buserelin standard with spectra obtained by the analyses of the fractions from preparative isotachophoretic runs. SERS determination of buserelin was based on the method of standard addition to minimize the matrix effects. The linearity of developed method was obtained in the concentration range from 0.2 to 1.5 nmol L(-1) with coefficient of determination 0.991. The calculated limit of detection is in tens of pico mols per liter.
- MeSH
- buserelin moč MeSH
- izotachoforéza metody MeSH
- kovové nanočástice chemie MeSH
- lidé MeSH
- Ramanova spektroskopie metody MeSH
- senzitivita a specificita MeSH
- stříbro chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- karotenoidy MeSH
- membránové potenciály MeSH
- spektrální analýza MeSH
- žáby MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
Colonies of Candida parapsilosis on culture plates were probed directly in situ using Raman spectroscopy for rapid identification of specific strains separated by a given time intervals (up to months apart). To classify the Raman spectra, data analysis was performed using the approach of principal component analysis (PCA). The analysis of the data sets generated during the scans of individual colonies reveals that despite the inhomogeneity of the biological samples unambiguous associations to individual strains (two biofilm-positive and two biofilm-negative) could be made.
The search for the "Holy Grail" in clinical diagnostic microbiology-a reliable, accurate, low-cost, real-time, easy-to-use method-has brought up several methods with the potential to meet these criteria. One is Raman spectroscopy, an optical, nondestructive method based on the inelastic scattering of monochromatic light. The current study focuses on the possible use of Raman spectroscopy for identifying microbes causing severe, often life-threatening bloodstream infections. We included 305 microbial strains of 28 species acting as causative agents of bloodstream infections. Raman spectroscopy identified the strains from grown colonies, with 2.8% and 7% incorrectly identified strains using the support vector machine algorithm based on centered and uncentred principal-component analyses, respectively. We combined Raman spectroscopy with optical tweezers to speed up the process and captured and analyzed microbes directly from spiked human serum. The pilot study suggests that it is possible to capture individual microbial cells from human serum and characterize them by Raman spectroscopy with notable differences among different species. IMPORTANCE Bloodstream infections are among the most common causes of hospitalizations and are often life-threatening. To establish an effective therapy for a patient, the timely identification of the causative agent and characterization of its antimicrobial susceptibility and resistance profiles are essential. Therefore, our multidisciplinary team of microbiologists and physicists presents a method that reliably, rapidly, and inexpensively identifies pathogens causing bloodstream infections-Raman spectroscopy. We believe that it might become a valuable diagnostic tool in the future. Combined with optical trapping, it offers a new approach where the microorganisms are individually trapped in a noncontact way by optical tweezers and investigated by Raman spectroscopy directly in a liquid sample. Together with the automatic processing of measured Raman spectra and comparison with a database of microorganisms, it makes the whole identification process almost real time.
- MeSH
- algoritmy MeSH
- lidé MeSH
- optická pinzeta MeSH
- pilotní projekty MeSH
- Ramanova spektroskopie * metody MeSH
- sepse * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions.
Raman optical activity (ROA) is inherently sensitive to the secondary structure of biomolecules, which makes it a method of interest for finding new approaches to clinical applications based on blood plasma analysis, for instance the diagnostics of several protein-misfolding diseases. Unfortunately, real blood plasma exhibits strong background fluorescence when excited at 532 nm; hence, measuring the ROA spectra appears to be impossible. Therefore, we established a suitable method using a combination of kinetic quenchers, filtering, photobleaching, and a mathematical correction of residual fluorescence. Our method reduced the background fluorescence approximately by 90%, which allowed speedup for each measurement by an average of 50%. In addition, the signal-to-noise ratio was significantly increased, while the baseline distortion remained low. We assume that our method is suitable for the investigation of human blood plasma by ROA and may lead to the development of a new tool for clinical diagnostics.
- MeSH
- fluorescence MeSH
- krevní plazma chemie MeSH
- lidé MeSH
- optická otáčivost MeSH
- Ramanova spektroskopie přístrojové vybavení metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Raman spectroscopy is a useful technique to identify small organic molecules, including contaminants. The drop coating deposition Raman (DCDR) is more sensitive than conventional Raman spectroscopy from solution. It is based on Raman measurement from a small drop dried on a hydrophobic surface where studied molecules are preconcentrated. In this paper, DCDR spectra of dried drops of selected contaminants (food contaminant melamine, fungicide thiram, herbicides bentazon and picloram) on the hydrophobic substrate were acquired for the first time, whereas Raman spectra from stock solutions were impossible to obtain under the same experimental conditions. The lowest DCDR detected concentrations were determined as 6.4 µM, 0.31 µM, 20 µM and 2 µM in deposited concentrations for melamine, thiram, bentazon and picloram, respectively. Therefore, DCDR spectroscopy can serve to detect these molecules in concentrations relevant in food/groundwater contaminations.
- MeSH
- hydrofobní a hydrofilní interakce MeSH
- Ramanova spektroskopie * MeSH
- Publikační typ
- časopisecké články MeSH
Raman spectroscopy is a powerful tool for the elucidation of qualitative and quantitative information from biological systems and has huge potential in areas such as biotechnologies, drug discovery, agro-chemical research and clinical diagnostics. This report summarises the principal Raman techniques applied to biomedical systems and discusses the challenges that exist to the wide spread adoption of Raman spectroscopy.
- MeSH
- lidé MeSH
- nelineární dynamika MeSH
- optika a fotonika * MeSH
- Ramanova spektroskopie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH