High-Energy Excimer Annealing of Nanodiamond Layers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36770517
PubMed Central
PMC9921808
DOI
10.3390/nano13030557
PII: nano13030557
Knihovny.cz E-zdroje
- Klíčová slova
- Q-carbon, carbon, excimer laser, nanodiamonds, nanostructure, raman spectroscopy, surface analysis,
- Publikační typ
- časopisecké články MeSH
Here, we aimed to achieve exposure of a nanodiamond layer to a high-energy excimer laser. The treatment was realized in high-vacuum conditions. The carbon, in the form of nanodiamonds (NDs), underwent high-temperature changes. The induced changes in carbon form were studied with Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction (XRD) and we searched for the Q-carbon phase in the prepared structure. Surface morphology changes were detected by atomic force microscopy (AFM) and scanning electron microscopy (SEM). NDs were exposed to different laser energy values, from 1600 to 3000 mJ cm-2. Using the AFM and SEM methods, we found that the NDs layer was disrupted with increasing beam energy, to create a fibrous structure resembling Q-carbon fibers. Layered micro-/nano-spheres, representing the role of diamonds, were created at the junction of the fibers. A Q-carbon structure (fibers) consisting of 80% sp3 hybridization was prepared by melting and quenching the nanodiamond film. Higher energy values of the laser beam (2000 and 3000 mJ cm-2), in addition to oxygen bonds, also induced carbide bonds characteristic of Q-carbon. Raman spectroscopy confirmed the presence of a diamond (sp3) phase and a low-intensity graphitic (G) peak occurring in the Q-carbon form samples.
Zobrazit více v PubMed
Hu H.J., Zhang C., Guo J., Ding X.Y., Wang Q., Zhang Y.W., Yu Z.G. Carbon allotropes consisting of rings and cubes. Diam. Relat. Mater. 2022;121:108765. doi: 10.1016/j.diamond.2021.108765. DOI
Satoh M., Takayanagi I. Pharmacological Studies on Fullerene (C60), a Novel Carbon Allotrope, and Its Derivatives. J. Pharmacol. Sci. 2006;100:513–518. doi: 10.1254/jphs.CPJ06002X. PubMed DOI
Eatemadi A., Daraee H., Karimkhanloo H., Kouhi M., Zarghami N., Akbarzadeh A., Abasi M., Hanifehpour Y., Woo Joo S. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014;9:393. doi: 10.1186/1556-276X-9-393. PubMed DOI PMC
Kim Y.A., Hayashi T., Endo M., Dresselhaus M.S. Springer Handbook of Nanomaterials. Springer; Berlin/Heidelberg, Germany: 2013. Carbon Nanofibers; pp. 233–262. Chapter 7. DOI
Xin L., Jiaguo Y., Wageh S., Al-Ghamdi A.A., Xie J. Graphene in Photocatalysis: A Review. Small. 2016;12:6640–6696. doi: 10.1002/smll.201600382. PubMed DOI
Zhang R.S., Jiang J.W. The art of designing carbon allotropes. Front. Phys. 2019;14:13401. doi: 10.1007/s11467-018-0836-5. DOI
Slepičková Kasálková N., Slepička P., Švorčík V. Carbon Nanostructures, Nanolayers, and Their Composites. Nanomaterials. 2021;11:2368. doi: 10.3390/nano11092368. PubMed DOI PMC
Kaur H., Garg R., Singh S., Jana A., Bathula C., Kim H.S., Kumbar S.G., Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J. Mol. Liq. 2022;368:120703. doi: 10.1016/j.molliq.2022.120703. PubMed DOI PMC
Yoshinaka H., Inubushi S., Wakita T., Yokoya T., Muraoka Y. Formation of Q-carbon by adjusting sp3 content in diamond-like carbon films and laser energy density of pulsed laser annealing. Carbon. 2020;167:504–511. doi: 10.1016/j.carbon.2020.06.025. DOI
Sachan R., Bhaumik A., Pant P., Pratera J., Narayan J. Diamond film growth by HFCVD on Q-carbon seeded substrate. Carbon. 2019;141:182–189. doi: 10.1016/j.carbon.2018.09.058. DOI
Haque A., Narayan J. Electron field emission from Q-carbon. Diam. Relat. Mater. 2018;86:71–78. doi: 10.1016/j.diamond.2018.04.008. DOI
Narayan J., Joshi P., Smith J., Gao W., Weber W.J., Narayan R.J. Q-carbon as a new radiation-resistant material. Carbon. 2022;186:253–261. doi: 10.1016/j.carbon.2021.10.006. DOI
Slepičková Kasálková M., Hurtuková K., Fajstavr D., Lapčák L., Sajdl P., Kolská Z., Švorčík V., Slepička P. Carbon Transformation Induced by High Energy Excimer Treatment. Materials. 2022;15:4614. doi: 10.3390/ma15134614. PubMed DOI PMC
Narayan J., Bhaumik A. Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 2015;188:215303. doi: 10.1063/1.4936595. DOI
Kern F., Bernstein A., Killinger A. Advances in Ceramic Biomaterials. Elsevier Ltd.; Amsterdam, The Netherlands: 2017. Design of ceramic materials for orthopedic devices; pp. 331–353. Chapter 10. DOI
Sun L., Yuan G., Gao L., Yang J., Chhowalla M., Gharahcheshmeh M.H., Gleason K.K., Choi Y.S., Hong B.H., Liu Z. Chemical vapour deposition. Nat. Rev. Methods Prim. 2021;1:5. doi: 10.1038/s43586-020-00005-y. DOI
Prasanna S.R.V.S., Balaji K., Pandey S., Rana S. Nanomaterials and Polymer Nanocomposites. Elsevier; Amsterdam, The Netherlands: 2019. Metal Oxide Based Nanomaterials and Their Polymer Nanocomposites; pp. 123–144. Chapter 4. DOI
Bleu Y., Bourquard F., Tite T., Loir A.S., Maddi C., Donnet C., Garrelie F. Review of Graphene Growth from a Solid Carbon Source by Pulsed Laser Deposition (PLD) Front. Chem. 2018;6:572. doi: 10.3389/fchem.2018.00572. PubMed DOI PMC
Nur O., Willander M. Low Temperature Chemical Nanofabrication. William Andrew; Norwich, NY, USA: 2020. Conventional nanofabrication methods; pp. 49–86. Chapter 4. DOI
Cutroneo M., Havranek V., Flaks J., Malinsky P., Torrisi L., Silipigni L., Slepička P., Fajstavr D., Mackova A. Pulsed Laser Deposition and Laser-Induced Backward Transfer to Modify Polydimethylsiloxane. Coatings. 2021;11:1521. doi: 10.3390/coatings11121521. DOI
Sachan R., Gupta S., Narayan J. Nonequilibrium Structural Evolution of Q-Carbon and Interfaces. ACS Appl. Mater. Interfaces. 2020;12:1330–1338. doi: 10.1021/acsami.9b17428. PubMed DOI
Pandey K., Dwivedi M.M., Sanjay S.S. A brief review on synthesis and application of polymer–nanodiamond compositeInterfaces. Mater. Today Proc. 2022;68:2772–2780. doi: 10.1016/j.matpr.2022.09.032. DOI
Chauhan S., Jain N., Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J. Pharm. Anal. 2020;10:1–12. doi: 10.1016/j.jpha.2019.09.003. PubMed DOI PMC
Qin J.X., Yang X.G., Lv C.F., Li Y.Z., Liu K.K., Zang J.H., Yang X., Dong L., Shan C.X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021;210:110091. doi: 10.1016/j.matdes.2021.110091. DOI
Haque A., Pant P., Narayan J. Large-area diamond thin film on Q-carbon coated crystalline sapphire by HFCVD. J. Cryst. Growth. 2018;504:17–25. doi: 10.1016/j.jcrysgro.2018.09.036. DOI
Chen Y.C., Chang L. Chemical vapor deposition of diamond on an adamantane-coated sapphire substrate. RSC Adv. 2014;4:18945–18950. doi: 10.1039/C4RA01042F. DOI
Narayan J., Bhaumik A., Gupta S., Joshi P., Riley P., Narayan R.J. Formation of self-organized nano- and microdiamond rings. Mater. Res. Lett. 2021;9:300–307. doi: 10.1080/21663831.2021.1907627. DOI
Gupta S., Sachan R., Narayan J. Scale-up of Q-carbon and nanodiamonds by pulsed laser annealing. Diam. Relat. Mater. 2019;99:107531. doi: 10.1016/j.diamond.2019.107531. DOI
Joshi P., Gupta S., Haque A., Narayan J. Fabrication of ultrahard Q-carbon nanocoatings on AISI 304 and 316 stainless steels and subsequent formation of high-quality diamond films. Diam. Relat. Mater. 2020;104:10774. doi: 10.1016/j.diamond.2020.107742. DOI
Jackson M.J., Hyde L.J., Ahmed W., Sein H., Flaxman R.P. Diamond-Coated Cutting Tools for Biomedical Applications. J. Mater. Eng. Perform. 2004;13:421–430. doi: 10.1361/1059949041848819. DOI
Artini C., Muolo M.L., Passerone A. Diamond–Metal Interfaces in Cutting Tools: A Review. J. Mater. Sci. 2011;47:3252–3264. doi: 10.1007/s10853-011-6164-6. DOI
Kawasegi N., Ozaki K., Morita N., Nishimura K., Yamaguchi M. Development and Machining Performance of a Textured Diamond Cutting Tool Fabricated with a Focused Ion Beam and Heat Treatment. Precis. Eng. 2017;47:311–320. doi: 10.1016/j.precisioneng.2016.09.005. DOI
Zong W.J., Sun T., Li D., Cheng K. Design Criterion for Crystal Orientation of Diamond Cutting Tool. Diam. Relat. Mater. 2009;18:642–650. doi: 10.1016/j.diamond.2008.11.003. DOI
Ashkinazi E., Fedorov S., Khomich A., Rogalin V., Bolshakov A., Sovyk D., Grigoriev S., Konov V. Technology Features of Diamond Coating Deposition on a Carbide Tool. C. 2022;8:77–102. doi: 10.3390/c8040077. DOI
Baron S., Tounsi T., Gäbler J., Mahlfeld G., Stein C., Höfer M., Sittinger V., Hoffmeister H.-W., Herrmann C., Dröder K. Diamond coatings for advanced cutting tools in honing and grinding. Procedia CIRP. 2022;108:589–594. doi: 10.1016/j.procir.2022.03.093. DOI
Basso L., Cazzanelli M., Orlandi M., Miotello A. Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. Appl. Sci. 2020;10:4094. doi: 10.3390/app10124094. DOI
Remediakis I.N., Kopidakis G., Kelires P.C. Softening of Ultra-Nanocrystalline Diamond at Low Grain Sizes. Acta Mater. 2008;56:5340–5344. doi: 10.1016/j.actamat.2008.07.014. DOI
Shevchenko V.Y., Madison A.E., Yur’ev G.S. Structure of Nanodiamonds. Glass Phys. Chem. 2006;32:261–266. doi: 10.1134/S1087659606030011. DOI
Narayan J., Gupta S., Bhaumik A., Sachan R., Cellini F., Riedo E. Q-Carbon Harder than Diamond. MRS Commun. 2018;8:428–436. doi: 10.1557/mrc.2018.35. DOI
Khosla N., Narayan J. Fabrication of Q-Carbon Nanostructures, Diamond and Their Composites with Wafer-Scale Integration. Crystals. 2022;12:615. doi: 10.3390/cryst12050615. DOI
Narayan J., Khosla N. Self-Organization of Amorphous Q-Carbon and Q-BN Nanoballs. Carbon. 2022;192:301–307. doi: 10.1016/j.carbon.2022.03.003. DOI
Hues S.H., Lovejoy L. Handbook of Silicon Wafer Cleaning Technology. 2nd ed. William Andrew Publishing; Norwich, NY, USA: 2008. Ultratrace Impurity Analysis of Wafer Surfaces. DOI
Guy O.J., Walker K.A.D. Silicon Carbide Biotechnology. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2016. Graphene Functionalization for Biosensor Applications. DOI
Riley P.R., Joshi P., Khosla N., Narayan R.J., Narayan J. Formation of Q-Carbon with Wafer Scale Integration. Carbon. 2022;196:972–978. doi: 10.1016/j.carbon.2022.06.003. DOI
Dychalska A., Popielarski P., Franków W., Fabisiak K., Paprocki K., Szybowicz M. Study of CVD Diamond Layers with Amorphous Carbon Admixture by Raman Scattering Spectroscopy. Mater. Sci.-Pol. 2015;33:799–805. doi: 10.1515/msp-2015-0067. DOI
Hu X.J., Chen X.H., Ye J.S. The Roles of Hydrogen in the Diamond/Amorphous Carbon Phase Transitions of Oxygen Ion Implanted Ultrananocrystalline Diamond Films at Different Annealing Temperatures. AIP Adv. 2012;2:042109. doi: 10.1063/1.4759087. DOI
Thomas E.L.H., Ginés L., Mandal S., Klemencic G.M., Williams O.A. A Simple, Space Constrained NIRIM Type Reactor for Chemical Vapour Deposition of Diamond. AIP Adv. 2018;8:035325. doi: 10.1063/1.5009182. DOI
Ferrari A.C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI
Narayan J., Bhaumik A. Research Update: Direct Conversion of Amorphous Carbon into Diamond at Ambient Pressures and Temperatures in Air. APL Mater. 2015;3:100702. doi: 10.1063/1.4932622. DOI
Gupta S., Sachan R., Bhaumik A., Pant P., Narayan J. Undercooling Driven Growth of Q-Carbon, Diamond, and Graphite. MRS Commun. 2018;8:533–540. doi: 10.1557/mrc.2018.76. DOI
Bhaumik A., Sachan R., Narayan J. A Novel High-Temperature Carbon-Based Superconductor: B-Doped Q-Carbon. J. Appl. Phys. 2017;122:045301. doi: 10.1063/1.4994787. DOI
Katharria Y.S., Kumar S., Singh F., Pivin J.C., Kanjilal D. Synthesis of Buried SiC Using an Energetic Ion Beam. J. Phys. Appl. Phys. 2006;39:3969–3973. doi: 10.1088/0022-3727/39/18/007. DOI
Zhao Q., Xu J., Xu X.Y., Wang Z., Yu D.P. Field Emission from AlN Nanoneedle Arrays. Appl. Phys. Lett. 2004;85:5331–5333. doi: 10.1063/1.1825620. DOI
Bhaumik A., Nori S., Sachan R., Gupta S., Kumar D., Majumdar A.K., Narayan J. Room-Temperature Ferromagnetism and Extraordinary Hall Effect in Nanostructured Q-Carbon: Implications for Potential Spintronic Devices. ACS Appl. Nano Mater. 2018;1:807–819. doi: 10.1021/acsanm.7b00253. DOI
Jiang J., Tzeng Y. Mechanisms of Suppressing Secondary Nucleation for Low-Power and Low-Temperature Microwave Plasma Self-Bias-Enhanced Growth of Diamond Films in Argon Diluted Methane. AIP Adv. 2011;1:042117. doi: 10.1063/1.3656241. DOI