High-Energy Excimer Annealing of Nanodiamond Layers

. 2023 Jan 30 ; 13 (3) : . [epub] 20230130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36770517

Here, we aimed to achieve exposure of a nanodiamond layer to a high-energy excimer laser. The treatment was realized in high-vacuum conditions. The carbon, in the form of nanodiamonds (NDs), underwent high-temperature changes. The induced changes in carbon form were studied with Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction (XRD) and we searched for the Q-carbon phase in the prepared structure. Surface morphology changes were detected by atomic force microscopy (AFM) and scanning electron microscopy (SEM). NDs were exposed to different laser energy values, from 1600 to 3000 mJ cm-2. Using the AFM and SEM methods, we found that the NDs layer was disrupted with increasing beam energy, to create a fibrous structure resembling Q-carbon fibers. Layered micro-/nano-spheres, representing the role of diamonds, were created at the junction of the fibers. A Q-carbon structure (fibers) consisting of 80% sp3 hybridization was prepared by melting and quenching the nanodiamond film. Higher energy values of the laser beam (2000 and 3000 mJ cm-2), in addition to oxygen bonds, also induced carbide bonds characteristic of Q-carbon. Raman spectroscopy confirmed the presence of a diamond (sp3) phase and a low-intensity graphitic (G) peak occurring in the Q-carbon form samples.

Zobrazit více v PubMed

Hu H.J., Zhang C., Guo J., Ding X.Y., Wang Q., Zhang Y.W., Yu Z.G. Carbon allotropes consisting of rings and cubes. Diam. Relat. Mater. 2022;121:108765. doi: 10.1016/j.diamond.2021.108765. DOI

Satoh M., Takayanagi I. Pharmacological Studies on Fullerene (C60), a Novel Carbon Allotrope, and Its Derivatives. J. Pharmacol. Sci. 2006;100:513–518. doi: 10.1254/jphs.CPJ06002X. PubMed DOI

Eatemadi A., Daraee H., Karimkhanloo H., Kouhi M., Zarghami N., Akbarzadeh A., Abasi M., Hanifehpour Y., Woo Joo S. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014;9:393. doi: 10.1186/1556-276X-9-393. PubMed DOI PMC

Kim Y.A., Hayashi T., Endo M., Dresselhaus M.S. Springer Handbook of Nanomaterials. Springer; Berlin/Heidelberg, Germany: 2013. Carbon Nanofibers; pp. 233–262. Chapter 7. DOI

Xin L., Jiaguo Y., Wageh S., Al-Ghamdi A.A., Xie J. Graphene in Photocatalysis: A Review. Small. 2016;12:6640–6696. doi: 10.1002/smll.201600382. PubMed DOI

Zhang R.S., Jiang J.W. The art of designing carbon allotropes. Front. Phys. 2019;14:13401. doi: 10.1007/s11467-018-0836-5. DOI

Slepičková Kasálková N., Slepička P., Švorčík V. Carbon Nanostructures, Nanolayers, and Their Composites. Nanomaterials. 2021;11:2368. doi: 10.3390/nano11092368. PubMed DOI PMC

Kaur H., Garg R., Singh S., Jana A., Bathula C., Kim H.S., Kumbar S.G., Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J. Mol. Liq. 2022;368:120703. doi: 10.1016/j.molliq.2022.120703. PubMed DOI PMC

Yoshinaka H., Inubushi S., Wakita T., Yokoya T., Muraoka Y. Formation of Q-carbon by adjusting sp3 content in diamond-like carbon films and laser energy density of pulsed laser annealing. Carbon. 2020;167:504–511. doi: 10.1016/j.carbon.2020.06.025. DOI

Sachan R., Bhaumik A., Pant P., Pratera J., Narayan J. Diamond film growth by HFCVD on Q-carbon seeded substrate. Carbon. 2019;141:182–189. doi: 10.1016/j.carbon.2018.09.058. DOI

Haque A., Narayan J. Electron field emission from Q-carbon. Diam. Relat. Mater. 2018;86:71–78. doi: 10.1016/j.diamond.2018.04.008. DOI

Narayan J., Joshi P., Smith J., Gao W., Weber W.J., Narayan R.J. Q-carbon as a new radiation-resistant material. Carbon. 2022;186:253–261. doi: 10.1016/j.carbon.2021.10.006. DOI

Slepičková Kasálková M., Hurtuková K., Fajstavr D., Lapčák L., Sajdl P., Kolská Z., Švorčík V., Slepička P. Carbon Transformation Induced by High Energy Excimer Treatment. Materials. 2022;15:4614. doi: 10.3390/ma15134614. PubMed DOI PMC

Narayan J., Bhaumik A. Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 2015;188:215303. doi: 10.1063/1.4936595. DOI

Kern F., Bernstein A., Killinger A. Advances in Ceramic Biomaterials. Elsevier Ltd.; Amsterdam, The Netherlands: 2017. Design of ceramic materials for orthopedic devices; pp. 331–353. Chapter 10. DOI

Sun L., Yuan G., Gao L., Yang J., Chhowalla M., Gharahcheshmeh M.H., Gleason K.K., Choi Y.S., Hong B.H., Liu Z. Chemical vapour deposition. Nat. Rev. Methods Prim. 2021;1:5. doi: 10.1038/s43586-020-00005-y. DOI

Prasanna S.R.V.S., Balaji K., Pandey S., Rana S. Nanomaterials and Polymer Nanocomposites. Elsevier; Amsterdam, The Netherlands: 2019. Metal Oxide Based Nanomaterials and Their Polymer Nanocomposites; pp. 123–144. Chapter 4. DOI

Bleu Y., Bourquard F., Tite T., Loir A.S., Maddi C., Donnet C., Garrelie F. Review of Graphene Growth from a Solid Carbon Source by Pulsed Laser Deposition (PLD) Front. Chem. 2018;6:572. doi: 10.3389/fchem.2018.00572. PubMed DOI PMC

Nur O., Willander M. Low Temperature Chemical Nanofabrication. William Andrew; Norwich, NY, USA: 2020. Conventional nanofabrication methods; pp. 49–86. Chapter 4. DOI

Cutroneo M., Havranek V., Flaks J., Malinsky P., Torrisi L., Silipigni L., Slepička P., Fajstavr D., Mackova A. Pulsed Laser Deposition and Laser-Induced Backward Transfer to Modify Polydimethylsiloxane. Coatings. 2021;11:1521. doi: 10.3390/coatings11121521. DOI

Sachan R., Gupta S., Narayan J. Nonequilibrium Structural Evolution of Q-Carbon and Interfaces. ACS Appl. Mater. Interfaces. 2020;12:1330–1338. doi: 10.1021/acsami.9b17428. PubMed DOI

Pandey K., Dwivedi M.M., Sanjay S.S. A brief review on synthesis and application of polymer–nanodiamond compositeInterfaces. Mater. Today Proc. 2022;68:2772–2780. doi: 10.1016/j.matpr.2022.09.032. DOI

Chauhan S., Jain N., Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J. Pharm. Anal. 2020;10:1–12. doi: 10.1016/j.jpha.2019.09.003. PubMed DOI PMC

Qin J.X., Yang X.G., Lv C.F., Li Y.Z., Liu K.K., Zang J.H., Yang X., Dong L., Shan C.X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021;210:110091. doi: 10.1016/j.matdes.2021.110091. DOI

Haque A., Pant P., Narayan J. Large-area diamond thin film on Q-carbon coated crystalline sapphire by HFCVD. J. Cryst. Growth. 2018;504:17–25. doi: 10.1016/j.jcrysgro.2018.09.036. DOI

Chen Y.C., Chang L. Chemical vapor deposition of diamond on an adamantane-coated sapphire substrate. RSC Adv. 2014;4:18945–18950. doi: 10.1039/C4RA01042F. DOI

Narayan J., Bhaumik A., Gupta S., Joshi P., Riley P., Narayan R.J. Formation of self-organized nano- and microdiamond rings. Mater. Res. Lett. 2021;9:300–307. doi: 10.1080/21663831.2021.1907627. DOI

Gupta S., Sachan R., Narayan J. Scale-up of Q-carbon and nanodiamonds by pulsed laser annealing. Diam. Relat. Mater. 2019;99:107531. doi: 10.1016/j.diamond.2019.107531. DOI

Joshi P., Gupta S., Haque A., Narayan J. Fabrication of ultrahard Q-carbon nanocoatings on AISI 304 and 316 stainless steels and subsequent formation of high-quality diamond films. Diam. Relat. Mater. 2020;104:10774. doi: 10.1016/j.diamond.2020.107742. DOI

Jackson M.J., Hyde L.J., Ahmed W., Sein H., Flaxman R.P. Diamond-Coated Cutting Tools for Biomedical Applications. J. Mater. Eng. Perform. 2004;13:421–430. doi: 10.1361/1059949041848819. DOI

Artini C., Muolo M.L., Passerone A. Diamond–Metal Interfaces in Cutting Tools: A Review. J. Mater. Sci. 2011;47:3252–3264. doi: 10.1007/s10853-011-6164-6. DOI

Kawasegi N., Ozaki K., Morita N., Nishimura K., Yamaguchi M. Development and Machining Performance of a Textured Diamond Cutting Tool Fabricated with a Focused Ion Beam and Heat Treatment. Precis. Eng. 2017;47:311–320. doi: 10.1016/j.precisioneng.2016.09.005. DOI

Zong W.J., Sun T., Li D., Cheng K. Design Criterion for Crystal Orientation of Diamond Cutting Tool. Diam. Relat. Mater. 2009;18:642–650. doi: 10.1016/j.diamond.2008.11.003. DOI

Ashkinazi E., Fedorov S., Khomich A., Rogalin V., Bolshakov A., Sovyk D., Grigoriev S., Konov V. Technology Features of Diamond Coating Deposition on a Carbide Tool. C. 2022;8:77–102. doi: 10.3390/c8040077. DOI

Baron S., Tounsi T., Gäbler J., Mahlfeld G., Stein C., Höfer M., Sittinger V., Hoffmeister H.-W., Herrmann C., Dröder K. Diamond coatings for advanced cutting tools in honing and grinding. Procedia CIRP. 2022;108:589–594. doi: 10.1016/j.procir.2022.03.093. DOI

Basso L., Cazzanelli M., Orlandi M., Miotello A. Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. Appl. Sci. 2020;10:4094. doi: 10.3390/app10124094. DOI

Remediakis I.N., Kopidakis G., Kelires P.C. Softening of Ultra-Nanocrystalline Diamond at Low Grain Sizes. Acta Mater. 2008;56:5340–5344. doi: 10.1016/j.actamat.2008.07.014. DOI

Shevchenko V.Y., Madison A.E., Yur’ev G.S. Structure of Nanodiamonds. Glass Phys. Chem. 2006;32:261–266. doi: 10.1134/S1087659606030011. DOI

Narayan J., Gupta S., Bhaumik A., Sachan R., Cellini F., Riedo E. Q-Carbon Harder than Diamond. MRS Commun. 2018;8:428–436. doi: 10.1557/mrc.2018.35. DOI

Khosla N., Narayan J. Fabrication of Q-Carbon Nanostructures, Diamond and Their Composites with Wafer-Scale Integration. Crystals. 2022;12:615. doi: 10.3390/cryst12050615. DOI

Narayan J., Khosla N. Self-Organization of Amorphous Q-Carbon and Q-BN Nanoballs. Carbon. 2022;192:301–307. doi: 10.1016/j.carbon.2022.03.003. DOI

Hues S.H., Lovejoy L. Handbook of Silicon Wafer Cleaning Technology. 2nd ed. William Andrew Publishing; Norwich, NY, USA: 2008. Ultratrace Impurity Analysis of Wafer Surfaces. DOI

Guy O.J., Walker K.A.D. Silicon Carbide Biotechnology. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2016. Graphene Functionalization for Biosensor Applications. DOI

Riley P.R., Joshi P., Khosla N., Narayan R.J., Narayan J. Formation of Q-Carbon with Wafer Scale Integration. Carbon. 2022;196:972–978. doi: 10.1016/j.carbon.2022.06.003. DOI

Dychalska A., Popielarski P., Franków W., Fabisiak K., Paprocki K., Szybowicz M. Study of CVD Diamond Layers with Amorphous Carbon Admixture by Raman Scattering Spectroscopy. Mater. Sci.-Pol. 2015;33:799–805. doi: 10.1515/msp-2015-0067. DOI

Hu X.J., Chen X.H., Ye J.S. The Roles of Hydrogen in the Diamond/Amorphous Carbon Phase Transitions of Oxygen Ion Implanted Ultrananocrystalline Diamond Films at Different Annealing Temperatures. AIP Adv. 2012;2:042109. doi: 10.1063/1.4759087. DOI

Thomas E.L.H., Ginés L., Mandal S., Klemencic G.M., Williams O.A. A Simple, Space Constrained NIRIM Type Reactor for Chemical Vapour Deposition of Diamond. AIP Adv. 2018;8:035325. doi: 10.1063/1.5009182. DOI

Ferrari A.C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI

Narayan J., Bhaumik A. Research Update: Direct Conversion of Amorphous Carbon into Diamond at Ambient Pressures and Temperatures in Air. APL Mater. 2015;3:100702. doi: 10.1063/1.4932622. DOI

Gupta S., Sachan R., Bhaumik A., Pant P., Narayan J. Undercooling Driven Growth of Q-Carbon, Diamond, and Graphite. MRS Commun. 2018;8:533–540. doi: 10.1557/mrc.2018.76. DOI

Bhaumik A., Sachan R., Narayan J. A Novel High-Temperature Carbon-Based Superconductor: B-Doped Q-Carbon. J. Appl. Phys. 2017;122:045301. doi: 10.1063/1.4994787. DOI

Katharria Y.S., Kumar S., Singh F., Pivin J.C., Kanjilal D. Synthesis of Buried SiC Using an Energetic Ion Beam. J. Phys. Appl. Phys. 2006;39:3969–3973. doi: 10.1088/0022-3727/39/18/007. DOI

Zhao Q., Xu J., Xu X.Y., Wang Z., Yu D.P. Field Emission from AlN Nanoneedle Arrays. Appl. Phys. Lett. 2004;85:5331–5333. doi: 10.1063/1.1825620. DOI

Bhaumik A., Nori S., Sachan R., Gupta S., Kumar D., Majumdar A.K., Narayan J. Room-Temperature Ferromagnetism and Extraordinary Hall Effect in Nanostructured Q-Carbon: Implications for Potential Spintronic Devices. ACS Appl. Nano Mater. 2018;1:807–819. doi: 10.1021/acsanm.7b00253. DOI

Jiang J., Tzeng Y. Mechanisms of Suppressing Secondary Nucleation for Low-Power and Low-Temperature Microwave Plasma Self-Bias-Enhanced Growth of Diamond Films in Argon Diluted Methane. AIP Adv. 2011;1:042117. doi: 10.1063/1.3656241. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...