Replicated biopolymer pattern on PLLA-Ag basis with an excellent antibacterial response
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38027944
PubMed Central
PMC10663834
DOI
10.1016/j.heliyon.2023.e21566
PII: S2405-8440(23)08774-1
Knihovny.cz E-zdroje
- Klíčová slova
- Antibacterial properties, Hot-embossing, Nano-lithography, Nanopattern, Nanostructures, Organic coating, PDMS, Replication, Silver nanoclusters, Soft-lithography, poly(l-lactic acid),
- Publikační typ
- časopisecké články MeSH
The design of functional micro or nanostructured surfaces is undergoing extensive research for their intriguing multifunctional properties and for large variety of potential applications in biomedical field (tissue engineering or cell adhesion), electronics, optics or microfluidics. Such nanosized topographies can be easily fabricated by various lithography techniques and can be also further reinforced by synergic effect by combining aforementioned structures along materials with already outstanding antibacterial properties. In this work we fabricated novel micro/nanostructured substrates using soft lithography replication method and subsequent thermal nanoimprint lithography method, creating nanostructured films based on poly (l-lactic acid) (PLLA) fortified by thin silver films deposited by PVD. Main nanoscale patterns were fabricated by replicating surface patterns of optical discs (CDs and DVDs), which proved to be easy, fast and inexpensive method for creating relatively large area patterned surfaces. Their antimicrobial activity was examined in vitro against the bacteria Escherichia coli and Staphylococcus epidermidis strains. The results demonstrated that nanopatterned films actually improved the conditions for bacterial growth compared to pristine PLLA films, the novelty is based on formation of Ag nanoparticles on the surface/and in bulk, while silver nanoparticle enhanced and nanopatterned films exhibited excellent antibacterial activity against both bacterial strains, with circa 80 % efficacy in 4 h and complete bactericidal effect in span of 24 h.
Zobrazit více v PubMed
Solga A., Cerman Z., Striffler B.F., Spaeth M., Barthlott W. The dream of staying clean: Lotus and biomimetic surfaces. Bioinspiration Biomimetics. 2007;2(4):S126. PubMed
Chen Z., Zhang Z., Wang Y., Xu D., Zhao Y. Butterfly inspired functional materials. Mater. Sci. Eng. R Rep. 2021;144
Zhang G., Zhang J., Xie G., Liu Z., Shao H. Cicada wings: a stamp from nature for nanoimprint lithography. Small. 2006;2(12):1440–1443. PubMed
Ivanova E.P., Hasan J., Webb H.K., Truong V.K., Watson G.S., Watson J.A., Baulin V.A., Pogodin S., Wang J.Y., Tobin M.J., Löbbe C., Crawford R.J. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small. 2012;8(16):2489–2494. PubMed
Jiang R., Hao L., Song L., Tian L., Fan Y., Zhao J., Liu C., Ming W., Ren L. Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances. Chem. Eng. J. 2020;398
Bohlim N., Lee D., Ryu S., Wilson R.A. Mimicking the surface mechanical properties of rice (Oryzae sativa) leaf using PDMS soft lithography. JMST Advances. 2021;3(1):11–17.
Xia D., Johnson L.M., López G.P. Anisotropic wetting surfaces with one-dimesional and directional structures: fabrication approaches, wetting properties and potential applications. Adv. Mater. 2012;24(10):1287–1302. PubMed
Wang W., Liu Y., Xie Z. Gecko-like dry adhesive surfaces and their applications: a review. JBE. 2021;18(5):1011–1044.
Chien H.-W., Chen X.-Y., Tsai W.-P., Lee M. Inhibition of biofilm formation by rough shark skin-patterned surfaces. Colloids Surf. B Biointerfaces. 2020;186 PubMed
Guo C., Tian Q., Wang H., Sun J., Du L., Wang M., Zhao D. Roller embossing process for the replication of shark-skin-inspired micro-riblets. Micro & Nano Lett. 2017;12(7):439–444.
Dundar Arisoy F., Kolewe K.W., Homyak B., Kurtz I.S., Schiffman J.D., Watkins J.J. Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography. ACS Appl. Mater. Interfaces. 2018;10(23):20055–20063. PubMed PMC
Sabra R., Bora G. Evolution of antibacterial and antibiofouling properties of sharkskin-patterned surfaces. Surf. Innovations. 2022;10(3):165–190.
Jaggessar A., Shahali H., Mathew A., Yarlagadda P.K.D.V. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 2017;15(1):64. PubMed PMC
Hasan J., Jain S., Padmarajan R., Purighalla S., Sambandamurthy V.K., Chatterjee K. Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria. Mater. Des. 2018;140:332–344. PubMed PMC
Handrea-Dragan I.M., Botiz I., Tatar A.-S., Boca S. Patterning at the micro/nano-scale: polymeric scaffolds for medical diagnostic and cell-surface interaction applications. Colloids Surf. B Biointerfaces. 2022;218 PubMed
Peng L., Deng Y., Yi P., Lai X. Micro hot embossing of thermoplastic polymers: a review. J. Micromech. Microeng. 2014;24(1)
Viela F., Navarro-Baena I., Hernández J.J., Osorio M.R., Rodríguez I. Moth-eye mimetic cytocompatible bactericidal nanotopography: a convergent design. Bioinspiration Biomimetics. 2018;13(2) PubMed
Hazell G., Fisher L.E., Murray W.A., Nobbs A.H., Su B. Bioinspired bactericidal surfaces with polymer nanocone arrays. J. Colloid Interface Sci. 2018;528:389–399. PubMed
Dickson M.N., Liang E.I., Rodriguez L.A., Vollereaux N., Yee A.F. Nanopatterned polymer surfaces with bactericidal properties. Biointerphases. 2015;10(2) PubMed PMC
Wu S., Zuber F., Maniura-Weber K., Brugger J., Ren Q. Nanostructured surface topographies have an effect on bactericidal activity. J. Nanobiotechnol. 2018;16(1):20. PubMed PMC
Francone A., Merino S., Retolaza A., Ramiro J., Alves S.A., de Castro, V J., Neves N.M., Arana A., Marimon J.M., Torres C.M.S., Kehagias N. Impact of surface topography on the bacterial attachment to micro- and nano-patterned polymer films. Surface. Interfac. 2021;27 PubMed PMC
Chopra D., Gulati K., Ivanovski S. Bed of nails: bioinspired nano-texturing towards antibacterial and bioactivity functions. Materials Today Advances. 2021;12
Higgins S.G., Becce M., Seong H., Stevens M.M. In: Nanoneedles And Nanostructured Surfaces For Studying Cell Interfacing, 7th International Conference on the Development of Biomedical Engineering in Vietnam (BME7), Singapore, 2020// Van Toi V., Le T.Q., Ngo H.T., Nguyen T.-H., editors. Springer Singapore; Singapore: 2020. pp. 209–212.
Park S., Choi S.-O., Paik S.-j., Choi S., Allen M., Prausnitz M. Intracellular delivery of molecules using microfabricated nanoneedle arrays. Biomed. Microdevices. 2016;18(1):10. PubMed
Zhang Y., Xing Q., Chen A., Li M., Qin G., Zhang J., Lei C. Turning hierarchically micro-/nanostructured polypropylene surfaces robustly superhydrophobic via tailoring contact line density of mushroom-shaped nanostructure. Chem. Eng. Sci. 2022;262
Cumont A., Zhang R., Corscadden L., Pan J., Zheng Y., Ye H. Characterisation and antibacterial investigation of a novel coating consisting of mushroom microstructures and HFCVD graphite. Mater. Des. 2020;189
Zhang F., Low H.Y. Anisotropic wettability on imprinted hierarchical structures. Langmuir. 2007;23(14):7793–7798. PubMed
Choi J., Cho W., Jung Y.S., Kang H.S., Kim H.-T. Direct fabrication of micro/nano-patterned surfaces by vertical-directional photofluidization of azobenzene materials. ACS Nano. 2017;11(2):1320–1327. PubMed
Chen C.-H., Cheng I.C., Chen J.-Z. Facile method to convert petal effect surface to lotus effect surface for superhydrophobic polydimethylsiloxane. Surface. Interfac. 2022;30
Klicova M., Oulehlova Z., Klapstova A., Hejda M., Krejcik M., Novak O., Mullerova J., Erben J., Rosendorf J., Palek R., Liska V., Fucikova A., Chvojka J., Zvercova I., Horakova J. Biomimetic hierarchical nanofibrous surfaces inspired by superhydrophobic lotus leaf structure for preventing tissue adhesions. Mater. Des. 2022;217
Sui X., Wang Y., Sun Y., Liang W., Xue Y., Bonsu A.O. Superhydrophobic behavior of cylinder dual-scale hierarchical nanostructured surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2021;629
Wu H., Jiao Y., Zhang C., Chen C., Yang L., Li J., Ni J., Zhang Y., Li C., Zhang Y., Jiang S., Zhu S., Hu Y., Wu D., Chu J. Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography. Nanoscale. 2019;11(11):4803–4810. PubMed
Song Y., Liu Y., Jiang H., Zhang Y., Zhao J., Han Z., Ren L. Mosquito eyes inspired surfaces with robust antireflectivity and superhydrophobicity. Surf. Coating. Technol. 2017;316:85–92.
Han Z.W., Wang Z., Feng X.M., Li B., Mu Z.Z., Zhang J.Q., Niu S.C., Ren L.Q. Antireflective surface inspired from biology: a review. Biosurface and Biotribology. 2016;2(4):137–150.
Zhi J., Zhang L.-Z. Durable superhydrophobic surface with highly antireflective and self-cleaning properties for the glass covers of solar cells. Appl. Surf. Sci. 2018;454:239–248.
Malshe A., Rajurkar K., Samant A., Hansen H.N., Bapat S., Jiang W. Bio-inspired functional surfaces for advanced applications. CIRP Annals. 2013;62(2):607–628.
Elbourne A., Crawford R.J., Ivanova E.P. Nano-structured antimicrobial surfaces: from nature to synthetic analogues. J. Colloid Interface Sci. 2017;508:603–616. PubMed
da Silva D., Kaduri M., Poley M., Adir O., Krinsky N., Shainsky-Roitman J., Schroeder A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 2018;340:9–14. PubMed PMC
Nofar M., Sacligil D., Carreau P.J., Kamal M.R., Heuzey M.-C. Poly (lactic acid) blends: processing, properties and applications. Int. J. Biol. Macromol. 2019;125:307–360. PubMed
Knetsch M.L.W., Koole L.H. 2011. New Strategies in the Development of Antimicrobial Coatings: the Example of Increasing Usage of Silver and Silver Nanoparticles Polymers [Online] pp. 340–366.
Ferdous Z., Nemmar A. 2020. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure International Journal Of Molecular Sciences. [Online] PubMed PMC
Ershov V., Tarasova N., Ershov B. 2021. Evolution of Electronic State and Properties of Silver Nanoparticles during Their Formation in Aqueous Solution International Journal Of Molecular Sciences [Online] PubMed PMC
Podesva P., Foret F. Thin metal films in resistivity-based chemical sensing. Curr. Anal. Chem. 2013;9(4):642–652.
Renu S., Shivashangari K.S., Ravikumar V. Incorporated plant extract fabricated silver/poly-D,l-lactide-co-glycolide nanocomposites for antimicrobial based wound healing. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020;228 PubMed
Zhou C., Koshani R., O'Brien B., Ronholm J., Cao X., Wang Y. Bio-inspired mechano-bactericidal nanostructures: a promising strategy for eliminating surface foodborne bacteria. Curr. Opin. Food Sci. 2021;39:110–119.
Hsu Lillian C., Fang J., Borca-Tasciuc Diana A., Worobo Randy W., Moraru Carmen I. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl. Environ. Microbiol. 2013;79(8):2703–2712. PubMed PMC
Maleki E., Mirzaali M.J., Guagliano M., Bagherifard S. Analyzing the mechano-bactericidal effect of nano-patterned surfaces on different bacteria species. Surf. Coating. Technol. 2021;408
Basavaraju M., S B. 2022. G., Escherichia coli: an Overview of Main Characteristics; p. 21.
Foster T. In: Medical Microbiology. Baron S., editor. University of Texas Medical Branch at Galveston Copyright © 1996, The University of Texas Medical Branch at Galveston; Galveston (TX): 1996. Staphylococcus.
Qi F., Gao X., Wang C., Shuai Y., Yang L., Liao R., Xin J., Peng S., Shuai C. In situ grown silver nanoparticles on tetrapod-like zinc oxide whisker for photocatalytic antibacterial in scaffolds. Materials Today Sustainability. 2022;19
Qi F., Li H., Chen G., Peng S., Luo X., Xiong S., Zhu H., Shuai C. A CuS@g-C3N4 heterojunction endows scaffold with synergetic antibacterial effect. Colloids Surf. B Biointerfaces. 2023;230 PubMed
Shuai C., Liu G., Yang Y., Qi F., Peng S., Yang W., He C., Wang G., Qian G. A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy. 2020;74
Qi F., Li H., Chen G., Peng S., Shuai C. An oxygen self-supplied CuO2@g-C3N4 heterojunction endows photodynamic antibacterial performance of scaffold. J. Alloys Compd. 2023;966
Wu C., Chin C.S.M., Huang Q., Chan H.-Y., Yu X., Roy V.A.L., Li W.J. Rapid nanomolding of nanotopography on flexible substrates to control muscle cell growth with enhanced maturation. Microsystems & Nanoengineering. 2021;7(1):89. PubMed PMC
Qi F., Liao R., Shuai Y., Pan H., Qian G., Peng S., Shuai C. A conductive network enhances nerve cell response. Addit. Manuf. 2022;52
Patil D., Overland M., Stoller M., Chatterjee K. Bioinspired nanostructured bactericidal surfaces. Current Opinion in Chemical Engineering. 2021;34