Effects of protein inter-layers on cell-diamond FET characteristics
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20678916
DOI
10.1016/j.bios.2010.07.027
PII: S0956-5663(10)00402-1
Knihovny.cz E-zdroje
- MeSH
- adsorpce MeSH
- biosenzitivní techniky přístrojové vybavení metody MeSH
- buněčné linie MeSH
- diamant chemie MeSH
- elektrochemie metody MeSH
- elektronické tranzistory * MeSH
- ionty MeSH
- krevní proteiny chemie MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací MeSH
- nanočástice chemie ultrastruktura MeSH
- povrchové vlastnosti MeSH
- roztoky MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- diamant MeSH
- ionty MeSH
- krevní proteiny MeSH
- roztoky MeSH
Diamond is recognized as an attractive material for merging solid-state and biological systems. The advantage of diamond field-effect transistors (FET) is that they are chemically resistant, bio-compatible, and can operate without gate oxides. Solution-gated FETs based on H-terminated nanocrystalline diamond films exhibiting surface conductivity are employed here for studying effects of fetal bovine serum (FBS) proteins and osteoblastic SAOS-2 cells on diamond electronic properties. FBS proteins adsorbed on the diamond FETs permanently decrease diamond conductivity as reflected by the -45 mV shift of the FET transfer characteristics. Cell cultivation for 2 days results in a further shift by another -78 mV. We attribute it to a change of diamond material properties rather than purely to the field-effect. Increase in gate leakage currents (by a factor of 4) indicates that the FBS proteins also decrease the diamond-electrolyte electronic barrier induced by C-H surface dipoles. We propose a model where the proteins replace ions in the very vicinity of the H-terminated diamond surface.
Citace poskytuje Crossref.org
bOptimizing atomic force microscopy for characterization of diamond-protein interfaces