Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21881135
PubMed Central
PMC3259922
DOI
10.1098/rspb.2011.1284
PII: rspb.2011.1284
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- buněčné dělení MeSH
- buněčný cyklus * MeSH
- časové faktory MeSH
- délka genomu * MeSH
- diploidie MeSH
- genom rostlinný * MeSH
- rostlinné buňky fyziologie MeSH
- rostliny genetika MeSH
- velikost buňky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plant nuclear genome size (GS) varies over three orders of magnitude and is correlated with cell size and growth rate. We explore whether these relationships can be owing to geometrical scaling constraints. These would produce an isometric GS-cell volume relationship, with the GS-cell diameter relationship with the exponent of 1/3. In the GS-cell division relationship, duration of processes limited by membrane transport would scale at the 1/3 exponent, whereas those limited by metabolism would show no relationship. We tested these predictions by estimating scaling exponents from 11 published datasets on differentiated and meristematic cells in diploid herbaceous plants. We found scaling of GS-cell size to almost perfectly match the prediction. The scaling exponent of the relationship between GS and cell cycle duration did not match the prediction. However, this relationship consists of two components: (i) S phase duration, which depends on GS, and has the predicted 1/3 exponent, and (ii) a GS-independent threshold reflecting the duration of the G1 and G2 phases. The matches we found for the relationships between GS and both cell size and S phase duration are signatures of geometrical scaling. We propose that a similar approach can be used to examine GS effects at tissue and whole plant levels.
Zobrazit více v PubMed
Bennett M. D., Leitch I. J. 2010. Plant DNA C-values database (release 5.0, December 2010). See http://www.kew.org/cvalues/.
Pellicer J., Fay M., Leitch I. J. 2010. The largest eukaryotic genome of them all? Bot. J. Linn. Soc. 164, 10–1510.1111/j.1095-8339.2010.01072.x (doi:10.1111/j.1095-8339.2010.01072.x) DOI
Bennett M. D. 1987. Variation in genomic form in plants and its ecological implications. New Phytol. 106, 177–20010.1111/j.1469-8137.1987.tb04689.x (doi:10.1111/j.1469-8137.1987.tb04689.x) DOI
Thompson K. 1990. Genome size, seed size and germination temperature in herbaceous angiosperms. Evol. Trends Plants 4, 113–116
Knight C., Beaulieu J. 2008. Genome size scaling through phenotype space. Ann. Bot. (Lond.) 101, 759–76610.1093/aob/mcm321 (doi:10.1093/aob/mcm321) PubMed DOI PMC
Francis D., Davies M., Barlow P. 2008. A strong nucleotypic effect on the cell cycle regardless of ploidy level. Ann. Bot. (Lond.) 101, 747–75710.1093/aob/mcn038 (doi:10.1093/aob/mcn038) PubMed DOI PMC
Hof J. V., Bjerknes C. 1981. Similar replicon properties of higher-plant cells with different S periods and genome sizes. Exp. Cell Res. 136, 461–46510.1016/0014-4827(81)90027-6 (doi:10.1016/0014-4827(81)90027-6) PubMed DOI
Bayliss M. W. 1976. Variation of cell cycle duration within suspension cultures of Daucus carota and its consequence for the induction of ploidy changes with colchicine. Protoplasma 88, 279–28510.1007/BF01283252 (doi:10.1007/BF01283252) PubMed DOI
Gong J., Traganos F., Darzynkiewicz Z. 1993. Simultaneous analysis of cell cycle kinetics at two different DNA ploidy levels based on DNA content and cyclin B measurements. Cancer Res. 53, 5096–5099 PubMed
Storchová Z., Breneman A., Cande J., Dunn J., Burbank K., O'Toole E., Pellman D. 2006. Genome-wide genetic analysis of polyploidy in yeast. Nature 443, 541–54710.1038/nature05178 (doi:10.1038/nature05178) PubMed DOI
Knight C., Molinari N., Petrov D. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Ann. Bot. (Lond.) 95, 177–19010.1093/aob/rnci011 (doi:10.1093/aob/rnci011) PubMed DOI PMC
Beaulieu J., Leitch I., Patel S., Pendharkar A., Knight C. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 179, 975–98610.1111/j.1469-8137.2008.02528.x (doi:10.1111/j.1469-8137.2008.02528.x) PubMed DOI
Knight C. A., Clancy R. B., Götzenberger L., Dann L., Beaulieu J. M. 2010. On the relationship between pollen size and genome size. J. Bot. 2010, 7.10.1155/2010/612017 (doi:10.1155/2010/612017) DOI
Gruner A., Hoverter N., Smith T., Knight C. A. 2010. Genome size is a strong predictor of root meristem growth rate. J. Bot. 2010, 4. (doi:10.1155/2010/390414) DOI
Leishman M. 1999. How well do plant traits correlate with establishment ability? Evidence from a study of 16 calcareous grassland species. New Phytol. 141, 487–49610.1046/j.1469-8137.1999.00354.x (doi:10.1046/j.1469-8137.1999.00354.x) DOI
Hessen D., Jeyasingh P., Neiman M., Weider L. 2010. Genome streamlining and the elemental costs of growth. Trends Ecol. Evol. 25, 75–8010.1016/j.tree.2009.08.004 (doi:10.1016/j.tree.2009.08.004) PubMed DOI
Maranon T., Grubb P. J. 1993. Physiological basis and ecological significance of the seed size and relative growth rate relationship in Mediterranean annuals. Funct. Ecol. 7, 591–59910.2307/2390136 (doi:10.2307/2390136) DOI
Knight C., Ackerly D. 2002. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol. Lett. 5, 66–7610.1046/j.1461-0248.2002.00283.x (doi:10.1046/j.1461-0248.2002.00283.x) DOI
Morgan H., Westoby M. 2005. The relationship between nuclear DNA content and leaf strategy in seed plants. Ann. Bot. (Lond.) 96, 1321–133010.1093/aob/mci284 (doi:10.1093/aob/mci284) PubMed DOI PMC
Suda J., Kyncl T., Freiova R. 2003. Nuclear DNA amounts in Macaronesian angiosperms. Ann. Bot. (Lond.) 92, 153–16410.1093/aob/mcg104 (doi:10.1093/aob/mcg104) PubMed DOI PMC
Leitch I. J., Bennett M. D. 2007. Genome size and its uses: the impact of flow cytometry. In Flow cytometry with plant cells (eds Dolezel J., Greilhuber J., Suda J.), pp. 153–176 Weinheim, Germany: Wiley-VCH
Peters R. H. 1986. The ecological implications of body size. Cambridge, UK: Cambridge University Press
Connor E., McCoy E. 1979. Statistics and biology of the species-area relationship. Am. Nat. 113, 791–83310.1086/283438 (doi:10.1086/283438) DOI
Martinez N. 1992. Constant connectance in community food webs. Am. Nat. 139, 1208–121810.1086/285382 (doi:10.1086/285382) DOI
Reich P., Oleksyn J., Wright I., Niklas K., Hedin L., Elser J. 2010. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc. R. Soc. B 277, 877–88310.1098/rspb.2009.1818 (doi:10.1098/rspb.2009.1818) PubMed DOI PMC
Tilman D. 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474
Niklas K. 1994. The scaling of plant and animal body-mass, length and diameter. Evolution 48, 44–5410.2307/2410002 (doi:10.2307/2410002) PubMed DOI
West G., Brown J., Enquist B. 1997. A general model for the origin of allometric scaling laws in biology. Science 276, 122–12610.1126/science.276.5309.122 (doi:10.1126/science.276.5309.122) PubMed DOI
Moses M., Brown J. 2003. Allometry of human fertility and energy use. Ecol. Lett. 6, 295–30010.1046/j.1461-0248.2003.00446.x (doi:10.1046/j.1461-0248.2003.00446.x) DOI
Savage V., Gillooly J., Woodruff W., West G., Allen A., Enquist B., Brown J. 2004. The predominance of quarter-power scaling in biology. Funct. Ecol. 18, 257–28210.1111/j.0269-8463.2004.00856.x (doi:10.1111/j.0269-8463.2004.00856.x) DOI
Reich P., Tjoelker M., Machado J., Oleksyn J. 2006. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–46110.1038/nature04282 (doi:10.1038/nature04282) PubMed DOI
Brown J., West G. 2001. Scaling in biology. Oxford, UK: Oxford University Press
Price C., Enquist B. 2007. Scaling mass and morphology in leaves: an extension of the WBE model. Ecology 88, 1132–114110.1890/06-1158 (doi:10.1890/06-1158) PubMed DOI
Enquist B., Kerkhoff A., Stark S., Swenson N., McCarthy M., Price C. 2007. A general integrative model for scaling plant growth, carbon flux and functional trait spectra. Nature 449, 218–22210.1038/nature06061 (doi:10.1038/nature06061) PubMed DOI
Milla R., Reich P. 2007. The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proc. R. Soc. B 274, 2109–211410.1098/rspb.2007.0417 (doi:10.1098/rspb.2007.0417) PubMed DOI PMC
Niklas K., Cobb E., Niinemets U., Reich P., Sellin A., Shipley B., Wright I. 2007. ‘Diminishing returns’ in the scaling of functional leaf traits across and within species groups. Proc. Natl Acad. Sci. USA 104, 8891–889610.1073/pnas.0701135104 (doi:10.1073/pnas.0701135104) PubMed DOI PMC
West G., Enquist B., Brown J. 2009. A general quantitative theory of forest structure and dynamics. Proc. Natl Acad. Sci. USA 106, 7040–704510.1073/pnas.0812294106 (doi:10.1073/pnas.0812294106) PubMed DOI PMC
Mori S., et al. 2010. Mixed-power scaling of whole-plant respiration from seedlings to giant trees. Proc. Natl Acad. Sci. USA 107, 1447–145110.1073/pnas.0902554107 (doi:10.1073/pnas.0902554107) PubMed DOI PMC
Baetcke K., Sparrow A., Nauman C., Schwemme S. S. 1967. Relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50). Proc. Natl Acad. Sci. USA 58, 533–54010.1073/pnas.58.2.533 (doi:10.1073/pnas.58.2.533) PubMed DOI PMC
Gregory T. 2001. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. 76, 65–10110.1017/S1464793100005595 (doi:10.1017/S1464793100005595) PubMed DOI
Price H., Sparrow A., Nauman A. 1973. Correlations between nuclear volume, cell volume and DNA content in meristematic cells of herbaceous angiosperms. Experientia 29, 1028–102910.1007/BF01930444 (doi:10.1007/BF01930444) DOI
Cavalier-Smith T. 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 34, 247. PubMed
Smith R. 2009. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthropol. 140, 476–48610.1002/ajpa.21090 (doi:10.1002/ajpa.21090) PubMed DOI
Hodgson J., et al. 2010. Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? Ann. Bot. (Lond.) 105, 573–58410.1093/aob/mcq011 (doi:10.1093/aob/mcq011) PubMed DOI PMC
Jolicoeur P. 1975. Linear regressions in fishery research: come comments. J. Fish. Res. Board Can. 32, 1491–149410.1139/f75-171 (doi:10.1139/f75-171) DOI
Legendre P., Legendre L. 1998. Numerical ecology. Amsterdam, The Netherlands: Elsevier Science
Beemster G., Vusser K., De Tavernier E., De Bock K., De Inze D. 2002. Variation in growth rate between Arabidopsis ecotypes is correlated with cell division and A-type cyclin-dependent kinase activity. Plant Physiol. 129, 854–86410.1104/pp.002923 (doi:10.1104/pp.002923) PubMed DOI PMC
Melaragno J. E., Mehrotra B., Coleman A. W. 1993. Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5, 1661–166810.1105/tpc.5.11.1661 (doi:10.1105/tpc.5.11.1661) PubMed DOI PMC
Jovtchev G., Schubert V., Meister A., Barow M., Schubert I. 2006. Nuclear DNA content and nuclear and cell volume are positively correlated in angiosperms. Genome Res. 114, 77–8210.1159/000091932 (doi:10.1159/000091932) PubMed DOI
Gray J., Kolesik P., Hoj P., Coombe B. 1999. Confocal measurement of the three-dimensional size and shape of plant parenchyma cells in a developing fruit tissue. Plant J. 19, 229–23610.1046/j.1365-313X.1999.00512.x (doi:10.1046/j.1365-313X.1999.00512.x) PubMed DOI
Cavalier-Smith T. 2005. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann. Bot. (Lond.) 95, 147–17510.1093/aob/mci010 (doi:10.1093/aob/mci010) PubMed DOI PMC
Kozlowski J., Konarzewski M., Gawelczyk A. 2003. Cell size as a link between noncoding DNA and metabolic rate scaling. Proc. Natl Acad. Sci. USA 100, 14 080–14 08510.1073/pnas.2334605100 (doi:10.1073/pnas.2334605100) PubMed DOI PMC
DeLong J., Okie J., Moses M., Sibly R., Brown J. 2010. Shifts in metabolic scaling, production and efficiency across major evolutionary transitions of life. Proc. Natl Acad. Sci. USA 107, 12 941–12 94510.1073/pnas.1007783107 (doi:10.1073/pnas.1007783107) PubMed DOI PMC
Méchali M. 2010. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat. Rev. Mol. Cell. Biol. 11, 728–73810.1038/nrm2976 (doi:10.1038/nrm2976) PubMed DOI
Bennett M. D. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proc. R. Soc. Lond. B 181, 109–13510.1098/rspb.1972.0042 (doi:10.1098/rspb.1972.0042) PubMed DOI
Kuroki Y., Tanaka R. 1973. Duration of mitotic cell cycle in root tip cells of male Rumex acetosa. Jpn. J. Genet. 48, 19–2610.1266/jjg.48.19 (doi:10.1266/jjg.48.19) DOI
Powell M., Davies M., Francis D. 1986. The influence of zinc on the cell cycle in the root meristem of a zinc-tolerant and zoinc-nontolerant cultivar of Festuca rubra L. New Phytol. 102, 419–42810.1111/j.1469-8137.1986.tb00819.x (doi:10.1111/j.1469-8137.1986.tb00819.x) PubMed DOI
King P. 1980. Plant tissue culture and the cell cycle. Adv. Biomed. Eng. 18, 1–38
Barlow P. 1973. Mitotic cycles in root meristems. In The cell cycle in development and differentiation (eds Balls M., Billet F. S.), pp. 133–165 Cambridge, UK: British Society for Developmental Biology Symposium
R Development Core Team 2010. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; See http://www.R-project.org/.
Ebert T., Russell M. 1994. Allometry and model II nonlinear regression. J. Theor. Biol. 168, 367–37210.1006/jtbi.1994.1116 (doi:10.1006/jtbi.1994.1116) DOI
Francis D., Barlow P. 1988. Temperature and the cell cycle. In Plants and temperature (eds Long S. P., Woodward F. I.), pp. 181–201 Cambridge, U: Company of Biologists PubMed
Ivanov V., Dubrovsky J. 1997. Estimation of the cell-cycle duration in the root apical meristem: a model of linkage between cell-cycle duration, rate of cell production, and rate of root growth. Int. J. Plant Sci. 158, 757–76310.1086/297487 (doi:10.1086/297487) DOI
Garnier E. 1991. Resource capture, biomass allocation and growth in herbaceous plants. Trends Ecol. Evol. 6, 126–13110.1016/0169-5347(91)90091-B (doi:10.1016/0169-5347(91)90091-B) PubMed DOI
Vinogradov A. 1995. Nucleotypic effect in homeotherms: body-mass-corrected basal metabolic rate of mammals is related to genome size. Evolution 49, 1249–125910.2307/2410449 (doi:10.2307/2410449) PubMed DOI
Starostova Z., Kratochvil L., Frynta D. 2005. Dwarf and giant geckos from the cellular perspective: the bigger the animal, the bigger its erythrocytes? Funct. Ecol. 19, 744–74910.1111/j.1365-2435.2005.01020.x (doi:10.1111/j.1365-2435.2005.01020.x) DOI
Vinogradov A., Anatskaya O., Kudryavtsev B. 2001. Relationship of hepatocyte ploidy levels with body size and growth rate in mammals. Genome 44, 350–36010.1139/g01-015 (doi:10.1139/g01-015) PubMed DOI
Gregory T. 2005. The evolution of the genome. San Diego, CA: Elsevier
Nagl W. 1974. Mitotic cycle time in perennial and annual plants with various amounts of DNA and heterochromatin. Dev. Biol. 39, 342–346 PubMed
The smallest angiosperm genomes may be the price for effective traps of bladderworts
Shoot apical meristem and plant body organization: a cross-species comparative study