Shoot apical meristem and plant body organization: a cross-species comparative study
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29136411
PubMed Central
PMC5737494
DOI
10.1093/aob/mcx116
PII: 4614092
Knihovny.cz E-zdroje
- Klíčová slova
- Corner’s rule, cell number, cell size, genome size, phylogenetic analysis,
- MeSH
- fylogeneze MeSH
- Magnoliopsida anatomie a histologie růst a vývoj MeSH
- meristém anatomie a histologie růst a vývoj MeSH
- organogeneze rostlin MeSH
- výhonky rostlin anatomie a histologie růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: The shoot apical meristem (SAM) is the key organizing element in the plant body and is responsible for the core of plant body organization and shape. Surprisingly, there are almost no comparative data that would show links between parameters of the SAM and whole-plant traits as drivers of the plant's response to the environment. METHODS: Interspecific differences in SAM anatomy were examined in 104 perennial herbaceous angiosperms. KEY RESULTS: There were differences in SAM parameters among individual species, their phylogenetic patterns, and how their variation is linked to variation in plant above-ground organs and hence species' environmental niches. SAM parameters were correlated with the size-related traits of leaf area, seed mass and stem diameter. Of the two key SAM parameters (cell size and number), variation in all organ traits was linked more strongly to cell number, with cell size being important only for seed mass. Some of these correlations were due to shared phylogenetic history (e.g. SAM diameter versus stem diameter), whereas others were due to parallel evolution (e.g. SAM cell size and seed mass). CONCLUSION: These findings show that SAM parameters provide a functional link among sizes and numbers of plant organs, constituting species' environmental responses.
Institute of Botany Czech Academy of Sciences CZ 252 43 Pruhonice Czech Republic
Institute of Botany Czech Academy of Sciences CZ 252 43 Průhonice Czech Republic
Institute of Botany Czech Academy of Sciences CZ 379 82 Trebon Czech Republic
Zobrazit více v PubMed
Abbe EC, Randolph LF, Einset J. 1941. The developmental relationship between shoot apex and growth pattern of leaf blade in diploid maize. American Journal of Botany 28: 778–784.
Ackerly DD, Donoghue MJ. 1998. Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in maples (Acer). American Naturalist 152: 767–791. PubMed
Barlow PW. 1989. Meristems, metamers and modules and the development of shoot and root systems. Botanical Journal of the Linnean Society 100: 255–279.
Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.
Bäurle I, Laux T. 2003. Apical meristems: the plant’s fountain of youth. Bioessays 25: 961–970. PubMed
Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA. 2007. Correlated evolution of genome size and seed mass. New Phytologist 173: 422–437. PubMed
Bennett MD, Leitch IJ. 2005. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Annals of Botany 95: 45–90. PubMed PMC
Bonser SP, Aarssen LW. 2006. Meristem allocation and life-history evolution in herbaceous plants. Canadian Journal of Botany 84: 143–150.
Brodribb TJ, Jordan GJ, Carpenter RJ. 2013. Unified changes in cell size permit coordinated leaf evolution. New Phytologist 199: 559–570. PubMed
Brouat C, Gibernau M, Amsellem L, McKey D. 1998. Corner’s rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry. New Phytologist 139: 459–470.
Carins Murphy MR, Jordan GJ, Brodribb TJ. 2016. Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade. Annals of Botany 118: 1127–1138. PubMed PMC
Carraro N, Peaucelle A, Laufs P, Traas J. 2006. Cell differentiation and organ initiation at the shoot apical meristem. Plant Molecular Biology 60: 811–826. PubMed
Chumová Z. 2015. Evolutionary and taxonomic implications of variation in nuclear genome size: lesson from the grass genus Anthoxanthum (Poaceae). PLOS ONE 10: e0133748. PubMed PMC
Clark SE, Running MP, Meyerowitz EM. 1993. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119: 397–418. PubMed
Classen-Bockhoff R. 2016. The shoot concept of the flower: still up to date? Flora 221: 46–53.
Cornelissen JHC. 1999. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118: 248–255. PubMed
Corner EJH. 1949. The annonaceous seed and its four integuments. New Phytologist 48: 332–364.
Desdevises Y, Legendre P, Azouzi L, Morand S. 2003. Quantifying phylogenetically structured environmental variation. Evolution 57: 2647–2652. PubMed
Diniz-Filho JAF, de Sant’Ana CER, Bini LM. 1998. An eigenvector method for estimating phylogenetic inertia. Evolution 52: 1247–1262. PubMed
Dkhar J, Pareek A. 2014. What determines a leaf’s shape? EvoDevo 5: 47. PubMed PMC
Doležel J, Greilhuber J, Lucretti S et al. . 1998. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals of Botany 82: 17–26.
Doležel J, . 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233–2244. PubMed
Dray S, Dufour AB. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.
Durka W, Michalski SG. 2012. Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93: 2297–2297.
Fletcher JC. 2002. Coordination of cell proliferation and cell fate decisions in the angiosperm shoot apical meristem. BioEssays 24: 27–37. PubMed
Flores O, Garnier E, Wright IJ et al. . 2014. An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. Ecology and Evolution 4: 2799–2811. PubMed PMC
Fox J, Nie Y, Byrnes J. 2016. sem: structural equation models.R package version 3.1–8 https://CRAN.R-project.org/package=sem.
Freckleton RP, Harvey PH, Pagel M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist 160: 712–726. PubMed
Gonzalez N, De Bodt S, Sulpice R et al. . 2010. Increased leaf size: different means to an end. Plant Physiology 153: 1261–1279. PubMed PMC
Gonzalez N, Vanhaeren H, Inze D. 2012. Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science 17: 332–340. PubMed
Grace JB. 2006. Structural equation modeling and natural systems.Cambridge, UK: Cambridge University Press.
Green PB. 1999. Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. American Journal of Botany 86: 1059–1076. PubMed
Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL. 2004. Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58: 1705–1729. PubMed
Guo M, Simmons CR. 2011. Cell number counts – the fw2.2 and CNR genes and implications for controlling plant fruit and organ size. Plant Science 181: 1–7. PubMed
Hamant O, Traas J. 2010. The mechanics behind plant development. New Phytologist 185: 369–85. PubMed
Harper JL, Lovell PH, Moore KG. 1970. The shapes and sizes of seeds. Annual Review of Ecology and Systematics 1: 327–356.
Hodgson JG, Santini BA, Marti GM et al. . 2017. Trade-offs between seed and leaf size (seed–phytomer–leaf theory): functional glue linking regenerative with life history strategies … and taxonomy with ecology? Annals of Botany doi:10.1093/aob/mcx084. PubMed PMC
Holt AL, van Haperen JMA, Groot EP, Laux T. 2014. Signaling in shoot and flower meristems of Arabidopsis thaliana. Current Opinion in Plant Biology 17: 96–102 PubMed
Huber H, de Brouwer J, von Wettberg EJ, During HJ, Anten NPR. 2014. More cells, bigger cells or simply reorganization? Alternative mechanisms leading to changed internode architecture under contrasting stress regimes. New Phytologist 201: 193–204. PubMed
John GP, Scoffoni C, Sack L. 2013. Allometry of cells and tissues within leaves. American Journal of Botany 100: 1936–48. PubMed
Kleyer M, Bekker RM, Bakker J et al. . 2008. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. Journal of Ecology 96: 1266–1274.
Klimešová J. 2016. Links between shoot and plant longevity and plant economics spectrum: environmental and demographic implications. Perspectives in Plant Ecology, Evolution and Systematics 22:55–62.
Klimešová J, Danihelka J, Chrtek J, de Bello F, Herben T. 2017. CLO-PLA: a database of clonal and bud-bank traits of the Central European flora. Ecology 98:1179–1179. PubMed
Knevel IC, Bekker RM, Kunzmann D, Stadler M. Thompson K. 2005. The LEDA Traitbase collecting and measuring standards of life-history traits of the NW European flora.Groningen, The Netherlands: University of Groningen.
Knight CA, Beaulieu JM. 2008. Genome size scaling through phenotype space. Annals of Botany 101: 759–66. PubMed PMC
Knight CA, Molinari NA, Petrov DA. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95: 177–190. PubMed PMC
Kondorosi E, Roudier F, Gendreau E. 2000. Plant cell-size control: growing by ploidy? Current Opinion in Plant Biology 3: 488–492. PubMed
Kubát K, Hrouda L, Chrtek J jun, Kaplan Z, Kirschner J, Štěpánek J. 2002. Klíč ke květeně České republiky. [Key to the Flora of the Czech Republic] Prague, Czech Republic: Academia.
Kwiatkowska D, Dumais J. 2003. Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L. Journal of Experimental Botany 54: 1585–1595. PubMed
Laufs P, Grandjean O, Jonak C, Kieu K, Traas J. 1998. Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10: 1375–1389. PubMed PMC
Legendre P. 2014. lmodel2: Model II Regression.R package version 1.7–2. https://CRAN.R-project.org/package=lmodel2.
Leslie AB, Beaulieu JM, Crane PR, Donoghue MJ. 2014. Cone size is related to branching architecture in conifers. New Phytologist 203: 1119–1127. PubMed
Liu H, Xu Q, He P, Santiago LS, Yang K, Ye Q. 2015. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae. Nature Scientific Reports 5: 12246. doi:10.1038/srep12246. PubMed PMC
Lord J, Westoby M, Leishmann M. 1996. Seed size and phylogeny in six temperate floras: constraints, niche conservatism, and adaptation. American Naturalist 146: 349–364
Mauseth JD. 2004. Giant shoot apical meristems in cacti have ordinary leaf primordia but altered phyllotaxy and shoot diameter. Annals of Botany 94: 145–153. PubMed PMC
McCarthy MC, Enquist BJ, Kerkhoff AJ. 2007. Organ partitioning and distribution across the seed plants: assessing the relative importance of phylogeny and function. International Journal of Plant Sciences 168: 751–761.
Medford JI. 1992. Vegetative apical meristems. Plant Cell 4: 1029–1039. PubMed PMC
Moles AT, Falster DS, Leisnman MR, Westoby M. 2004. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology 92: 384–396.
Niklas KJ. 1994. Plant allometry: the scaling of form and process.Chicago: The University of Chicago Press.
Niklas KJ. 2015. A phyletic perspective on cell growth. Cold Spring Harbor Perspectives in Biology doi:10.1101/cshperspect. a019158. PubMed PMC
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB. 2013. Package ‘vegan’.Version 2.0–10 Vienna: R Foundation for Statistical Computing, Vienna; http://www.R-project.org.
Orme D. 2012. The caper package: comparative analysis of phylogenetics and evolution in R. R Foundation for Statistical Computing, Vienna: Available at: http://cran.r-project.org/web/packages/caper/.
Powell AE, Lenhard M. 2012. Control of organ size in plants. Current Biology 22: 360–367. PubMed
Price H, Sparrow A, Nauman A. 1973. Correlations between nuclear volume, cell volume and DNA content in meristematic cells of herbaceous angiosperms. Experientia 29: 1028–1029.
Rees M, Venable DL. 2007. Why do big plants make big seeds? Journal of Ecology 95: 926–936.
Revell LJ. 2012. Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217–223.
Revell LJ. 2014. Package ‘phytools’.https://cran.r-project.org/web/packages/phytools.
Romberger JA. 1963. Meristems, growth, and development in woody plants; an analytical review of anatomical, physiological, and morphogenic aspects. Technical Bulletin (United States Department of Agriculture), No. 1293.
Ronse De Craene LP. 2016. Meristic changes in flowering plants. How flowers play with numbers. Flora 221: 22–37.
Santini BA, Hodgson JG, Thompson K et al. . 2017. The triangular seed mass-leaf area relationship holds for annual plants and is determined by habitat productivity. Functional Ecology (in press). doi:10.1111/1365–2435.12870.
Sharma M, Sharma KC. 1989. Developmental studies on shoot apical organization in Zinnia elegans Jacq. Botanical Bulletin of Academia Sinica 30: 1–7.
Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C. 2007. Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Molecular Phylogenetics and Evolution 42: 92–103. PubMed
Schweingruber FH, Říha P, Doležal J. 2014. Variation in stem anatomical characteristics of Campanuloideae species in relation to evolutionary history and ecological preferences. PloS ONE: e88199. PubMed PMC
Sluis A, Hake S. 2015. Organogenesis in plants: initiation and elaboration of leaves. Trends in Genetics 31: 300–306. PubMed
Šímová I, Herben T. 2012. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proceedings of the Royal Society B. Biological Sciences 7: 867–875. PubMed PMC
Temsch EM, Greilhuber J, Krisai R. 2010. Genome size in liverworts. Preslia 82: 63–80.
Thompson K. 1990. Genome size, seed size and germination temperature in herbaceous angiosperms. Evolutionary Trends in Plants 4: 113–116.
Thompson K, Rabinowitz D. 1989. Do big plants have big seeds? American Naturalist 133: 722–728.
Tsukaya H. 2002. Interpretation of mutants in leaf morphology: genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between cell and organismal theory. International Review of Cytology 217: 1–39. PubMed
Tsukaya H. 2014. Comparative leaf development in angiosperms. Current Opinion in Plant Biology 17: 103–109. PubMed
Vernoux T, Autran D, Traas J. 2000. Developmental control of cell division patterns in the shoot apex. Plant Molecular Biology 43: 569–581. PubMed
Westoby M, Wright I. J. 2003. The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135: 621–628. PubMed
Whitman T, Aarssen LW. 2010. The leaf size/number trade-off in herbaceous angiosperms. Journal of Ecology 3: 49–58.
Yan E-R, Milla R, Aarssen LW, Wang X-H. 2012. Functional relationships of leafing intensity to plant height, growth form and leaf habit. Acta Oecologica 41: 20–29.
Yang D, Li G, Sun S. 2008. The generality of leaf size versus number trade-off in temperate woody species. Annals of Botany 102: 623–629. PubMed PMC